
Compositional Reasoning for Hardware/Software
Co-Verification ⋆

Fei Xie1, Guowu Yang1, and Xiaoyu Song2

1 Dept. of Computer Science, Portland State Univ., Portland,OR 97207
{xie, guowu}@cs.pdx.edu

2 Dept. of Electrical & Computer Engineering, Portland StateUniv., Portland, OR 97207
song@ece.pdx.edu

Abstract. In this paper, we present and illustrate an approach to compositional
reasoning for hardware/software co-verification of embedded systems. The major
challenges in compositional reasoning for co-verificationinclude: (1) the hard-
ware/software semantic gaps, (2) lack of common property specification lan-
guages for hardware and software, and (3) lack of compositional reasoning rules
that are applicable across the hardware/software boundaries. Our approach ad-
dresses these challenges by (1) filling the hardware/software semantic gaps via
translation of hardware and software into a common formal language, (2) defin-
ing a unified property specification language for hardware, software, and entire
systems, and (3) enabling application of existing compositional reasoning rules
across the hardware/software boundaries based on translation, developing a new
rule for compositional reasoning with components that share sub-components,
and extending the applicability of these rules via dependency refinement. Our ap-
proach has been applied to co-verification of networked sensors. The case studies
have shown that our approach is very effective in enabling application of compo-
sitional reasoning to co-verification of non-trivial embedded systems.

1 Introduction

Embedded systems are pervasive in the infrastructure of oursociety. They are often
mission-critical, therefore, must be highly trustworthy.Embedded systems often sup-
port concurrency intensive operations such as simultaneous monitoring, computation,
and communication. Thus, to build trustworthy embedded systems, they must be exten-
sively verified. Due to strict design constraints of embedded systems, to achieve better
performance, hardware and software components must closely interact and the trade-
off between hardware and software must be exploited. This demands hardware/software
co-design and, therefore, hardware/software co-verification of embedded systems.

Model checking [1, 2] is a powerful formal verification method which has great po-
tential in hardware/software co-verification of embedded systems. It provides exhaus-
tive state space coverages for the systems being verified. However, a stumbling block
to scalable application of model checking to co-verification is the intrinsic complexity
of model checking. The number of possible states and execution paths in a real-world

⋆ This research was supported by Semiconductor Research Corporation, Contract 1356.001.

system can be extremely large, which makes naive application of model checking in-
tractable and requires state space reduction. Compositional reasoning [3–9], as applied
in model checking, is a powerful state space reduction algorithm. Using compositional
reasoning, model checking of a property on a system is accomplished by decomposing
the system into components, model checking the component properties locally on the
components, and deriving the system property from the component properties.

Co-verification of an embedded system involves both its hardware and software
components, which leads to the following major challenges to compositional reasoning:

1. Hardware/software semantic gaps.Hardware usually follows synchronous clock-
driven semantics while software semantics are more diversified, e.g., asynchronous
interleaving message-passing semantics and event-drivencall-return semantics.

2. Lack of unified property specification languages.Effective compositional reasoning
can benefit greatly from uniform specification of propertiesof both hardware and
software components and, furthermore, properties of entire embedded systems.

3. Lack of appropriate rules for co-verification.Existing compositional reasoning
rules do not readily address the special needs of co-verification: compositional
reasoning involving components of different semantics andcomponents that share
sub-components, e.g., an execution scheduler shared by software components.

In this paper, we present and illustrate an approach to compositional reasoning for
hardware/software co-verification of embedded systems. This approach addresses the
above challenges as follows:

1. The hardware/software semantic gaps are filled via translation of both hardware
and software components into a formal language whose semantics serves as the
common semantic basis for co-verification and compositional reasoning.

2. A unified property specification language is defined, whichsupports property spec-
ification for hardware components, software components, and furthermore entire
embedded systems. This unification of property specification facilitates composi-
tional reasoning across the hardware/software semantic boundaries.

3. A new compositional reasoning rule supports compositional reasoning for compo-
nents that share sub-components. The new rule and the existing rules are applied
across the hardware/software boundaries based on translation. The applicability of
these rules is further extended through dependency refinement.

Our approach has been applied to co-verification of networked sensors, an emerging
type of embedded systems. Hardware components of sensors are specified in Verilog
while software components are specified in C following an asynchronous event-driven
call-run semantics of TinyOS [10] or in xUML [11], an executable dialect of UML,
following the asynchronous interleaving message-passingsemantics. The case studies
have shown that our approach enables compositional reasoning of non-trivial embedded
systems and achieves order-of-magnitude reduction on verification complexities.

