The Journal of Systems and Software 83 (2010) 235-252

iy

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Embedded architecture description language

Juncao Li?, Nicholas T. Pilkington?, Fei Xie **, Qiang Liu®

2 Department of Computer Science, Portland State University, Portland, OR 97207, USA
b School of Software, Tsinghua University, Beijing 100084, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 1 March 2009

Received in revised form 22 July 2009
Accepted 22 September 2009
Available online 30 September 2009

In the state-of-the-art hardware/software (HW/SW) co-design of embedded systems, there is a lack of
sufficient support for architectural specifications across HW/SW boundaries. Such an architectural spec-
ification ought to capture both hardware and software components and their interactions, and facilitate
effective design exploitation of HW/SW trade-offs and scalable HW/SW co-verification. In this paper, we
present the embedded architecture description language (EADL). EADL is based on a component model
for embedded systems that unifies hardware and software components. EADL does not dictate execution

gg&‘gg; architecture description and interface .sen.lantics.of. hardware and software. components vyhile supporting flexible platfgrm—ori-
language ented semantics 1r}stant1at10q. EADL supports concise representation of en}bedded. §yst.em arct_ntectures
Components and also formulation of architectural patterns of embedded systems. Besides facilitating design reuse,
Architectural patterns architectural patterns also facilitate verification reuse via association of property templates with these
Platform patterns. Effectiveness of EADL has been demonstrated by its successful application in integrating com-

Verification reuse ponent-based co-design, co-simulation, co-verification, and co-synthesis.

Hardware/software co-design
Co-simulation

Co-verification

Co-synthesis

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In today’s embedded system design, the boundary between
hardware and software has become increasingly blurred: hardware
and software closely interact and functionalities often migrate
across the boundary. Due to stringent design constraints of embed-
ded systems such as performance, power efficiency, and manufac-
ture costs, hardware and software modules must closely interact
and hardware/software (HW/SW) trade-offs must be effectively
exploited. This demands HW/SW co-design where system func-
tionalities are allocated across the HW/SW boundaries according
to individual applications. HW/SW co-design often results in flex-
ible embedded system architectures (including hardware and soft-
ware), which are application-specific.

To reduce manufacture and operation costs, it is often required
that for a given mission, only necessary hardware and software
modules be loaded into an embedded system. This makes compo-
nent-based development (CBD), developing systems via assembly
of components, an appealing and appropriate approach to embed-
ded system development. In both hardware and software indus-
tries, CBD (Jacome and Peixoto, 2001; Szyperski et al., 2002) is a

* Corresponding author. Tel.: +1 503 725 2403; fax: +1 503 725 3211.
E-mail addresses: juncao@cs.pdx.edu (J. Li), nickp@cs.pdx.edu (N.T. Pilkington),
xie@cs.pdx.edu (F. Xie), liugiang@mail.tsinghua.edu.cn (Q. Liu).

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.09.043

common trend. (In hardware industry, CBD is also known as Intel-
lectual Property (IP) based development.) A key objective of CBD,
among others, is to reuse design and verification efforts.

Central to CBD of a hardware or software system is the support
for architectural specification of this system which captures the
components that form the system and their interactions. Further
architectural supports include specification of architectural pat-
terns (Shaw and Garlan, 1996) for system composition, which
can facilitate both functional reuse and verification reuse. How-
ever, in the state-of-the-art HW/SW co-design of embedded sys-
tems, there is a lack of sufficient support to architectural
specifications across HW/SW boundaries. This is largely due to
the major semantic gap between hardware and software compo-
nents. They are often designed in their native design/implementa-
tion languages whose execution and interface semantics differ
significantly. For instance, hardware design may follow a synchro-
nous clock-driven signal-passing semantics while software design
may follow an asynchronous interleaving message-passing
semantics.

In this paper, we present the embedded architecture description
language (EADL) whose key features include:

1. EADL is based on a unified component model for embedded sys-
tems that unifies hardware and software components and
bridges the HW/SW semantic gap.

http://dx.doi.org/10.1016/j.jss.2009.09.043
mailto:juncao@cs.pdx.edu
mailto:nickp@cs.pdx.edu
mailto:xie@cs.pdx.edu
mailto:liuqiang@mail.tsinghua.edu.cn
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

236 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

2. EADL does not dictate execution and interface semantics of
hardware and software components while supporting plat-
form-oriented semantics instantiation.

3. EADL supports concise specification of embedded system archi-
tectures and also formulation of architectural patterns of
embedded systems.

4. EADL integrates architectural design with assertion-based veri-
fication (ABV) (Maliniak, 2002). It supports association of prop-
erties (e.g., temporal correctness properties) with components
and property templates with architectural patterns, to facilitate
HW/SW co-verification using formal methods such as model
checking (Clarke and Emerson, 1981; Quielle and Sifakis, 1982).

We have utilized EADL as the common representation for inte-
grating component-based co-design, co-simulation, co-verification,
and co-synthesis in the Embedded System Integrated Development
Environment (ESIDE). We have instantiated EADL for two net-
worked sensor platforms: one featuring XUML (Mellor and Balcer,
2002), a design-level software specification language and the other
based on the TinyOS run-time environment (Hill et al., 2000).
Furthermore, we have applied EADL in capturing architectures
of networked sensor systems (Hill et al., 2000; Shnayder et al.,
2005) based on the TinyOS platform and guiding their HW/SW
co-verification. EADL has demonstrated its flexibility in platform-
oriented semantics instantiation and effectiveness in capturing
architectures and patterns and in simplifying formulation and ver-
ification of system and component properties.

The remainder of this paper is organized as follows. In Section 2,
we provide the relevant background. In Section 3, we introduce the
key language features of EADL. In Section 4, we discuss how EADL
is instantiated for an embedded system platform. In Section 5, we
present the architecture and functionalities of ESIDE. In Section 6,
we discuss how architectural patterns are utilized to assist co-ver-
ification. In Section 7, we discuss our experiences with applying
EADL as supported by ESIDE. In Section 8, we present related work.
In Section 9, we conclude this paper and discuss future work.

2. Background

In this section, we first review a unified component model upon
which EADL is developed. We then discuss a unified property spec-
ification language for hardware and software, which EADL inte-
grates. A key goal of EADL is to support design for verification:
tightly coupling design constructs with their verification counter-
parts such as their local temporal properties. This is central to
improving verification scalability and efficiency. At last, we intro-
duce TinyOS-based sensor systems which serve as a case study.

2.1. Unified component model for embedded systems

In (Xie et al., 2006), a unified component model has been devel-
oped for embedded systems that follow an abstract but represen-
tative architecture as shown in Fig. 1. Under this architecture,
the software components of an embedded system execute on gen-
eric processors while the hardware components are implemented
as application specific integrated circuits (ASICs). The software

(Software Components)
Embedded OS
Generic Processors

(Hardware Components)
ASICs

Buses

Fig. 1. Abstract architecture.

components and hardware components interact through an
embedded OS that also schedules the execution of the software
components.

From this architecture, a unified component model as shown in
Fig. 2 has been derived, under which an embedded system is
assembled from components. There are three types of primitive
components: software components, hardware components, and
bridge components. Bridge components interact with hardware (or
software, respectively) components following hardware (or soft-
ware) semantics and bridge the semantic gap between hardware
and software components by propagating events across the HW/
SW semantic boundary. The semantics of bridge components to-
gether with the hardware and software semantics abstract the pro-
cessors, buses, and embedded OS of the targeted embedded system
platform. (For more details about the bridge component concept,
see Section 4.) Three types of composite components may also be
defined: software components, hardware components, and hybrid
components. A hybrid component contains both hardware and soft-
ware sub-components and, therefore, bridge sub-components.

2.1.1. Components

A component C is a triple (E, I, P) where E is the design or imple-
mentation of C,I is an interface including the semantic entities for
C to interact with its environment and/or for specification of prop-
erties of C, and P is a set of temporal properties that are defined on I
and have been verified on E. Hardware, software, and bridge com-
ponents differ in the specification languages for E and I, but share
the same specification language for P. The specification languages
for E and [are the native design/implementation languages for
hardware, software, and bridge components (see Section 4 for
examples). Each entry of P is a pair (p,A(p)) where p is a temporal
assertion and A(p) is a set of assumptions (i.e., assumed properties)
on the environment of C for enabling the verification of p on C. The
environment of C includes components that interact with C, and
may be different in each system. (See Section 2.2 for the unified
property specification language.)

2.1.2. Composition

A composite component, C = (E, I, P), is composed from a set of
components, Co = (Eo,Io,Po),...,Cn1 = (Eq_1,In_1,Pn_1), as follows.
E is constructed from Ey, .. ., E,_{ by connecting Eo, . .., E,_; through
Ip,...,I,_1. I may be a hardware interface, a software interface, or a
hybrid hardware/software interface depending on what types of
components Cy,...,C, 1 are. I includes the semantic entities from
Ip,...,I,_1 that are needed for C to interact with its environment
and|/or for specification of properties of C. Properties of a composite
component are established via verification on abstractions con-
structed from properties of its sub-components (Xie et al., 2006).

2.2. Unified property specification

Embedded systems control devices and physical or engineered
systems that range from hearing aids and automobiles to the elec-
trical power grid and global aviation infrastructure. They are often
required to be highly trustworthy. Embedded systems often sup-
port concurrency intensive operations such as simultaneous mon-
itoring, computation, and communication. However, locks and

pommmmees Software ---- Bridge > Hardware
¥y Component Component Component

Software 3
Component Y

} Software Bridge Hardware
e Component ---->{ Component | Component

Fig. 2. Unified component model.

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252 237

monitors commonly used to safeguard concurrent operations are
often not used in embedded systems due to computational costs.
Construction of highly trustworthy embedded systems requires
extensive verification. Power and performance constraints of
embedded systems require that hardware and software closely
interact and the trade-off between hardware and software be
effectively exploited. This requires co-verification.

Model checking (Clarke et al., 1999) is a formal verification
method with great potential in HW/SW co-verification of embed-
ded systems. A stumbling block to effective application of model
checking to co-verification is the lack of support to unified prop-
erty specification for hardware, software, and entire embedded
systems, i.e., specifying properties of hardware, software, and en-
tire embedded systems in a unified language. Unified property
specification is indispensable to verification of system-level prop-
erties that span across the HW/SW boundaries. It also facilitates
application of compositional reasoning (Clarke et al., 1999) to co-
verification by simplifying utilization of properties of hardware
and software components as assumptions when verifying other
components.