Related Work. There has been much research on compositional reasoning [9]. Particu-
larly relevant is assume-guarantee compositional reasoning, which was introduced by
Chandy and Misra [3] and Jones [4] for analyzing safety properties. Abadi and Lam-
port [5], Alur and Henzinger [6], and McMillan [7] extended assume-guarantee com-
positional reasoning to liveness properties. However, these extensions are incomplete,

2

i.e., there exist properties of systems which are true but not provable under these ex-
tensions [12]. Amla, Emerson, Namjoshi, and Trefler [8] proposed a sound and com-
plete compositional reasoning rule for both safety and liveness properties. Our approach
builds on the previous work on compositional reasoning and enables application of
compositional reasoning across the hardware/software boundaries. This is based on
translating hardware and software into the same formal model-checkable language.

The rest of this paper is organized as follows. In Section 2, we provide the back-
ground of this work. We discuss how translation fills the hardware/software semantic
gaps in Section 3. In Section 4, we define a unified property specification language. We
present compositional reasoning for co-verification in Section 5. In Section 6, we illus-
trate our approach with case studies on networked sensors. We conclude in Section 7.

2 Background

2.1 A Formal Semantics:ω-Automaton Semantics

We adopt theL-process model ofω-automaton semantics. Details of this model can be
found in [13]. Only the concepts essential for understanding this paper are given below.

Definition 1. For anL-process,ω, its language,L(ω), is the set of all infinite sequences
accepted byω.

Definition 2. For anL-process,ω, L∗(ω) denotes the set of all finite prefixes ofL(ω).

Definition 3. For L-processes,ω1, . . . , ωn, their synchronous parallel composition,
ω = ω1 ⊗ . . . ⊗ ωn, is also anL-process andL(ω) = ∩L(ωi).

Definition 4. For L-processes,ω1, . . . , ωn, their Cartesian sum,ω = ω1 ⊕ . . . ⊕ ωn,
is also anL-process andL(ω) = ∪L(ωi).

For a languageL of infinite sequences over a set of variables,V , the safety clo-
sure [14] ofL, denoted bycl(L), is defined as the set of infinite sequences overV

wherex ∈ cl(L) iff for each finite prefixy of x, there exists an infinite sequencez,
y : z ∈ L. (y : z denotes the concatenation ofy andz wherey andz are sequences over
V .) In [13], cl(L) is termed as the smallest limit prefix-closed language containingL.

Definition 5. The safety closureCL(ω) of anL-processω is anL-process whose lan-
guage is the safety closure of the language ofω, L(CL(ω)) = cl(L(ω)).

CL(ω) can be derived fromω by changing the fairness condition ofω to true.

Definition 6. For a setS of finite sequences over a set of variablesV , the limit ofS,
denoted bylim(S), is the set of infinite sequences whose finite prefixes are all in S.

Notations.Given two languagesL1 andL2, L1 ⇒ L2 denotesL1 ⊆ L2, andL1 ≡ L2

denotesL1 ⊆ L2 andL2 ⊆ L1.

Lemma 1. cl(L(ω)) ≡ lim L∗(ω)

3

Proof of Lemma 1: Follows from the definitions ofcl andlim. ⊓⊔

Under theω-automaton semantics model checking is reduced to checkingL-process
language containment. Suppose a system is modeled by the compositionω1 ⊗ . . .⊗ωn

of L-processes,ω1, . . . , ωn, and a property to be checked on the system is modeled
by anL-processes,ω. The property holds on the system if and only if the language of
ω1 ⊗ . . . ⊗ ωn is contained by the language ofω, L(ω1 ⊗ . . . ⊗ ωn) ⊆ L(ω).

Definition 7. Given twoL-processesω1 andω2, ω1 implementsω2 (denoted byω1 |=
ω2) if L(ω1) ⊆ L(ω2).

2.2 S/R Language: A Realization ofω-Automaton Semantics

The S/R language is the input formal language of the COSPAN model checker [15].
In S/R, a systemP is composed of synchronously interacting processes, conceptually
ω-automata. A process consists of state variables, selection variables, inputs, state tran-
sition rules, and selection rules. Selection variables define the outputs of the process.
Each process inputs a subset of all the selection variables of other processes. State tran-
sition rules update state variables as functions of the current state, selection variables,
and inputs. Selection rules assign values to selection variables as functions of state vari-
ables. Such a function is non-deterministic if several values are possible for a selection
variable in a state. The “selection/resolution” executionmodel of S/R is synchronous
clock-driven, under which a system of processes behaves in a2-phase procedure every
logical clock cycle:[1: Selection Phase]Every process “selects” a value possible in
its current state for each of its selection variables. The values of the selection variables
of all the processes form the global selection of the system.[2: Resolution Phase]Ev-
ery process “resolves” the current global selection simultaneously by updating its state
variables according to its state transition rules. In S/R, aproperty to be checked is also
modeled by anω-automatonT . COSPAN performs the verification by checking the
language containment,L(P) ⊆ L(T), using either an explicit state space enumeration
algorithm or a symbolic (BDD-based or SAT-based) search algorithm.

2.3 A Hardware Semantics: Synchronous Clock-Driven Semantics of Verilog

In the IEEE standard, the semantics of the Verilog hardware description language is
defined informally by means of a discrete event simulator. Weadopt the semantics of a
Verilog subset that can be formalized via translation to theS/R language. The translation
has been implemented in FormalCheck [16]. Abstractly, a Verilog model consists of a
number of modules. The sequential portion of a module consists of flip-flops that keep
the states of the module. The outputs of a flip-flop can be updated based on its inputs at
the positive edge or the negative edge of the system clock. The outputs of combinational
circuits are updated based on their inputs instantly if zerodelay is assumed.

2.4 Two Software Semantics

Asynchronous Event-Driven Call-Return Semantics of TinyOS TinyOS [10] is an
operating system for networked sensors. It is component-based and is readily extensi-
ble and configurable via developing new components and including only the necessary

4

components in the system configuration for a given mission. Acomplete TinyOS sys-
tem configuration consists of a scheduler and a graph of components. A component has
four interrelated parts: a set of command handlers, a set of event handlers, a fixed-size
data frame, and a bundle of tasks. Command handlers, event handlers, and tasks execute
in the context of the frame and operate on its state and are implemented as functions
which are invoked following the call-return semantics. Higher level components issue
commands to lower level components and lower level components signal events to the
higher level components. The lowest level of components abstracts physical hardware.

Event handlers are invoked to deal with hardware events, either directly or indi-
rectly. The lowest level components have handlers connected directly to hardware in-
terrupts. An event handler can deposit information into itsframe, post tasks, signal
higher level events or call lower level commands. A hardwareevent triggers a fountain
of processing that goes upward through events and can bend downward through com-
mands. In order to avoid cycles in the command/event chain, commands cannot signal
events. Commands and events are intended to perform a small,fixed amount of work.

Tasks perform the primary work. They are atomic with respectto other tasks, though
they can be preempted by events. Tasks can call lower level commands, signal higher
level events, and post other tasks within a component. The semantics of tasks make it
possible to allocate a single stack that is assigned to the currently executing task. Tasks
allow concurrency since they execute asynchronously with respect to events. However,
tasks must never block or spin wait or they will prevent progress in other components.
While events and commands approximate light-weight instantaneous computations,
task bundles provide a way to incorporate arbitrary computations into the event-driven
model. The task scheduler is FIFO, utilizing a bounded size scheduling queue.

Asynchronous Interleaving Message-Passing (AIM) Semantics of Executable UML
Executable UML (xUML) [11] is an executable dialect of UML supporting model-
driven development of embedded software. System models in xUML can be simulated
with execution simulators and can also be automatically compiled into C/C++. xUML
features an asynchronous interleaving message-passing semantics. Under this seman-
tics, a system consists of a set of interacting object instances. The behavior of each
object instance is specified by an extended Moore state modelin which each state may
be associated with a state action. A state action is a programsegment that executes upon
entry to the state. Object instances communicate with each other through asynchronous
message-passing. In a system execution, at any given momentonly one object instance
can progress by executing a state transition or a state action in its extended Moore state
model. The execution of a state transition or a state action is run-to-completion.

3 Translations of Hardware and Software

For practical reasons, hardware and software components ofan embedded system are
often specified in various languages with different semantics, for instance, the ones
given in Section 2. However, to formally verify correctnessproperties of the entire
system, a common formal semantic basis is needed, upon whichevents in hardware and
software components can be precisely defined and, furthermore, related to one another.