In (Xie and Liu, 2007), we have developed a unified property
specification language for HW/SW co-verification of embedded
systems. This language, namely xPSL, builds on the IEEE Property
Specification Language (PSL) (IEEE, 2005). It extends PSL to sup-
port specification of temporal assertions over both hardware
and software events. The HW/SW semantic gap is filled by for-
malizing the semantics of hardware and software events and
their temporal correlations based on translation of hardware
and software semantics to a common formal semantic basis, in
our case, the w-automata semantics (Kurshan, 1994). While PSL
supports both LTL (Pnueli, 1977) and CTL (Clarke and Emerson,
1981) temporal operators, xPSL inherits the linear-time subset
of the PSL temporal operators and is, therefore, fully subsumed
by w-automata in expressiveness. xPSL is fully compatible with
PSL and readily supports ABV. xPSL facilitates verification reuse:
properties of hardware and software components in xPSL can
serve as abstractions of the components in system-level verifica-
tion and can be reused across multiple systems if the components
are reused.

In this paper, we specify properties using a set of intuitive tem-
poral templates based on xPSL and w-automata, as shown in Fig. 3,
which have intuitive meanings and also rigorous mappings to
property templates written in S/R, the input formal language of
the COSPAN model checker (Hardin et al., 1996). (Note that in S/
R, both systems and properties are formulated as w-automata.)

Always/Never (f)

After (e) Always/Never (f) [Unless[After]| (d)]
After (e) Always/Never (f) [Until[After] (d)]
Always/Never (f) Unless[After] (d)
Always/Never (f) Until[After] (d)

After (e) Eventually (f) [Unless (d)]
Eventually (f) [Unless (d)]

IfRepeatedly (e) Repeatedly/Eventually (f)
IfRepeatedly (e) Eventually Always (f)

After (e) EventuallyAlways (f) [Unless (d)]
EventuallyAlways (f)

EventuallyAlways (f) Unless (d)

After (e) Repeatedly (f) [Unless (d)]
Repeatedly (f) [Unless (d)]
IfEventuallyAlways (e) Repeatedly/Eventually (f)
IfEventually Always (e) Eventually Always (f)

Fig. 3. A list of available property templates.

An example of such templates is After(e)Eventually(d) where
the enabling condition e and the discharging condition d are Boolean
propositions declared over semantic entities of hardware or soft-
ware. The semantic meaning is that after each occurrence of e there
eventually follows an occurrence of d. The formal semantics of a
property instantiating this template can be precisely defined based
on the mappings from the hardware and software semantics to the
semantics of S/R and the mapping of this template to a template
written in S/R. The property can be automatically translated into
S/R based on these mappings.

2.3. TinyOS-based sensor systems

TinyOS-based sensor systems are designed to: (1) run on lim-
ited hardware resources known statically, (2) handle events
(through hardware interrupts) from the environment, (3) assure
reliability for long-lived applications, and (4) satisfy soft real-time
requirements. The native programming language of TinyOS is nesC
(Gay et al., 2003), a dialect of the C language.

The key design features of TinyOS and nesC are as follows:

e Component-based specification: Systems in nesC are built by writ-
ing and assembling components. Components have two types:
modules (analogous to primitive components) which provide
application code implementing one or more component inter-
faces, and configurations (analogous to composite components)
which are compositions of other components.

e Static: In nesC, there is no dynamic memory allocation and the
function call graph is fully known at compile time. Therefore,
all components are static.

e Concurrency and atomicity: TinyOS supports two execution prior-
ities, tasks at the lower priority and events at the higher priority.
Atomic blocks inside tasks can be defined using the nesC key-
word “atomic”.

e Encapsulation and compilation: In nesC, components do not com-
pletely encapsulate their sub-components. Multiple compo-
nents are allowed to share a common sub-component. Code in
nesC is compiled into C code and all component instances with
the same type are compiled into the same copy of C code.

o HW/SWinterfaces: Hardware platforms of TinyOS are not compo-
nent-based. TinyOS provides direct function calls such as inp and
outp to interact with hardware while hardware can interrupt
software.

3. Key language features of EADL

In this section, we introduce the key language features of EADL.
These features, although resembling those of existing architectural
description languages, are specially designed for co-design and
geared for facilitating co-simulation and co-verification. Compo-
nent and architecture specifications provide a unified and compo-
nentized view of hardware and software while being separated
from hardware and software specific semantic details. EADL allows
these semantic details be provided by the embedded system plat-
forms. EADL also supports architecture-sensitive property specifi-
cation, which enables integration of architectural design with
ABV: embedding temporal property specification into architectural
constructs on various levels.

3.1. Component interfaces

To support architectural specifications, EADL refines the unified
component model to accurately capture structures in both compo-
nent interfaces and component interactions.

238 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

3.1.1. Events

EADL employs the event concept to abstract all concrete hard-
ware or software interaction mechanisms: signals, messages, func-
tion calls, etc. The event semantics are only precisely defined when
EADL is instantiated for a specific embedded system platform (see
Section 4). Events in an embedded system can be of different
semantics due to the differences between hardware and software
semantics. This enables EADL to span across HW/SW boundaries.

3.1.2. Ports

EADL employs the port concept to group events that together
realize a certain functionality. Depending on whether a component
is providing or utilizing the functionality, the port can be a “pro-
vides” or “uses” port in the component interface specification. Each
event in a port has an “input” or “output” direction. Whether an
event in a port is an input or output to a component also depends
on whether the port is provided or used. If a component provides a
port, its events conform to the directions as specified in the port;
otherwise, its events reverse the directions.

Fig. 4 shows a software sensor component, SW_Sensor, in the
context of a hybrid sensor component, HB_Sensor. The interface
of SW_Sensor uses three ports Clock, ADC, and STQ and provides
one port SendRcv. The EADL interface specification of SW_Sensor
is shown in Fig. 5. The events in these ports are software messages.
Fig. 5 also includes the interface specification for a hardware sen-
sor component, HW_Sensor. It provides a single port in its interface.
The events in this port are hardware signals.

In EADL, ports serve as the basic unit for design and verification
reuse. Besides events, a port can also include properties formulated
on these events as shown in Fig. 6. These properties are XxPSL asser-
tions on the functionality of this port and are categorized into two
sets: properties of the port provider (a.k.a. “provides assertions”)
and properties of the port user (a.k.a. “uses assertions”). The two
sets of properties often serve as the assumptions of each other.
When a port is reused in a component, depending on whether it
is provided or used, the corresponding set of properties are verified
on the component. Ports with their properties are put into a library
for reuse in defining components, component templates, and archi-
tectural patterns.

3.1.3. Composition
In EADL, components are connected on the more abstract port
level, instead of the detailed event level. As in Fig. 4, a “connection”

I SendRcy | SendRcv |

SW_Sensor

Fig. 4. Software sensor component in context of hybrid sensor component (this
screenshot is exported by VisualEADL, a visual modeling toolkit for EADL).

links two components through ports of the same type but reversed
directions.

Instead of introducing an explicit concept of connector in EADL,
we treat connectors as components that connect other components
together. Complex connections among components such as one-to-
many connections can be realized by introducing an additional
component that have one-to-one connections with all these com-
ponents while realizing the one-to-many logic in its implementa-
tion. Components of an embedded system may follow several
different hardware or software interface semantics, which would
require many different types of explicit connectors. This would
unnecessarily complicate the language definition. Furthermore,
treating connectors as components also avoids treating connectors
differently in simulation and verification.

3.2. Component-based system architectures

EADL specifies the architecture of a composite component (a
system is a composite component) via specifying its configuration,
which consists of its sub-components and their connections. The
configuration of HB_Sensor is shown visually in Fig. 4 and textually
in Fig. 5. Besides the sub-components and their connections, port
maps are defined between the ports of the composite component
and the ports of its sub-components, for instance, HB_Sensor.Send-
Rcv is mapped to SW_Sensor.SendRcv. For a primitive component,
the configuration is replaced by the path to its source file.

3.3. Embedded system architectural patterns

The architecture of a single system or composite component is
described by its sub-components and their connections. Common
patterns often exist among architectures of such systems or com-
ponents. EADL provides two mechanisms by which to capture
and reuse these commonalities.

3.3.1. Templates

While the architecture of a system or component is captured as
a configuration which is based on composition of components, an
architectural pattern is captured as a configuration template which
is based on composition of component templates. Abstraction of
patterns from the component/system architectures is based on
abstraction of component templates from components. A compo-
nent template is a skeleton for components, which captures the
parametrized interface shared by these components, the common
set of variables of these components, and the templates for proper-
ties of these components. The property templates are defined over
the parametrized interface and the variable set in the component
template. As the component template is instantiated into a compo-
nent, the property templates are instantiated into component
properties.

3.3.2. Patterns

Abstraction of architectural patterns from component or system
architectures is based on abstraction of component templates from
components. An architectural pattern consists of: (1) a partial
description of the interface for a component or system following
this pattern, which is made up of ports, (2) a configuration tem-
plate, from which the configuration of the component or system
is instantiated, and (3) property templates specified on the inter-
face and the configuration template, from which properties of
the component or system are instantiated. The configuration tem-
plate consists of concrete components and component templates,
and their connections.

We illustrate the architectural pattern concept with a simple
but representative pattern of embedded systems, the SourceToSink
pattern, as shown in Fig. 6. There are two component templates

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252 239

hybrid component HB_Sensor {
interface {
provides SendRcv;

configuration {

software port SendRcv {

software port Clock {

software port ADC {
events { input boolean On;

software port STQ {

events { input boolean Empty;

hardware port CLK Intr {

hardware port SEN_Intr {

software component SW_Sensor {
interface {

hardware component HW _Clock {
interface {
provides CLK _Intr; }

hardware component HW Sensor {

interface {
provides SEN_Intr;}

bridge component BG_Sensor {
interface {

uses CLK_Intr; uses SEN_Intr; }

mapping(SendRcv, SW_Sensor.SendRev); }

component SW _Sensor; component HW _Clock;
component HW _Sensor; component BG_Sensor;
connection(HW_Clock.CLK Intr, BG_Sensor.CLK Intr);
connection(BG_Sensor.Clock, SW_Sensor.Clock);
connection(BG_Sensor.ADC, SW _Sensor.ADC);
connection(HW_Sensor.SEN Intr, BG_Sensor.SEN _Intr);
connection(BG_Sensor.STQ, SW _Sensor.STQ); } }

events { output message Send; input message Send_Ack; } }
events { output message C_Intr; input message C_Ret; }

properties { provides assertion CLK_Rpt_Msg
pl: Repeatedly_(C_Intr) } }

output message A_Intr; input message A_Ret; } }

output message S_Schd; input message S_Ret; } }

events { output signal { wire intr_c; }; }
properties { provides assertion CLK_Rpt_Sig
pl: Repeatedly_(intrc) } }

events { output signal { wire intr_s; };
input signal { wire start_s; }; } }

provides SendRecv; uses STQ; uses ADC; uses Clock; }
configuration { source(“SW_Sensor.xuml”); } }

configuration { source(“HW _Clock.v”); } }

configuration { source(“HW _Sensor.v”) ;} }

provides STQ; provides ADC; provides Clock;

configuration { source(“BG_Sensor.bsl”); }
properties { dependency Clock.CLK _Rpt_-Msg: CLK Intr.CLK Rpt_Sig } }

Fig. 5. EADL specification for hybrid sensor component.

defined, Source and Sink. Their interfaces are defined through reuse
of the port SendRcv: Source provides the port while Sink uses it. The
two component templates are connected via this common port.
This pattern can be instantiated multiple times in a system, which
yields savings in design time and system complexity.

3.4. Architecture-sensitive property specification

In EADL, properties are incorporated in component hierarchies
and associated with the relevant components. For a component,
its properties can be specified on different semantic levels: port,
interface, component, and pattern. Port-level and interface-level
properties characterize how the component interacts with its envi-
ronment. Component-level properties characterize the internal

workings of the component, e.g., how its sub-components interact
with each other, or the couplings between its internal and environ-
ment via its interface, e.g., its state changes in response to outside
events. Pattern-level properties or property templates characterize
common properties of components of similar architectures. In
Fig. 6, RcvPort.Sender_Handshake is a port-level property, Sink_
Data_PT is an interface-level property, and Data_PT is a pattern-le-
vel property.

Property dependencies can be specified across different semantic
levels. For instance, Sink_Data_PT depends on RcvPort.Sender_Hand-
shake, i.e., Sink_Data_PT holds assuming RcvPort.Sender_Handshake
holds. When an assumption is not visible in scope, this dependency
can be specified at a higher semantic level. For instance, in Fig. 5, the
dependency of a port-level property Clock.CLK_Rpt_Msg on another

240 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

software port SendRcv {

properties {

software template Source {

properties {

software template Sink {
boolean DataConsumptionFlag;

properties {

software pattern SourceToSink {

properties {
assertion Data_PT

events { output message Send; input message Send_Ack; }

provides assertion Sender_Handshake: Receiver_Handshake_S
pl: After Never_UnlessAfter (Send, Send, Send_Ack)
uses assertion Receiver_Handshake_S: Sender_Handshake
pl: Never_UnlessAfter_(Send_Ack, Send)
p2: After Never_UnlessAfter_(Send_Ack, Send_Ack, Send)
uses assertion Receiver_Handshake_L: Sender_Handshake
pl: After_Eventually_(Send, Send-Ack) } }

interface { provides SendRcv as SendPort; }

assertion Src_Data_PT: SendPort.Receiver_Handshake_S,
SendPort.Receiver Handshake L
pl: Repeatedly_(SendPort.Send) } }

interface { uses SendRcv as RevPort; }

assertion Sink_Data_PT: RcvPort.Sender_Handshake
pl: IfRepeatedly_Repeatedly (RcvPort.Send,
DataConsumptionFlag = TRUE)
p2: IfRepeatedly_Repeatedly_(RcvPort.Send,
DataConsumptionFlag = FALSE) } }

configuration { template Source; template Sink;
connection(Source.SendPort, Sink.RcvPort); }

pl: Repeatedly_(Sink.DataConsumptionFlag = TRUE)
p2: Repeatedly_(Sink.DataConsumptionFlag = FALSE) } }

Fig. 6. An example architectural pattern.

port-level property CLK_Intr. CLK_Rpt_Sig is explicitly declared at the
component level.

Architecture-sensitive property specification in EADL facilitates
compositional reasoning in model checking and complexity reduc-
tion in simulation. Placing properties on right semantic levels helps
generate succinct proof obligations for compositional reasoning
and explicit property dependency helps prevent circular reasoning.
When simulating a system, properties on certain ports, interfaces,
or components can be enabled or disabled to avoid tracing irrele-
vant properties and enable quick diagnosis of property violations.

4. Platform-oriented instantiation of EADL
4.1. Embedded system platform

Embedded systems are often domain-specific. An emerging
trend in the industry is to supply domain-specific platforms for
embedded systems. Such a platform includes processors, buses,
and embedded OS for developing embedded systems of a given do-
main. The platform also provides reusable hardware and software
components and common architectural patterns of this domain. A
key design goal of EADL is to support architectural specification of
embedded systems based on various platforms. To achieve this
goal, we design EADL to support platform-oriented instantiation.

To simplify system design, simulation, and verification, our
platform concept hides details of processors, buses, and embedded
0S via definition of a platform-specific bridge specification lan-
guage (BSL). The semantics of hardware, software, and bridge com-
ponents abstract processors, buses, and embedded OS. With this

abstraction, a platform for an application domain consists of:
(1) software, hardware, and bridge design/implementation lan-
guages, (2) compiler support for simulation, verification, and
deployment under these languages, and (3) libraries of reusable
ports, architectural patterns, and hardware, software, and hybrid
components.

4.2. Instantiation of EADL

EADL is designed as an architectural extension for the hardware,
software, and bridge design/implementation languages and it gains
complete semantics when coupled with these languages. A plat-
form provides the semantics needed for instantiating EADL for an
application domain, as shown in Fig. 7. The software, hardware,
and bridge semantics determine the semantics of the events in
the interfaces of software, hardware, and bridge components spec-
ified using EADL. The semantics of the events in turn complete the
semantics of xPSL since XPSL provides the temporal operators, but
does not dictate the semantics of the events, i.e., the boolean
propositions.

Embedded Architecture Description Lanuguage

Software Bridge Hardware

Semantics Semantics Semantics

Fig. 7. Instantiation of EADL.

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252 241

4.2.1. Instantiation on sensor system platform with software in xXUML
The components in Fig. 5 and the pattern in Fig. 6 are based on
the XUML platform. In order to support high-level design, we adopt
the model-driven development (Mellor and Balcer, 2002) for soft-
ware components, and specify the design E in xXUML (Mellor and
Balcer, 2002), an executable dialect of UML. The interface I of a
software component can include two types of events: a set of input
and output messages and a set of exported variables in E. The com-
ponent communicates with its environment via asynchronous
message-passing. The variables in I are mapped to hardware sig-
nals and/or utilized in specifying component properties and sched-
uling constraints. This interface semantics is determined by the
asynchronous interleaving message-passing semantics of XUML.

For a hardware component, we specify the design E in Verilog
(Palnitkar, 2003). The interface I consists of a set of variables that
the hardware component imports from or exports to its environ-
ment. The component communicates with its environment syn-
chronously via the variables in I. This interface semantics is
determined by the synchronous clock-driven semantics of Verilog.

Bridge components inter-connect hardware and software com-
ponents. The interface I of a bridge component is a pair (Iy, Is). Iy is
a synchronous shared-variable interface for interactions with hard-
ware components and Is is an asynchronous message-passing
interface for interactions with software components. The interface
of the bridge component is determined by the hardware and soft-
ware components it connects. The design E of a bridge component
is formulated in a platform-specific BSL (Xie et al., 2006). This lan-
guage specifies (1) how hardware signals are mapped to software
messages, (2) how software variables are mapped to hardware sig-
nals, (3) interrupt priorities, and (4) messages that initiate software
tasks. The design of the BG_Sensor component in Fig. 5 is specified
in this language as shown in Fig. 8.

In EADL, component properties are as integral a part of a com-
ponent as its design and interfaces. To specify properties of the
hardware, software, and bridge components, XPSL also needs to
be instantiated on their semantics. This instantiation completes
the semantics of the event layer of xPSL which is used to specify
system events, i.e., the boolean propositions. The instantiation of
xPSL on this platform allows specification of events over software
messages, software variables, hardware signals, and hardware reg-
isters. For instance, in Fig. 6, the Sink_Data_PT assertion of the tem-
plate Sink involves two software events: one over the message
RcvPort.send and the other over the variable DataConsumptionFlag.
The property CLK_Rpt_Sig on the CLK_Intr port in Fig. 5, Repeatedly
(intr_c), asserts over a hardware event CLK_Intr.intr_c requiring
that the clock interrupts repeatedly.

4.2.2. Instantiation on tinyOS sensor system platform

Our second platform was created while we were re-engineering
the networked sensor systems included in the TinyOS (Hill et al.,
2000) distribution. In this platform, for a software component,
the design E is specified in nesC (Gay et al., 2003), a native pro-

gramming language for sensor software that customizes the C lan-
guage. The interface I has one type of event: functions. The
component communicates with its environment through function
calls. This interface semantics is determined by the asynchronous
event-driven call-return semantics of TinyOS/nesC. For a hardware
component, we adopt the same specification as in the xXUML Plat-
form. For a bridge component, its software interface Is is now func-
tion-based. Its specification E is specified in the BSL developed in
(Hao et al., 2009), which employs transactors to propagate events
across the HW/SW boundary. Fig. 9 illustrates the transactor con-
cept. A transaction invoked by a software event will generate a se-
quence of hardware signals. The transaction invoked from the
hardware side is implemented through hardware interrupts. The
instantiation of XPSL on this platform allows specification of events
over software function calls, software variables, and hardware sig-
nals. For instance, a property After(HW _Timer.INTR) Eventu-
ally(SW_Timer.Fire.call) can be asserted on the first hardware
transactor in Fig. 9, which is trivially satisfied according to the
semantics of transactors.

Fig. 10 shows the CodeBlue (Shnayder et al., 2005) architectural
pattern for medical sensor systems and Fig. 11 shows its EADL
specification which includes two concrete components and two
component templates. In particular, T_HB_Sensor is a hybrid com-
ponent template which can be instantiated multiple times.

A property template, CB_P1, is associated with the CodeBlue
pattern. It asserts that after the coordinator receives a query with
SRC as the sensor to be queried, SINK as the requester of the sensor
reading, and T as the threshold for reporting the sensor reading, the
coordinator will eventually report an above-threshold sensor read-
ing to the requester unless the request is canceled. It has an
assumption that after the query is received, the hardware sensor
reading eventually reaches and stays above the threshold.

5. Embedded system integrated development environment

The architecture of ESIDE is shown in Fig. 12. The key features of
ESIDE are derived from the four major stages of HW/SW co-devel-
opment of embedded systems: co-design, co-simulation, co-verifi-
cation, and co-synthesis.