5

This enables meaningful specification and reasoning of system-level properties which
often span across the hardware and software boundaries.

Leveraging the formal semantic basis to fill the hardware/software semantic gaps
requires translations of the hardware and software languages to the formal language.
The translations formalize the hardware and software semantics by simulating them
with the formal semantics. (Restrictions are applied to thesoftware semantics to ensure
software components be finite-state.) The translations enable reuse of model checkers
and compositional reasoning rules that have been developedfor the formal semantics.

The translation from Verilog to S/R has been implemented in FormalCheck [16],
which simulates the synchronous clock-driven semantics ofVerilog with the selec-
tion/resolution semantics of S/R. The xUML-to-S/R translation has been implemented
in ObjectCheck [17], which simulates the AIM semantics withthe selection/resolution
semantics of S/R. In this section, we briefly discuss the translation from TinyOS to S/R.

3.1 Translation from TinyOS to S/R

The TinyOS-to-S/R translation simulates the asynchronousevent-driven call-return se-
mantics of TinyOS with the selection/resolution semanticsof S/R and is currently being
implemented. Each component in a TinyOS system is mapped to multiple automata in
the resulting S/R system: the fixed-size data frame is modeled by an automaton which
keeps the state of the data frame and each event handler, command handler, or task is
also modeled as an automaton which updates the data frame by interacting with the data
frame automaton. An additional automaton,scheduler, is introduced in the S/R system
and it determines which event handler, command handler, or task should be executed.
The schedulerexports a selection variable,choice, imported by the automata corre-
sponding to event handlers, command handlers, and tasks. Atany given moment, the
schedulerselects an automaton corresponding to an event handler, command handler,
or task by settingchoiceto a particular value. Only the chosen automaton executes a
state transition corresponding to the execution of a C language statement in the event
handler, command handler, or task. Other automata follow a self-loop transition back to
their current states.

Event handlers, command handlers, and tasks are implemented as C functions in
TinyOS. The call-return semantics is simulated with the semantics of S/R as follows.
The caller exports a Boolean selection variable which is setto true when the call is
made. The callee imports this variable and responds to the call if the variable is set
to true. Parameters of the call are passed via additional selection variables. The callee
exports a selection variable which indicates the call return and is imported by the caller.
The return value of the call is passed via additional selection variables of the callee.

In TinyOS, tasks are atomic with respect to other tasks, but can be preempted by
events. We assume that a task can be preempted in between the execution of two con-
secutive C language statements. The preemption is implemented through thescheduler
adjusting the value of thechoicevariable. In between the execution of two consecutive
C language statements in a task, theschedulerchecks for hardware interrupts. If there
exists an interrupt, thechoiceis set to the automaton simulating the event handler of the
interrupt. Thechoiceis set back to the task when the interrupt handling is done.

6

4 Unified Property Specification Language

Co-verification examines both hardware and software components, and entire embed-
ded systems. It is highly desirable to have a unified propertyspecification language for
both hardware and software components, and entire systems.We have developed such
a language based onω-automata, which extends the hardware property specification
language of FormalCheck [16]. This unified language is presented in terms of a set of
property templates shown in Figure 1, which have intuitive meanings and also rigorous

Always/Never (f)
After (e) Always/Never (f) [Unless[After] (d)]
After (e) Always/Never (f) [Until[After] (d)]
Always/Never (f) Unless[After] (d)
Always/Never (f) Until[After] (d)

After (e) Eventually (f) [Unless (d)]
Eventually (f) [Unless (d)]
IfRepeatedly (e) Repeatedly/Eventually (f)
IfRepeatedly (e) EventuallyAlways (f)
After (e) EventuallyAlways (f) [Unless (d)]
EventuallyAlways (f)
EventuallyAlways (f) Unless (d)
After (e) Repeatedly (f) [Unless (d)]
Repeatedly (f) [Unless (d)]
IfEventuallyAlways (e) Repeatedly/Eventually (f)
IfEventuallyAlways (e) EventuallyAlways (f)

Fig. 1. A list of available property templates

mappings to property templates written in S/R. (Note that inS/R, both systems and
properties are formulated asω-automata.) An example of such templates is