System development using ESIDE begins with the selection of a
platform, which determines the execution and interface semantics
of hardware and software components. The platform also supplies
libraries of reusable design constructs such as components and
architectural patterns. The HW/SW co-design of an embedded sys-
tem using ESIDE emphasizes component-based architectures and
design-time specification of system and component properties.
Placing these concerns at the forefront of the design process less-
ens the barriers to component-based co-simulation and co-verifi-
cation. Highly accessible co-simulation and co-verification
capabilities tighten the validation feedback loop, allowing for
much earlier error detection. Throughout the co-design, the
developer periodically validates his or her design through

(CLK Intr.intr_¢ — Clock.C_Intr)

(ADC.On — SEN_Intr.start_s)

/* Interrupt priorities */

/* Hardware interrupt to software message mappings */
(SEN_Intr.intr.s — ADC.A Intr)

/* Software variable to hardware signal mappings */

Priorities(CLK Intr.intr_c, SEN_Intr.intr_s) = {0, 0}

/* Messages for initiating software tasks and their enabling conditions */
SchdSet = {(STQ.S_Schd | (STQ.Empty=False))}

Fig. 8. Design of BG_Sensor Component.

242 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

Transactor {

/* Software transactors */

void outp(uint-8 val, uint_8 address) {
PSEL = 1;
PADDR = address;
PWDATA = val;
PWRITE = 1;
@ (posedge PCLK);
PENABLE = 1;
@ (posedge PCLK);
PSEL = 0;
PENABLE = 0;

}

/* Hardware transactors */
HW_Timer.INTR = SW_Timer.Fire()

}

HW_ADC.INTR = SW_ADC.DataReady() 1;

uint-8 inp(uint-8 address) {

PSEL = 1;
PADDR = address;
PWRITE = 0;

@ (posedge PCLK);

PENABLE = 1;

@ (posedge PCLK);

PSEL = 0;

PENABLE = 0;
return PRDATA;

}

1;

Fig. 9. Transactors and interrupt mappings.

SW_Coordinator
CBQCHI Query | StdCirl | SRMsg
T] i
stactl] Stactr SRMsg
T_SwW CBQ HB_Network
Ctrl1 Datal Ctrl2 Ctrl3 Data3
cul | Cul ctl e —r—e— - -
[[Legend |
T_HB_Pulse T_HB_BloodOx T_HB_BodyTemp | solid box: concrete component
. Ida.rhcd box: component templzte!
e e = = == - e = = = = - - e e e = = - - 000 limsemssmcsmcam s mms=—a

Fig. 10. CodeBlue architectural pattern for medical sensor systems.

hybrid pattern P_HB_CodeBlue {
configuration {

component HB_Network; component SW_Coordinator;

template T_HB_Sensor as T_HB_BloodOx;

template T_HB_Sensor as T_HB_BodyTemp;

template T_HB_Sensor as T_HB_Pulse;

template T_SW_CBQ;

connection(T_SW_CBQ.Ctrll, T_HB_Pulse.Ctrl);

connection(T_HB_Pulse.Data, T_SW_CBQ.Datal);

connection(T_SW_CBQ.Ctrl2, T_HB_BloodOx.Ctrl);

connection(T_HB_BloodOx.Data, T_SW_CBQ.Data2);

connection(T_SW_CBQ.Ctrl3, T_HB_BodyTemp.Ctrl);

connection(T_HB_BodyTemp.Data, T_SW_CBQ.Data3);

connection(SW_Coordinator.CBQCtrl, T_SW_CBQ.StdCtrl);

connection(SW_Coordinator.Query, T_SW_CBQ.QueryHandler);

connection(SW_Coordinator.StdCtrl, HB_Network.StdCtrl);

connection(HB_Network.SRMsg, SW_Coordinator.SRMsg); }

properties {
assertion CBP1: CBA1
After _Eventually_UnlessAfter_(

(SW_Coordinator.Query.handleQuery(SRC, SINK, T)),
(SW_Coordinator.SRMsg.send(SRC, SINK, var > T)),
(SW_Coordinator.Query.cancel Query (SRC, SINK)))

assumption CBA1

After_EventuallyAlways_(

(SW_Coordinator.Query.handleQuery(SRC, SINK, T)),
(T_HB_Sensor[SRC].devSen(var > T))) } }

Fig. 11. EADL Spec for CodeBlue pattern.

component-based co-simulation and co-verification. Once the sys-
tem design is complete and has been validated is it synthesized
into the deployable.

In this section, we illustrate the component-based co-develop-
ment workflow as supported by ESIDE with a case study on the
CodeBlue medical sensor system. CodeBlue is intended for

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

243

Component-Based

[—— — — — — — > Co-Design ¢« - — — — — — — 1
p| (VisualEADL)
I 7y I
I I
I
| < ¥ |
| Platform | \ 4 |
| Libraries | EADL Spec |
Component-Based | Port Lib and ». | Component-Based
Co-Verification | - | Source Code "1 Co-Simulation
Template Lib.
A Pattern Lib. | A
Component Lib.
_/
1T\
Deifrllgérgse nt » | Component-Based +
7’| System Synthesis |
Data Feedback

Fig. 12. ESIDE architecture and features.

monitoring the vital signs of a patient in emergency situations
(Shnayder et al., 2005). We have re-engineered the original Tiny-
0S-based implementation of CodeBlue with ESIDE.

5.1. Platform-based development

In ESIDE, embedded systems are developed on top of a particu-
lar platform. It is the platform, not EADL, which dictates the oper-
ational semantics of the system and its components. Every stage of
development is heavily influenced by the developer’s platform
decision; it determines what hardware and software languages
will be used to design primitive components; it describes how
primitive components will be verified; it provides simulators for
both hardware and software; and it specifies how the embedded
system will be synthesized to hardware and software deployables.

The platform also provides a library of common EADL con-
structs - components, ports, templates and patterns - that can
be reused. The content of an ESIDE platform is unlimited in that
it may contain any construct expressible by EADL. This includes
hardware, software, and bridge aspects as well as both primitive
and composite components.

When a new system is to be developed, ESIDE will begin by ask-
ing the developer on which platform he or she wants to develop.
Once chosen, the platform libraries are available to draw from at
any time by means of the platform library view, which is depicted
at the bottom of Fig. 13. The platform library is intended to be a dy-
namic aspect of the platform. During the design phase, a developer
may select aspects of his or her project to include in the library for
use in future projects. The chosen EADL construct along with any
sub-components and dependent files are migrated into the plat-
form library and references to it are updated in the current project.
In this way, the developer can contribute to the platform without
knowledge of its internal structure.

CodeBlue was developed in the TinyOS networked sensor
run-time environment described in Section 2. We began our re-
implementation of CodeBlue by developing the TinyOS platform
described in Section 4.2.2. TinyOS is a software development envi-
ronment following the traditional model of embedded system
development (see Section 5.7.2). As such, it does not specify a hard-
ware description language, nor does it make explicit the communi-
cation channels between hardware and software. In designing our

TinyOS platform, we retained nesC as the underlying software lan-
guage for our TinyOS platform. Verilog is used to develop primitive
hardware components, and bridge components are described using
a Bridge Specification Language (BSL) (Hao et al., 2009) for this
platform.

As previously discussed, TinyOS software components follow
their own component model. Because of this, we were able to re-
implement the standard TinyOS library in EADL with only minor
changes to the original source code (see Section 5.7 for a discussion
of some of these differences). TinyOS also supports a number of
hardware configurations on which systems can be developed,
and provides the hardware abstraction and protection layer for
each. We have chosen two of these hardware configurations, Mica
and PC, on which to develop our case studies. These hardware con-
figurations are not component-based. We have componentized
these configurations using EADL. One direct benefit is that we
can now customize the hardware configuration for each system.

5.2. Co-design

At the core of any embedded system development process is the
design phase. The traditional design model for embedded systems
is a stack. Hardware forms the first layers of the stack, which sup-
port the hardware abstractions and protections. All of these must
be finalized and become static assumptions before developing soft-
ware, the top layers of the stack. We believe that this model is
inefficient.

ESIDE unifies the component models for hardware and soft-
ware. This allows both halves of the system to be developed in
the same environment. This methodology allows hardware and
software be built in a tightly coupled fashion, reducing the code
base of both to the minimum required for implementation. Tradi-
tional design leads to generic hardware platforms, only parts of
which are used in a given application. If hardware and software
are co-designed, the excess can be avoided, leading to better re-
source utilization.

In ESIDE, co-design centers around component-based architec-
tures and formally verifiable properties. Systems are realized by
composing simple components, both hardware and software, into
ever more complex ones. Component properties are utilized to ab-
stract away implementation details in system verification.

244 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

£ VisualEADL - EADL Case Studies/CodeBlue/apps/CodeBlueApp/MICA/CodeBlueAppapp.vead] - Eclipse SDK

Ble Edit plavigate Segrch Project Bun Window Help
£ Q- i@ LR

= 5| coseBuerspapp [

5. Navigator 3
S = MAIN_Std...
= 2 EADL Case Studies ~ MAIN_Pot
& sm £
e st Project e
mx Directory

(= BlinkTask

(= CntToleds

® (2 CntToLedsandRim
(= GenericBase

(= SenseTask
(= SenseToleds
(= SenseToRfm
[2) resdme. txt
= (2 CodeBlue

CodeBlueApp

L
[(= ADMRMoteTrack
& (& CodeBlueApp
® & s
= (= MICA
® = s
|14] CodeBlueApp.ead
|14] CodeBlueApp.nc
@ CodeBlueApp.vead
4] codeslueappapp ead
& CodeslueAppapp vead
& PC
|14] cenetsendMUX. cad

S_OUTCOM2
5_SPL

[T Properties | 4 EADL Properties | €& Error Log | §® Export €@ Simulation | @ Verification Log | €@ Platform Library &2

4 CBNatSandMUX.vead! & . (=30 ¥ ChannelMon § ChannelMonC & hardwaret @ hardwareHMUX
|4) CodeBlueappM.eadt

7] CodeSluepaM.nc & HPLSavePin & MicatighSpesdRadioh ¥ RadioCRCPackst ¥ RadicEncoding & RadioTiming @ RadioTimingC
& mz‘:m"m g @ sedencaang @ sswALC @ SlavePn @ SlavePnC @ SlavePrM & spByteFifo

Palette — *
[y select
1.4 Marquee
/ Part Connection
W/ Port Mapping
4P Variable
(= PortEvents #
Function
Signal

Event Parameter

Components

Unified
Co-Development
View

€ View-Based Features

Fig. 13. ESIDE visual modeling interface and platform view.

Systems are designed visually in ESIDE, as shown in Fig. 13. The
center area of the environment displays the configuration of an
embedded system. Components serve as the basic building blocks,
and come in three varieties: software, hardware, and bridge. Com-
ponents are connected through ports, shown in Fig. 13 as small
rectangles embedded in each sub-component. An arrow connect-
ing two ports of the same type indicates a channel for inter-com-
ponent communication. This communication always flows from
the provided port to the used port.

The design process starts with primitive components, which
have no EADL sub-structure definition. In its place, primitive com-
ponents contain an implementation of their interface in the appro-
priate platform native languages. Properties may be specified on
primitive components, and those properties must be satisfied by
the native language implementation in order for the system to pass
verification.

Primitive components are then composed to create more com-
plex ones. There are three types of composition: composite soft-
ware, hardware, and hybrid components. The former two may
contain any number of software and hardware components,
respectively. The latter may contain components of any type. A
composite component may also contain other composite compo-
nents. Fig. 13 shows a hybrid composite component (also a system)
containing a composite software component, a primitive bridge
component, and a composite hardware component.

Several levels into the software side of CodeBlue is the ADMR
component, which handles multicast routing. Fig. 14 shows the
configuration of ADMR. Both primitive and composite software
sub-components, which are indistinguishable at this level of
abstraction, are composed to implement the functionalities of
ADMR. The ADMR interface is the collection of ports not contained
in any sub-component. They are realized by the ports of the sub-
components as indicted by the mapping triangles that connect
them. Each port of the component’s overall interface must be

implemented by exactly one sub-component. It is not allowed that
two sub-components “share” the implementation of a single port
(see discussion in Section 5.7.3).

5.3. Co-simulation

The ways in which co-simulator configurations differ vary from
platform to platform. However, given a single platform there is
much commonality in how the co-simulator is configured for dif-
ferent systems based on that platform. Fig. 15 illustrates the co-
simulation environment setup flow for the Mica platform. To set
up the co-simulation environment, the BSL compiler retrieves the
hardware platform components in Verilog (e.g., the processor and
the bus) and the software platform components in nesC (e.g., the
embedded OS). In our study, we employ ModelSim (Mentor Graph-
ics, 2009) and Giano (Forin et al., 2006) as the foundations for our
system co-simulator. ModelSim is a hardware simulator that is
capable of simulating hardware designs written in Hardware
Description Languages (HDLs) such as Verilog, VHDL, and SystemC.
Giano is a full-system real-time simulator. It incorporates simula-
tion of processors, 1/O sub-systems, and peripherals of a system.
ModelSim can be attached to Giano and be responsible for simula-
tion of reconfigurable FPGAs. The communication between
hardware and software components is done through the Program-
ming Language Interface (PLI) between Giano and ModelSim. The
PLI is masked by and configured via the bridge components.

The bridge components can be simulated on two different lev-
els: Register Transfer Level (RTL) and Transaction Level (TL). For
the RTL simulation, the processor, the bus, and the OS are included
in the system co-simulation and they are configured according to
the bridge components. For the TL simulation, the platform compo-
nents such as the processor, the bus, and the OS are excluded to
accelerate the simulation speed. The hardware and software

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

245

StdContral

SendMsg s SendMsg SendMsg_... QueuedSe... | StdControl
ReceiveMsg ™ Reuavdd; ReceiveM: CommRece...
QueuedComm ADMRMsgMUX
SendMsq_CB SerialSend...
EthendMsgI |D’iglleceiv... ReceiveMs, .. SerialRecei...
L % SubControl
SendMsg ReceiveMsg I TOSMsgPool |
sendDone ICH IOH
activity BR_Flash BR_Flash Pool Pool |
EJ.=RFM BR=RFM Pool
Comm
ADMRM
HPLPower..) | APLPOREr Set PendingVsg_|
HPLUART il PendingMsg
HPLSlavePin HPLSlavePin
5_SP1 | | s_ourcomz
; _ ’ - Leds } Leds
| sset | |s_outcomz | Noleds
1oH | | Tmer o Tmer | | Timero ~ ADMRTimer |
TimerC TimerMUX
StdControl Pubsub | | Pubsublnt...
[Pubsub | [Pubsublnt... |

Fig. 14. Configuration of ADMR component.

SW Components l— — - Bridge Components HW Components
(nesC) (BSL) B " (Verilog)
nesC Compiler BSL Compiler Pre-Processor
C Compiler Verilog Compiler
SW Executables HW Executables
Microsoft Giano Configuration
5 5 Mentor Graphics
rocessor us ModelSim
Model Model fmm— PLI Interface K——

Fig. 15. Co-simulation environment setup.

components are connected directly by the transactors, which con-
vert between software events and hardware signals.

The co-simulation feature is integrated in the ESIDE interface. A
button-click directs ESIDE to compile the project for simulation
and invoke the appropriate simulators. The developer can examine
system behavior by way of the simulation view in the center of
Fig. 16. (The three separate views in Fig. 16 can be selected from
the view-based feature tabs in Fig. 13.) When simulating an
embedded system, the developer is allowed to watch events prop-
agate from component to component, leveraging the visual model
from co-design. State information for each component is also avail-
able for inspection at all times.

5.4. Co-verification

As components are developed, either for a specific system or for
inclusion in a platform, their properties are specified in a separate
view (see the top portion of Fig. 16). The integration of property
specification into the design phase encourages the developer to
think about behavior in terms of properties that can be formally
verified. This shifts the dependency for validation away from sim-
ulation alone and toward the inclusion of verification. Once prop-
erties have been specified, a button-click submits the component
in focus to the appropriate verification engines.

Primitive components are verified by directly model-checking
their source code using corresponding verification engines. How-
ever, once a primitive component has been verified, its behavior
can be abstracted by its verified properties. Using the properties
as abstractions, inspection of primitive source code can often be
avoided when verifying higher-level components. Properties of a
composite component are checked on abstractions constructed
from verified properties of its sub-components. A system is verified
top-down as it is developed via recursive decompositions into its
components. Verified properties of the reused components are re-
used in constructing the abstractions for verifying properties of the
system or higher-level components.

As shown in Fig. 17, ESIDE supports an automatic query-verifi-
cation-feedback loop when a system or component is verified. Ver-
ification starts with a property query to ESIDE. If the property has
already been verified, ESIDE will trivially return the memorized re-
sult; otherwise, properties of a primitive component are directly
model-checked by the primitive verification engine. Properties of
a composite component are processed by the composite

246 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

T Properties | %% EADL Properties &% . ¥ ErrorLog ¥ Export| 8 Simulation ¥ Verification Log & Platform Library ='im

propertiea {
assercion SysPl: SysAl

gl: Repeatedly (HW_CodeBlue. PRFM.PWRITE.fire=TRUE)
22: Repeatedly (HW_CodeBlue.PRFM.PWRITE.fire~=TRUE)

assumption SysAl

8l: RssumeRepear_edly_ { HW_CUdeBluE . PUART.INTRREC. fire=TRUE)

H

COMMIT
] Properties | 9% EADL Properties | § Error Log | @ Export | 8% Simulation 27 @ Verification Log| ¥ Platform Library =Him]
HARDWARE SOFTWARE
= TimerTarget=00e0 A interrupt4 occured A
= TimerTarget=00c8 HPLRFMC-> RFM Timer fire
startrfm tmer | RFMM->RFM,bitEvent state=1
TimerTarget=00c8 SecDedRadioByteSignal->Radio, txBitDone radio tx bit event 1 state=10
= start rfm tmer HPLRFMC->RFM. beBit
SRFMTXbit = 1 count=12
ZRFMTXbit=0 = interrupt4 occured =
] Properties | ¥ EADL Properties | @ Error Log | 4% Export | €% Simulation | #% Verificationlog £2 . ¥ Platform Library)

Calling COSPAN on file CodeBlueapp HW_CodeBlue_FTimer pl..
Calling COSPAN on file CodeBlueapp HW_CodeBlue_PFADC pl....

«se.verificacion succeeded S
..verification succeeded

Calling COSPAN on file CodeBlueapp HW_ CodeBlue PRFMTimer pl...... verification succeeded

**%8.098000s is used calling COSPAN
R R R R R RO
System verified succeafully!
9.432000s is used

1.084126M3 memory is used

B R R R R R R R R R R R R R

Fig. 16. Property specification, simulation, and verification views.

Verification Component-Based

Verification Query;

Query Co-Verification Frontend User Guidance

X %
Verification | |
Result

Primitive Component
Verification

Hardware Engine

EADL Spec
and

: Platform
Libraries

Template Lib.

- Pattern Lib.
Software Engine Component Lib.

BSL Engine Source Code Port Lib.

Verification Query

_ _Veriﬁcation Result; _

User Hint

Composite Component Verification

Component- Mechanized
Based [€— Refinement
Abstraction Assistant

Verification
Engine

Fig. 17. Co-verification tool support.

verification engine, which may need to query the appropriate ver-
ification engines for the sub-components with new properties if
the previously verified properties of the sub-components are not
sufficient abstractions. When the composite verification engine
fails to detect new properties to improve the abstractions of the
sub-components, it will give feedback to the developer, often in
the form of an error trace, and ask users for refinement hints. Such
hints are usually new properties to improve the sub-component
abstractions.

Verification is nominally a predicate operation. Either a compo-
nent’s properties hold on the given implementation or they do not.
However, in the case where a property does not hold, further infor-
mation about the way in which the implementation fails to meet
specifications is highly desirable. In order to provide this kind of
information, our verification process includes the generation of

an error trace for properties that do not hold. As with simulation,
ESIDE not only displays this information textually, but also allows
the developer to review it visually, following the error trace
through the system using a mechanism similar to visual co-simu-
lation. The result of these combined features is a development
environment that not only unifies hardware and software models
but also unifies the co-design, co-simulation and co-verification
of those systems, leading to a highly available, efficient, and pow-
erful embedded system development environment.

5.5. Unified playback of error traces

As discussed in their respective sections, ESIDE’s co-simulation
and co-verification features support the capabilities of playing back
the error traces generated in simulation and verification. Although

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252 247

their purposes differ, there are significant similarities in their play-
backs. ESIDE leverages these similarities to unify the playback of
error traces.

Different formal verification methods and tools often lead to
differences in the error traces that result from verification failures.
The TinyOS platform uses the COSPAN verification engine (Hardin
et al,, 1996), which models all aspects of a system with variables.
For example, every function in software is modeled with two im-
plicit variables, call and ret, to represent the call and return events
of that function.

There is similar variety in the data collected during simulation.
Some simulators may choose to record value changes for declared
variables, whereas others may only record memory reads and
writes. Some simulators record time in terms of seconds, while
others use clock cycles.