After(e) Eventually(d)

where theenablingconditione and thedischargingconditiond are Boolean proposi-
tions declared over semantic entities of hardware or software. The semantic meaning is
that after each occurrence ofe there eventually follows an occurrence ofd. Although
similar to the LTL formulaG(e → XF (d)), our property does not require a second
d in case the discharge conditiond is accompanied by a seconde, whereas an initial
e is not discharged by an accompanyingd. This asymmetry meets many requirements
of software specification. (On account of this asymmetry, our property cannot be ex-
pressed in LTL.) The formal semantics of a property instantiating this template can be
precisely defined based on the mappings from the hardware andsoftware semantics to
the semantics of S/R and the mapping of this template to a template written in S/R. The
property can be automatically translated into S/R based on these mappings.

Our property specification language is linear-time, with the expressiveness ofω-
automata [13]. The templates define parameterized automata. The language is readily
extensible: new templates can be formulated as needed. A property in this language

7

consists of (1) declarations of Boolean propositions over software or hardware semantic
entities, and (2) declarations of temporal assertions. A temporal assertion is declared
through instantiating a property template: each argument of the template is realized by
a Boolean expression composed from the declared Boolean propositions.

5 Compositional Reasoning for Co-Verification

5.1 Previous Work: Translation-Based Compositional Reasoning for Software

In [18], we developed translation-based compositional reasoning (TBCR), an approach
to application of compositional reasoning in model checking software systems based
on translation. If a translation can be shown to preserve thevalidity of properties (e.g.,
for the xUML-to-S/R translation, we established that the translation is linear-monotonic
with respect to language containment), then given a software system and a property to
be checked, compositional reasoning in the software semantics is conducted as follows.
(1) The system is decomposed into components on the softwaresemantics level. (2) The
component properties are formulated. The components and their properties are trans-
lated into the formal semantics. A compositional reasoningrule in the formal semantics
is reused. The conditions of the rule are checked. (3) If the conditions hold, then it can
be concluded on the software semantics level that the systemproperty holds.

TBCR has been realized for software specified in xUML. The xUML-to-S/R trans-
lation implements the semantic mapping from the AIM semantics to theω-automaton
semantics. Based on this translation, we have reused, for verification of xUML models,
a rule [8] that has been established in theω-automaton semantics, Rule 1.

Rule 1 For ω-automataP1 andP2 modeling two components of a system, andQ mod-
eling a property of the system, to show thatP1 ⊗ P2 |= Q, findω-automataQ1 andQ2

modeling the component properties such that the following conditions are satisfied.1

C1: P1 ⊗ Q2 |= Q1 andP2 ⊗ Q1 |= Q2

C2: Q1 ⊗ Q2 |= Q
C3: EitherP1 ⊗ CL(Q) |= (Q ⊕ Q1 ⊕ Q2) or P2 ⊗ CL(Q) |= (Q ⊕ Q1 ⊕ Q2)

5.2 Translation-Based Compositional Reasoning for Co-Verification

The translation-based nature of TBCR enables its natural extension to support compo-
sitional reasoning for co-verification. Given an embedded system and a system prop-
erty in the unified property specification language, compositional reasoning for co-
verification can be conducted as follows: (1) The system is partitioned into its hardware
and software components. (2) The properties of the hardwareand software components
are formulated. The hardware and software components and their properties are trans-
lated into a formal language with their corresponding translators. The conditions of
a compositional reasoning rule in the formal semantics are checked. (3) If the condi-
tions hold, it can be concluded that the system property holds. As shown in Figure 2,

1 An additional condition of Rule 2 is thatQ1 (or Q2) does not blockP2 (or P1). A process
Q does not block processP iff (i) any initial state ofP can be extended to an initial state of
P ⊗ Q, and (ii) for any reachable state ofP ⊗ Q, any transition ofP from that state can be
extended to a transition ofP ⊗Q. The condition holds trivially in theω-automaton semantics.

8

Verilog−to−S/R translation

Semantics

Conformance

Semantics

Conformance

Semantics Mapping
Omega−automata

S/R Verilog

Semantics

Conformance

Clock−Driven
SynchronousSemantics Mapping

TinyOS (or xUML)

Asynchronous Event−Driven
Call−Return (or AIM)

TinyOS−to−S/R translation (or

xUML−to−S/R translation)

Fig. 2. Model translations realize semantic mappings for co-verification.

the Verilog-to-S/R translation and the TinyOS-to-S/R (or xUML-to-S/R, respectively)
translation realize the semantic mappings from the synchronous clock-driven semantics
and the asynchronous event-driven call-return semantics (or the AIM semantics) to the
ω-automaton semantics, therefore, enables compositional reasoning for systems with
hardware in Verilog and with software in the C subset for TinyOS (or in xUML).