Fig. 18 illustrates how various error traces are unified for play-
back in ESIDE. A common format for traces that VisualEADL can use
to visually “play back” verification or simulation traces has been
designed. A trace of this format contains information about the
variables and component interface activities. The choice of simula-
tion and verification technologies is specific to each platform. As
such, the platform is also responsible for providing data transfor-
mation logic that converts platform-specific error traces into the
common format, which can then be executed by the playback
engine.

5.6. Co-synthesis

The final stage in embedded system development is co-synthe-
sis: generation of a hardware and software executables of the de-
signed system. Each platform contains compilers to translate
EADL structural information into its native languages. Primitive
component implementations are combined with constructs gener-
ated from composite components into a complete native language
implementation of the hardware and software of the designed sys-
tem. Native language tools can then be used to, for instance, burn
FPGAs and compile software to realize the physical system.

When a system is synthesized to the platform native code, the
structure-expressing overhead of EADL is greatly reduced or en-
tirely removed. When synthesizing the remodeled CodeBlue sys-
tem to nesC code, we compared the resulting code against the
original source. For verification of accuracy, we also compared
the applications’ behaviors in TOSSIM (Hill et al., 2000), the TinyOS
simulation engine. Both exhibited the same behavior. Next, we
compared the resulting code base against the original. In the new
version, there are 52 components and 43 ports. In the original,
there were 43 components and 30 ports. The eight extra compo-
nents are all for overcoming various signal routing problems inher-
ent in the paradigm shift (see Section 5.7.3). Most extra ports were
introduced while making the hardware interfaces explicit.

Si_lrpulation = Trace

races 7| Transformer

_—
T Com';non t Playback
race Forma Engine

Verification R Trace

Traces 7| Transformer
_—

Fig. 18. Trace unification for playback.

5.7. ESIDE design decisions

5.7.1. Encapsulation and compilation

In defining the semantics of component composition, TinyOS
does not treat each instance of a component as a separate software
entity. Instead, all components are implemented in static space
and shared between those components that utilize them. While
this decision deviates from the component-based development
principle of encapsulation, it does have practical benefits. Having
only a single instance of each component resident in memory re-
duces the code footprint of a TinyOS-based sensor system.

In ESIDE, we chose not to deviate from the encapsulation prin-
ciple. We believe the benefits to such adherence outweigh the
costs. Firstly, strict encapsulation allows for more efficient compo-
nent-based co-verification. Secondly, systems developed in fuller
adherence to component-based methodologies tend to be more
intuitive. Finally, those aspects that truly warrant static space
implementations may still be placed in static space via the plat-
form languages’ native mechanisms. In co-synthesis, EADL allows
the developer to instruct synthesis of several instances of a compo-
nent into a static copy.

ESIDE provides a warning in the situation that a sub-component
is shared by multiple components, since the proved properties of
the sub-component may require additional assumptions to hold.
For example, the IntToRfm component has a property asserting
all transmission requests will be acknowledged, assuming no con-
secutive transmission requests without an acknowledgement. Two
different components A and B that contain IntToRfm can satisfy the
assumption, respectively, but when A and B are used in the same
project, the assumption no longer holds. Since there is only one
copy of IntToRfm, A and B can both send data and wait for
acknowledgement at the same time. This is possible due to the
concurrent nature of TinyOS.

5.7.2. Hardware/software boundary

The traditional model of embedded system development is
stack-based. TinyOS components communicate with hardware at
the primitive level via special library function calls. This works well
for software development on predetermined hardware. However,
in co-design, communication between hardware and software is
horizontal, not vertical, and it cannot be handled on the primitive
level. At least one bridge component is required for the communi-
cation. For these reasons, a significant number of ports had to be
introduced in our models for the now non-primitive HW/SW
communication.

Furthermore, faithful re-modeling of TinyOS-based systems in
ESIDE leads to a monolithic design with a single system-level soft-
ware component, a single hardware component, and a bridge com-
ponent connecting them. Not only does this insufficiently leverage
the co-development model, but it also necessitates the mapping of
interfaces from primitive software components to system level and
back down to primitive hardware components. An example of this
monolithic design is shown in Fig. 13. We believe these issues will
be resolved by relaxing the faithfulness requirement and fully
adopting the co-development methodology. By re-engineering
the TinyOS systems from the ground up, adhering to the co-devel-
opment model, the distance between hardware and software will
be minimized, and the unnatural mappings of our current imple-
mentations will not manifest.

5.7.3. Port mapping semantics

Whether port mapping is one-to-one or one-to-many has a sig-
nificant impact on its semantic interpretation. In the case of the
former, a port mapping indicates equivalence of identity. One
way to think of this is that the mapped port is only an alias for
the port to which it is mapped. In the latter case, the mapped port

248 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

is not equivalent to any one of the ports to which it is mapped, but
represents a functionality comprised by their composition. The
problem is then to define the semantics of that composition. Does
each provide a partial implementation of the whole? Does each
provide a full interface, from which one is chosen by means of
some meta-mapping attribute? Are all interfaces called sequen-
tially (or simultaneously) and their results combined to form a sin-
gle return value? These questions are answered when the
semantics of the component model is specified.

In TinyOS, one-to-many mappings are allowed. When a func-
tion is called in an interface that is mapped to multiple sub-inter-
faces, each of those interfaces is called in turn, and the results are
combined in one of two methods. The language defines default
combining semantics for many built-in types. For instance, multi-
ple return values of the result_t type are combined by the log-
ical and operator, so that SUCCESS is returned only in the case
where each function returned SUCCESS. If, however, the data type
is not built-in or the language does not provide default combining
logic, the developer may introduce his or her own. Although one-
to-many mappings are powerful, we chose to support one-to-one
mapping in ESIDE. The simplicity and elegance of one-to-one
mappings removes much of the confusion that is inherent to
one-to-many mappings as to the intended semantics. We were
able to faithfully model TinyOS systems with the introduction
of multiplexing components that explicitly realize the one-to-
many mappings.

6. Pattern-guided co-verification
A major challenge in component-based co-verification is the

property formulation problem: (1) what are the system properties
to verify, (2) what are the component properties needed for verify-

ing the system properties, and (3) what are the environment
assumptions necessary for establishing these properties. The prob-
lem may significantly hinder effectiveness of component-based co-
verification. The increasing adoption of ABV alleviates this problem
since designers are required to formulate the component proper-
ties as a component is designed. However, this problem persists
since, in essence, it is due to lack of knowledge about possible envi-
ronments of components, and it also plagues ABV although on a
lesser extent. In addition, ABV requires major manual efforts in
property formulation. Therefore, it is highly desired for heuristics
that can reduce the property and assumption formulation efforts
for embedded systems and composite components which follow
commonly used architectures.

Integration of co-design and co-verification enables more effec-
tive verification. EADL provides the language support for capturing
architectures and architectural patterns of embedded systems and
also supports association of properties with components and prop-
erties templates with architectural patterns. Our approach utilizes
EADL to address the property formulation challenge in the follow-
ing ways: (1) pattern-guided property formulation, (2) pattern-
guided property decomposition, and (3) pattern-guided circular
reasoning prevention.

6.1. Pattern-guided property formulation

Patterns can guide property formulation for both systems and
reusable components. A difficulty in ABV is to identify the potential
environments for a reusable component and how it interacts with
the environments. Patterns essentially abstract the potential envi-
ronments for reusable components. If a component is designed to
be reused under a given pattern, the pattern often determines
the properties that ought to hold on the component and their

software port QueryHandler {

output: dataReady(int var); }

}

software template T_.SW_CBQ {

interface {
provides StdCtrl as StdCtrl;

}

properties{

software port StdCtrl { events {input: start, stop;}}

events {input: handleQuery(int src, sink, threshold), cancelQuery(int src, sink);

software port Data { events {input: getData(); output: dataReady(int var);} }

int QrySink[NumofSen], QryThreshold[NumofSen];

provides QueryHandler as QueryHandler;
uses multi Sen[NumofSen] { StdCtrl as Ctrl; Data as Data }

assertion CBQ_P1 After(QueryHandler.handleQuery(SRC, SINK, T))
Repeatedly(Sen[SRC].Data.getData)
UnlessAfter(QueryHandler.cancelQuery (SRC, SINK));

assertion CBQ_P2 After(QueryHandler.handleQuery(SRC, SINK, T))
Eventually Always ((QrySink[SRC]=SINK)

*(QryThreshold[SRC]=T))
UnlessAfter(QueryHandler.cancelQuery (SRC, SINK));
assertion CBQ_P3 After((Sen[SRC].Data.dataReady(var>QryThreshold[SRC]))
*(QrySink[SRC]=SINK))
Eventually(QueryHandler.dataReady (SRC, SINK,

UnlessAfter(QueryHandler.cancelQuery (SRC, SINK));

(var>QryThreshold[SRC])))

Fig. 19. EADL Spec for CBQ template.

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252 249

appropriate environment assumptions. An example is the
T_SW_CBQ component template under the CodeBlue pattern which
dictates the interactions between CBQ and other components and
suggests the properties in Fig. 19. (Port properties in this template
are omitted for simplicity.) As the number of sensors that CBQ
manages varies depending on the individual system, the number
of corresponding ports varies accordingly. Keyword multi is used
to support this feature. By using multi to group the ports, it indi-
cates this is a group of ports that can be instantiated multiple times
according to the number of sensors in a specific system.

Another difficulty in property formulation is how to derive
appropriate behavior rules of the system from the system require-
ments, i.e. what are the system properties to verify. Patterns are
utilized as the vehicle to address this problem during the system
design process. Given the system requirements, the architecture
patterns used to structure the system are selected. These patterns
suggest what properties to verify on the system. In EADL, this is
supported by pattern-level property templates which are specified
on the system-level (or composite component level) interfaces and
variables. Property CB_P1 in Fig. 11 is such an example.

6.2. Pattern-guided property decomposition

In component-based development of embedded systems, the
decomposition process is top-down, which recursively decom-
poses a system into its components and their inter-connecting
relations, until reaching the primitive components or the reusable
components. The decomposition process often depends on knowl-
edge and experience of system architects to determine the decom-
positions, e.g., hardware and software partitions. Architectural
patterns facilitate this process by capturing reusable knowledge
about system architectures.

The pattern-guided decomposition process starts with pattern
selection. In this step, architectural patterns are manually selected
according to the specification of system/component requirement
and interface. If a pattern is successfully selected from the pattern
library, the system/component is decomposed into concrete com-
ponents and component templates following the pattern. The
decomposition stops at a concrete component which is reused di-
rectly. A component template, which is only a component skeleton
with ports and property templates, is utilized to select a compo-
nent matching the template specification. This decomposition
stops if the component can be reused; otherwise, there are two

ways to design the component: as a primitive component by which
the decomposition stops with direct implementation or as a com-
posite component by which the decomposition continues recur-
sively. If there is no appropriate pattern that matches the
system/component specification, the decomposition is conducted
manually.

To enable efficient component-based co-verification, we inte-
grate verification into the top-down decomposition process, in par-
ticular, integrating property decomposition with system
decomposition, which is a major advantage of our approach. As
an architectural pattern is selected to guide a decomposition, its
associated property decomposition strategy is also utilized to
decompose the pattern-level properties into the component prop-
erties. As a component template is utilized to select a component,
both the interface/port templates and the property templates are
used to guide the component selection. A basic approach to speci-
fication of decomposition strategies is to associate appropriate
property templates with the component templates in a pattern
and define the dependency links from a pattern-level property
templates to the component property templates. Dependencies
among component properties are captured as assumptions of these
properties. For instance, for the pattern-level property of the Code-
Blue pattern, we can define a decomposition strategy as shown in
Fig. 20. (Port properties involved in this strategy are omitted for
simplicity.) This strategy must be instantiated for each individual
system since the properties of the CBQ component depends on
how many sensors are included.

This straightforward approach to strategy specification is cum-
bersome when a lot of property templates need to be specified.
And as discussed above, for certain pattern, the number of compo-
nents that are involved in the pattern are only known when the
pattern is instantiated in a system context. Therefore, more conve-
nient ways to specify decomposition strategies is needed. Lan-
guage supports for specifying decomposition strategies as simple
programs are also provided. These programs generate component
properties according to the parameters used in instantiating archi-
tectural patterns.

6.3. Pattern-guided circular reasoning avoidance

There may exist assume-guarantee dependency cycles among
component properties, which can potentially lead to circular rea-
soning. Property dependency cycles may be accidentally intro-

// Pattern-level property
assertion CB_P1: CB_A1l

assumption CB_A1l

// Properties of Coordinator

assertion CRD_P1

assertion CRD_P2

// Properties of Sensors

// Decomposition strategy

After(SW_Coordinator.Query.handleQuery(SRC, SINK, T))
Eventually(SW_Coordinator.SRMsg.send(SRC, SINK, var>T))
UnlessAfter(SW_Coordinator.Query.cancelQuery (SRC, SINK));

After(SW_Coordinator.Query.handleQuery(SRC, SINK, T))
Eventually Always(T_HB_Sensor[SRC].devSenVar>T);

After (SW_Coordinator.Query.dataReady(SRC, SINK, var>T))
Eventually(SW_Coordinator.SRMsg.send(SRC, SINK, var>T));

Never (SW_Coordinator.Query.handleQuery(SRC, SINK, T)*
SW_Coordinator.Query.cancel Query(SRC, SINK));

// Properties of CBQ as shown in Figure 19

assertion SEN_P1 After(GSI.getData) Eventually(GSI.dataReady(var=drvSenVar));
assertion SEN_P2 IfEventually Always(devSenVar>T) Eventually Always(drvSenVar>T);

CB_P1 — CRD_P1, CRD_P2, CBQ_P1, CBQ_P2, CBQ_P3, SEN_P1, SEN_P2;

Fig. 20. An example decomposition strategy.

250 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

duced by incorrect formulation of component properties or inten-
tionally introduced to reflect the nature of component interactions
and simplify property specification. The first type of cycles can be
eliminated by cycle detection. For the second type of cycles, addi-
tional verification work may be needed to show that such cycles
will not cause circular reasoning. Solution of this problem can be
made more efficient through architectural patterns since once a
pattern can be shown free of circular reasoning, the instantiations
of the pattern are free of circular reasoning. In essence, the circular
reasoning detection is conducted only once for the pattern and is
reused when the pattern is reused.

7. Evaluation
7.1. Effectiveness

We have evaluated ESIDE by remodeling 12 TinyOS-based sen-
sor systems. Except for the design changes in Section 5.7, we at-
tempted to preserve the original structure of software
components. We re-designed the hardware to be component-
based and provided bridge components accordingly. Because of
the TinyOS design features discussed in Section 5.7.2, each re-mod-
eled system contains only one bridge component at the top hierar-
chical level, thus containing no hybrid components below the
system level.

Table 1 shows the statistics of the remodeled systems compared
to the original systems. The additional components and ports are
used to imitate the TinyOS designs such as one-to-many mapping
and shared sub-components and to componentize the hardware.
We modeled two TinyOS platform libraries: the Mica library and
the PC library (used for TOSSIM (Hill et al., 2000) simulation). All
remodeled systems are compiled back into TinyOS code and simu-
lated by TOSSIM to ensure that our remodeling was faithful.

We have conducted component-based co-simulation and
co-verification during the re-engineering. Table 2 shows the simu-
lation and verification statistics on selected systems. The co-simu-
lation is driven by test vectors that induce one iteration of the
data-producing-consuming loop of these systems. It can be ob-
served that the co-simulation can be sped up three orders of mag-
nitude by simulating the bridge components on the TL level rather
than the RTL level (Hao et al., 2009). The co-verification step veri-
fies a system-level property that ensures repeated data-producing-
consuming in these systems. The time and memory usages are
listed for verification of this property on abstractions constructed
from properties of the first-level components (Li et al., 2008). We
expect further benefits in co-simulation and co-verification if the
systems are designed from scratch following the co-development
model, instead of re-engineered.

The verification statistics of the sensor system family based on
the Mica Platform is shown in Table 3. The first part of the table
illustrates the scale of this sensor system family in terms of num-
bers of systems, components, ports, component templates, and

Table 1

Remodeling statistics.
of systems remodeled 12

Orig New

of components in Mica platform library 43 52
of components in PC platform library 46 51
of ports/interfaces in Mica platform library 30 43
of ports/interfaces in PC platform library 29 40
of components specific for each system 38 41
of ports/interfaces specific for each system 8 10
of hardware components developed N/A 26
of bridge components developed N/A 2

Table 2
Simulation and verification statistics.

System Co-simulation Co-verification

RTL (s) TL (s) Time (s) Memory (MB)
SenseTask 1.887 0.004 22.34 1.644
SenseToLeds 1.587 0.003 27.02 3.765
SenseToRfm 6.837 0.008 52.61 3.806
CodeBlue 7.456 0.011 34.66 5.792

Table 3
Sensor system family statistics.

of systems 12
of components 119
of ports 72
of component templates 9
of architectural patterns 4
Times of component reuses 405
Times of port reuses 2670
Times of component template reuses 38
Times of pattern reuse 12
of system properties verified 16
of component properties verified 341
of comp. properties to be verified if no reuse 4493
Times of property template reuses (from ports, 172

component templates and patterns)

patterns. The second part illustrates the amount of architectural
reuse in component-based co-design. The third part illustrates
the amount of reuse in component-based co-verification. Two cat-
egories of system properties have been verified. Since the basic
functionality of the sensor systems is data generation and con-
sumption, the first categories of properties includes a property of
each system that asserts that the system repeatedly consumes
data. The data consumption event is different in each system.
The second category includes properties that ensure that systems
using buffers not overflow these buffers. The component properties
listed in Table 3 include both the port-level and component-level
properties. Each property may include multiple assertions which
together capture one behavioral aspect of a component.

Co-verification was accomplished on all the systems, many of
which fail a straightforward application of model checking to en-
tire systems due to state space explosions. Examples of such explo-
sions can be found in (Xie et al., 2007). It can be observed from
Table 3 that for the sensor system family, property reuse reduces
the number of component properties that need to be verified by
about 92%. Since the two categories of system properties verified
reflects the most generic system functionalities, most of the com-
ponent properties can be generated from property templates,
therefore, manual efforts in property formulation are significantly
reduced. For more system-specific properties, the manual efforts
may increase as fewer property templates can be reused.

A buffer overflow vulnerability in several systems is detected
through verification of the buffer overflow property. This vulnera-
bility is associated with the SourceToSink pattern, under which the
sink acknowledges the reception of a piece of data from the source.
However, the sink does not notify the source whether the data has
been consumed. The buffer overflow vulnerability may manifest if
the source generates data faster than the sink can consume. This
led us to introduce a new pattern where the source waits for the
sink consumption notification before sending the next data.

7.2. Usability

Three student groups from a graduate software engineering
class have successfully applied our tool in their course projects.

J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252 251

None of the students has background in formal verification. The
time taken to train each group with the design methodology and
the verification engine was less than 4 hours. One student group
successfully developed and verified a family of TinyOS networked
sensor systems with more than 50 components. Another group de-
signed a smart home system with more than 30 components. This
system was designed based on existing systems such as modems,
cellular phones, and smart home controllers, each of which is trea-
ted as a component with rigorously defined interfaces. The stu-
dents verified their design successfully using the composite
component verification engine. In this study, we observed that a
large obstacle for students is to learn how to assert properties
using the property templates provided.

In our own experience, we found that the ability to explore our
systems visually and to modify our models through ‘“drag-and-
drop” without worrying about the underlying EADL syntax led to
a significant reduction in the tedium of system development. We
also believe that our visual modeling methods will lead to in-
creased productivity.

8. Related work

There has been much research on component-based hardware
and software development (Jacome and Peixoto, 2001; Heineman
and Councill, 2001; Szyperski et al., 2002). A fundamental problem
in component-based development is how to establish the proper-
ties of compositions from the properties of components, including
correctness properties, performance properties, real-time proper-
ties, etc. A well-known project targeting this problem in compo-
nent-based software development is the PACC initiative from
CMU/SEI: Predictable Assembly from Certifiable Components
(CMU/SEI, 2009; Wallnau et al., 2003). The vision of PACC is that
software components have certified properties (e.g., performance)
and the behavior of systems assembled from components is pre-
dictable. There has also been research on component-based soft-
ware engineering for embedded systems such as Crnkovic (2005),
focusing on embedded software. Due to the close interactions be-
tween hardware and software of embedded systems, there is a de-
sire to reason about hardware and software components under a
unified component model. Our project shares the PACC vision
while extending this vision by (1) defining a component-based
architectural description language (ADL) for embedded systems
that unifies hardware and software components and (2) formally
establishing properties of an embedded system from properties
of its hardware and software components.