This extension of TBCR requires that the hardware and software translations pre-
serve the validity of the hardware and software properties,e.g., TinyOS-to-S/R and
Verilog-to-S/R translations are linear-monotonic with respect to language containment.

5.3 Compositional Reasoning with Components That Share Sub-Components

Compositional reasoning for co-verification requires new rules that support reasoning
about components that share sub-components. Simulating a software semantics with
the common formal semantics often requires modeling of a scheduler in the formal se-
mantics. The translation of a TinyOS system into S/R insertsin the resulting S/R system
a scheduler that interacts with the automata simulating each software component. The
translation of an xUML system into S/R inserts a scheduler that interacts with each au-
tomaton simulating an object instance. (A component in xUMLmay contain multiple
object instances.) These schedulers make scheduling decisions based on interactions
with hardware. When each software component is verified, it is often the case that the
scheduler must be included in the verification since using assumptions to abstract the
scheduler is often difficult. Therefore, the scheduler becomes a shared sub-component.
Rule 1 does not apply here since it does not allow components to share sub-components.

We propose a new compositional reasoning rule, Rule 2, addressing this problem:

Rule 2 For ω-automataP1 andP2 modeling two components of a system,S modeling
a common component, andQ modeling the system property, to show thatS ⊗ P1 ⊗
P2 |= Q, findω-automataQ1 andQ2 modeling the component properties such that the
following conditions are satisfied.

C1’: S ⊗ P1 ⊗ Q2 |= Q1 andS ⊗ P2 ⊗ Q1 |= Q2

C2’: S ⊗ Q1 ⊗ Q2 |= Q

C3’: EitherS⊗P1⊗CL(Q) |= (Q⊕Q1⊕Q2) or S⊗P2⊗CL(Q) |= (Q⊕Q1⊕Q2)

Lemma 2. L∗(S ⊗ P1 ⊗ P2) ⇒ L∗(S ⊗ Q1 ⊗ Q2)

Proof of Lemma 2: Follows from C1’ by induction on length of finite prefixes. ⊓⊔

9

Theorem 1. (Soundness) Forω-automataS, P1, P2, Q1, Q2, and Q satisfying the
conditions of Rule 2,S ⊗ P1 ⊗ P2 |= Q.

We decompose the proof of Theorem 1 into a safety proof and a liveness proof ac-
cording to the decomposition ofL(Q) into its safety part and liveness part,L(Q) ≡
cl(L(Q)) ∧ (¬cl(L(Q)) ∨ L(Q)). The safety proof shows thatL(S ⊗ P1 ⊗ P2) ⇒
cl(L(Q)) while the liveness proof shows thatL(S ⊗ P1 ⊗ P2) ∧ cl(L(Q)) ⇒ L(Q).

Proof of Safety Part of Theorem 1:

L(S ⊗ P1 ⊗ P2)

⇒ cl(L(S ⊗ P1 ⊗ P2)) {Closure is weakening}

≡ lim L∗(S ⊗ P1 ⊗ P2) {Lemma 1}

⇒ lim L∗(S ⊗ Q1 ⊗ Q2) {lim is monotonic; Lemma 2}

≡ cl(L(S ⊗ Q1 ⊗ Q2)) {Lemma 1}

⇒ cl(L(Q)) {Closure is monotonic; Condition C2’}

⊓⊔
Proof of Liveness Part of Theorem 1:

L(S ⊗ P1 ⊗ P2) ∧ cl(L(Q))

≡ L(S ⊗ P1 ⊗ P2) ∧ L(CL(Q)) {Closure represents language closure}

≡ L(S) ∧ L(P1) ∧ L(P2) ∧ L(CL(Q))

{Composition is conjunction of languages}

⇒ L(S) ∧ L(P1) ∧ L(P2) ∧ L(Q ⊕ Q1 ⊕ Q2) {Condition C3’}

≡ L(S) ∧ L(P1) ∧ L(P2) ∧ (L(Q) ∨ L(Q1) ∨ L(Q2))

{Cartesian sum is disjunction of languages}

⇒ L(Q) ∨ (L(S) ∧ L(P1) ∧ (L(Q2)) ∨ (L(S) ∧ L(P2) ∧ L(Q1))

{Distribution of∧ over∨; dropping conjuncts}

⇒ L(Q) ∨ (L(S) ∧ L(Q1) ∧ L(Q2)) {Condition C1’}

⇒ L(Q) {Condition C2’}

⊓⊔

Theorem 2. (Completeness) Forω-automataS, P1, P2, andQ, if S ⊗ P1 ⊗ P2 |= Q,
there existQ1 andQ2 that satisfy the conditions of Rule 2.

Proof of Theorem 2: By choosingP1 andP2 asQ1 andQ2, the proof is trivial. ⊓⊔

5.4 Dependency Refinement

Both Rule 1 and Rule 2 share the same intuition: using Conditions C3 and C3’ to pre-
vent circular reasoning by showing that at least one component will take the first step

10

Q1={Q11, Q12, Q13}
Q11 Q21

Q12 Q22

Q13 Q23

(b)

Component M2

Q2={Q21, Q22, Q23}

Component M1

(a)

Fig. 3.A motivating example for dependency refinement

voluntarily. However, naive application of these rules will fail to establish system prop-
erties in many cases where the interaction between the two components of a system
has more than two steps which form a dependency cycle. Suppose that a system has
two components,M1 andM2, as shown in Figure 3(a). The property ofM1 (or M2,
respectively),Q1 (or Q2), is actually the conjunction of a set of sub-properties,Q11,
Q12, andQ13 (or Q21, Q22, andQ23), each of which asserts on a step of the interac-
tion. The circular dependency amongQ1 andQ2, in fact, consists of more complicated
dependencies amongQ11, Q12, Q13, Q21, Q22, andQ23 as shown in Figure 3(b). IfQ1

andQ2 are used straightforwardly in Rule 1 (or Rule 2, respectively), C3 (or C3’) does
not hold since the left-hand side of C3 (or C3’) implies the sub-properties ofQ1 or Q2

asserted on the first step of the interaction, but not those asserted on the other steps.
Our solution to the above problem is dependency refinement: (1) decompose the

component properties into their sub-properties, derive the refined dependency graph of
the sub-properties, and identify the cycles in the refined graph; (2) apply C3 or C3’ to
break each of the identified cycles; (3) if all cycles in the refined dependency graph can
be broken, the compositional reasoning is sound and the component properties can be
established. For the example in Figure 3, suppose that we canestablish C3 forQ11, i.e.,
M1 takes the first step. We can then conclude that the component propertiesQ1 andQ2

hold since there is a single cycle. Currently, manual efforts are required to decompose
the component properties into their sub-properties, refinethe dependency graph, and
identify the first sub-property in a dependency cycle for which the conditions C3 or C3’
should be checked first. We are exploring heuristics that canautomate these steps.

6 Case Studies

Our approach to compositional reasoning for co-verification has been applied to net-
worked sensors with hardware specified in Verilog and software specified in xUML fol-
lowing the asynchronous interleaving message-passing semantics or in C following the
asynchronous event-driven call-return semantics. In thissection, we illustrate our ap-
proach with its application to a sensor instance with software in xUML. The approach
is applied to sensor instances with software in C the same way. (Translation of sensor
software in C to S/R currently requires manual efforts due tothe unfinished translator.)

The architecture of the sensor instance with software in xUML is shown in Fig-
ure 4. Its software is partitioned into two components: software sensor (S-SEN) and
software network (S-NET) and its hardware is partition into three components: hard-
ware clock (H-CLK), hardware sensor (H-SEN), and hardware network (H-NET). The

11

Network

Legend:

Software Message

Hardware Signal

Component

Bridge

start

stop

intr_c

dout

reset

system clock

8 8
din

C
_Intr

C
_R

et

A
_Intr

S
_S

chd

Clock
Hardware Hardware

Sensor

intr_n

d_rdy

intr_s

start_s

OP_Ack (Data_Ack)

Data (Output)

Software Network

N
_S

chd

N
_R

et

R
_Intr

R
_R

et

Software Sensor

A
_R

et

S
_R

et

Hardware

Fig. 4. Architecture of a sensor instance with software in xUML and hardware in Verilog

software components execute on a generic processor while the hardware components
are implemented as application specific integrated circuits (ASICs). The software and
hardware components are connected through a bridge component (BRDG) which in-
teracts with the software components following the software semantics and with the
hardware components following the hardware semantics and propagates events such as
software messages and hardware interrupts across the hardware/software boundary.

The property shown in Figure 5 is to be verified on the entire system. This property

Repeated(H-NET.flag = true); Repeated(H-NET.flag = false);

Fig. 5. Repeated transmission property

asserts that the sensor system transmits on the network repeatedly. Repeated setting and
clearing of a flag inH NET indicates repeated transmission. The system property is
manually decomposed into the properties of its components as shown in Figure 6. Note
that asS-SENandS-NETare composed, theOutput(or OutputAck, respectively) mes-
sage type ofS-SENis mapped to theData (or Data Ack) message type ofS-NET. The
ADC.Pendingvariable inS-SENand theRFM.Pendingvariable inS-NETare mapped
to thestart s signal inH-SENand thed rdy signal inH-NETvia BRDG, respectively.
STQ.Empty(or NTQ.Empty, respectively) is a variable inS-SEN(or S-NET).

We verify the system property with compositional reasoningin two steps. In Step 1,
we establish the property of the composite componentS&B that is composed ofS-SEN,
S-NET, andBRDG. In this step, we apply Rule 2 since although not shown in Figure 4,
S-SEN, S-NET, andBRDGshare a scheduler that schedules the execution of the xUML
object instances in each component. The scheduler is inserted when the xUML model
is translated into S/R. The properties ofS-SEN, S-NET, andBRDGcan be directly veri-
fied by assuming the properties of the others hold. (BRDGalso has assumptions on the
hardware components.) Therefore, Condition C1’ holds. Since we define the property
of S&Bas the conjunction of the properties of its sub-components,Condition C2’ holds
trivially. The dependencies among the sub-properties of the component properties are
shown in Figure 7. It can be observed that on the component property level, there is
a dependency cycle among the propertyPSS of S-SEN, the propertyPSN of S-NET,

12

Property ofS-SEN,PSS :
PSS(1):

IfRepeatedly (C Intr) Repeatedly(Output);
PSS(2):

After (C Intr) Eventually (C Ret);After (A Intr) Eventually (A Ret);After (S Schd)Eventually (S Ret);
PSS(3):

After (Output)Never (Output)UnlessAfter (OP Ack);
Never (Output)UnlessAfter (S Schd);After (Output)Never (Output)UnlessAfter(S Schd);
Never (S Ret)UnlessAfter (OP Ack); After (S Ret)Never (S Ret)UnlessAfter(OP Ack);
Never (C Ret)UnlessAfter (C Intr); After (C Ret)Never (C Ret)UnlessAfter (C Intr);
Never (A Ret)UnlessAfter (A Intr); After (A Ret)Never (A Ret)UnlessAfter (A Intr);
After (ADC.Pending)Never (ADC.Pending)UnlessAfter (A Ret);
Never (S Ret)UnlessAfter (S Schd);After (S Ret)Never (S Ret)UnlessAfter (S Schd);
After (STQ.Empty=False)Never (STQ.Empty=False)UnlessAfter(S Ret);

Property of S-NET,PSN :
PSN (1):

IfRepeatedly (Data)Repeatedly(RFM.Pending);IfRepeatedly (Data)Repeatedly(RFM.Pending=False);
PSN (2):

After (Data)Eventually(Data Ack); After (N Schd)Eventually (N Ret);After (R Intr) Eventually (R Ret);
PSN (3):

Never (Data Ack) UnlessAfter (Data);After (Data Ack) Never (Data Ack) UnlessAfter (Data);
Never (N Ret)UnlessAfter (N Schd);After (N Ret)Never (N Ret)UnlessAfter (N Schd);
After (NTQ.Empty=False)Never(NTQ.Empty=False)UnlessAfter(N Ret);
Never (R Ret)UnlessAfter (R Intr); After (R Ret)Never (R Ret)UnlessAfter (R Intr);
After (RFM.Pending)Never (RFM.Pending)UnlessAfter (R Ret);

Property of BRDG,PB :
PB(1):

IfRepeatedly (intr c) Repeatedly(C Intr);
IfRepeatedly (RFM.Pending)Repeatedly(d rdy);
IfRepeatedly (RFM.Pending=False)Repeatedly(d rdy=False);

PB(2):
After (ADC.