Much research has been done on developing hardware, soft-
ware, and embedded systems ADLs (see Tomiyama et al., 1999;
Medvidovic and Taylor, 2000) for their comprehensive surveys).
Among those ADLs, the most closely related are SAE AADL (Society
of Automotive Engineers (SAE), 2004), Metropolis (Sangiovanni-
Vincentelli, 2007), and Ptolemy (Lee, 2003). The AADL is an
industry standard designed for the specification, analysis, and
automated integration of real-time performance-critical (timing,
safety, schedulability, fault tolerant, security, etc.) distributed
computer systems. Metropolis features a flexible and formal
semantics based upon the tagged signal model [14] that allows it
to represent a wide variety of models of computation. Further-
more, it supports platform-based design, behavior-architecture
mapping, and orthogonalization of concerns at the levels of
communication-computation-coordination, architecture-function-
mapping, and behavior-performance. Ptolemy focuses on compo-
nent-based heterogeneous modeling. It uses tokens as the underly-
ing communication mechanism. Directors regulate how actors in
the design fire and how tokens are used to communicate between
them. Ptolemy uses hierarchical composition to handle heteroge-

neity. Each level in a hierarchy has a director that organizes the fir-
ing of the actors at that level. EADL differentiates from the above
ADLs in that it does not require any particular execution semantics
and can be instantiated on any hardware and software execution
semantics to enable component-based co-design, co-simulation,
co-verification, and co-synthesis based on these semantics.

Design patterns (Gamma et al., 1994) are concerned with reuse
of programming structures at the algorithmic or data structure le-
vel while architectural patterns (Perry and Wolf, 1992; Shaw and
Garlan, 1996; Buschmann et al., 1996) are concerned with reusable
structural patterns of software system with respect to their
components. Architectural patterns have been applied in software
design, validation, documentation, etc. Our research utilizes archi-
tectural patterns to facilitate formulation and verification of prop-
erties of embedded systems and their components. The EADL
representation of architectural patterns is partially motivated by
that of ACME (Garlan et al., 1997). In ACME, architectural patterns
are specified as first-class language constructs. EADL representa-
tion of architectural patterns specially targets HW/SW co-design,
co-simulation, co-verification, and co-synthesis of embedded sys-
tem families.

9. Conclusions and future work

In this paper, we have presented EADL, an architecture descrip-
tion language for embedded systems. EADL captures both hard-
ware and software components and their interactions, and gains
its flexibility from its support to platform-oriented instantiation.
It has demonstrated its effectiveness in serving as the vehicle for
integrating component-based co-design, co-simulation, co-verifi-
cation, and co-synthesis in ESIDE. For next steps, we will explore
how EADL can be utilized to facilitate analysis of system and com-
ponent properties other than temporal correctness properties.

Acknowledgments

This research received financial support from Semiconductor
Research Corporation (Contract #: 1356.001), National Science
Foundation of the United States (Grant #: 0720546), Chinese
National Basic Research and Development 973 Program (Grant
#: 2004CB719400), and Chinese National High Technology 863
Program (Grant #: 2006AA01Z155, 2007AA01Z122, and
2007AA04Z135). We thank Kecheng Hao for his help on co-
simulation.

References

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
oriented Software Architecture: A System of Patterns. John Wiley & Sons Inc..

Clarke, E.M., Emerson, E.A., 1981. Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Logic of Programs Workshop.

Clarke, E.M., Grumberg, O., Peled, D., 1999. Model Checking. MIT Press.

CMU/SEI, 2009. Pacc (predictable assembly from certifiable components) <http://
www.sei.cmu.edu/pacc>.

Crnkovic, 1., 2005. Component-based software engineering for embedded systems.
In: ICSE, 2005.

Forin, A., Neekzad, B., Lynch, N.L., 2006. Giano: the two-headed system simulator.
Tech. Rep. MSR-TR-2006-130, Microsoft Research.

Gamma, E., Helm, R,, Johnson, R, Vlissides, J., 1994. Design Patterns: Elements of
Object-Oriented Software. Addison-Wesley.

Garlan, D., Monroe, RT., Wile, D., 1997. Acme: an architecture description
interchange language. In: CASCON.

Gay, D., Levis, P., Behren, R., Welsh, M., B.E., D. Culler, 2003. The nesC language: a
holistic approach to networked embedded systems. In: PLDI.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D., 2003. The nesC
language: a holistic approach to networked embedded systems. In: PLDI.

Hao, K., Xie, F., 2009. Componentizing hardware/software interface design. In:
DATE.

Hardin, R.H., Har’El, Z., Kurshan, R.P., 1996. COSPAN. In: CAV.

Heineman, G.T., Councill, W.T. (Eds.), 2001. Component-based Software
Engineering: Putting the Pieces Together. Addison-Wesley.

http://www.sei.cmu.edu/pacc
http://www.sei.cmu.edu/pacc

252 J. Li et al. /The Journal of Systems and Software 83 (2010) 235-252

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J., 2000. System
architecture directions for networked sensors. In: ASPLOS.

IEEE, 2005. IEEE Standard for Property Specification Language (PSL) (IEEE Std 1850-
2005). IEEE.

Jacome, MLF,, Peixoto, H.P., 2001. A survey of digital design reuse. IEEE Design and
Test of Computers 18 (3).

Kurshan, R.P., 1994. Computer-aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press.

Lee, E.A., 2003. Overview of the ptolemy project. Tech. Rep. UCB/ERL M03/25, UC
Berkeley.

Li, J., Sun, X,, Xie, F., Song, X., 2008. Component-based abstraction and refinement.
In: Proc. of ICSR.

Maliniak, D., 2002. Assertion-based verification smooths the road to IP reuse.
Electronic Design.

Medvidovic, N., Taylor, R.N., 2000. A classification and comparison framework for
software architecture description languages. IEEE Trans. Software Eng. 26 (1).

Mellor, S.J., Balcer, M.J., 2002. Executable UML: A Foundation for Model Driven
Architecture. Addison Wesley.

Mentor Graphics, 2009. ModelSim <http://www.mentor.com>.

Palnitkar, S., 2003. Verilog HDL, second ed. Prentice-Hall, US.

Perry, D.E., Wolf, A.L, 1992. Foundations for the study of software architecture.
SIGSOFT SEN 17 (2).

Pnueli, A., 1977. The temporal logic of programs. In: Proc. of 18th IEEE Symposium
on Foundations of Computer Science.

Quielle, J.P., Sifakis, J., 1982. Specification and verification of concurrent systems in
CESAR. In: Symposium on Programming.

Sangiovanni-Vincentelli, A.L, 2007. Quo vadis sld: Reasoning about trends and
challenges of system-level design. Proceedings of the IEEE 95 (3).

Shaw, M., Garlan, D., 1996. Software Architecture: Perspective on an Emerging
Discipline. Prentice Hall.

Shnayder, V., Chen, B.R,, Lorincz, K., Fulford-Jones, T.R.F., Welsh, M., 2005. Sensor
networks for medical care. Tech. Rep., Harvard University.

Society of Automotive Engineers (SAE), The SAE AADL Language Standard (AS-
5506), SAE, 2004.

Szyperski, C., Gruntz, D., Murer, S., 2002. Component Software - Beyond Object-
oriented Programming. Addison Wesley.

Tomiyama, H., Halambi, A., Grun, P., Dutt, N., Nicolau, A., 1999. Architecture
description languages for system-on-chip design. In: APCHDL.

Wallnau, K.C,, 2003. A technology for predictable assembly from certifiable
components. Tech. Rep., CMU/SEI-2003-TR-009.

Xie, F., Liu, H., 2007. Unified property specification for hardware/software co-
verification. In: COMPSAC.

Xie, F., Yang, G., Song, X. 2006. Component-based hardware/software co-
verification. In: MEMOCODE.

Xie, F., Yang, G., Song, X., 2007. Component-based hardware/software co-
verification for building trustworthy embedded systems. Journal of Systems
and Software, 80 (5).

Juncao Li received the B.S. and M.S. degrees in Auto-
matic Measurement and Control from Harbin Institute
of Technology, Harbin, China in 2004 and 2006,
respectively. He joined the Department of Computer
Science at Portland State University in 2006 as a Ph.D.
student. He is now working toward his Ph.D. degree in
computer science.

His current research interests include formal hardware/
software interface specification and verification, com-
ponent-based co-design and co-verification of embed-
ded systems, and static program analysis.

Nicholas T. Pilkington received the B.S. degree and the
M.S degree in Computer Science from Portland State
University in 2007 and 2009, respectively. He is cur-
rently employed as a systems engineer at Intel.

Fei Xie received the B.E. degree in computer science and
engineering from Northwestern Polytechnical Univer-
sity, Xi¢an, Shaanxi, China in 1995. He received the M.E.
degree in computer science and technology from
Tsinghua University, Beijing, China in 1998. He received
the Ph.D. degree in computer science from the Univer-
sity of Texas at Austin, Austin, Texas, U.S.A. in 2004. He
is currently an associate professor in the Department of
Computer Science, Portland State University, Portland,
Oregon, U.S.A.

His research interests include embedded systems, soft-
ware engineering, and formal methods. He is particu-
larly interested in development of formal method based techniques and tools for
building safe, secure, and reliable software and embedded systems.

Qiang Liu received the B.S. degree and the M.S. degree
in Computer Science from Tsinghua University in 1985
and 1988, respectively. She is currently an associate
professor in School of Software at Tsinghua University
and teaches courses on software engineering and soft-
ware project management. Her research interests
include software engineering, workflow technology,
Web technology and e-learning. She has served as Pro-
gram Committee member for the International Confer-
ence on Computer Supported Cooperative Work in
Design 2007-2009. She is a member of IEEE Computer
Society.

http://www.mentor.com

	Embedded architecture description language
	Introduction
	Background
	Unified component model for embedded systems
	Components
	Composition

	Unified property specification
	TinyOS-based sensor systems

	Key language features of EADL
	Component interfaces
	Events
	Ports
	Composition

	Component-based system architectures
	Embedded system architectural patterns
	Templates
	Patterns

	Architecture-sensitive property specification

	Platform-oriented instantiation of EADL
	Embedded system platform
	Instantiation of EADL
	Instantiation on sensor system platform with software in xUML
	Instantiation on tinyOS sensor system platform

	Embedded system integrated development environment
	Platform-based development
	Co-design
	Co-simulation
	Co-verification
	Unified playback of error traces
	Co-synthesis
	ESIDE design decisions
	Encapsulation and compilation
	Hardware/software boundary
	Port mapping semantics

	Pattern-guided co-verification
	Pattern-guided property formulation
	Pattern-guided property decomposition
	Pattern-guided circular reasoning avoidance

	Evaluation
	Effectiveness
	Usability

	Related work
	Conclusions and future work
	Acknowledgments
	References

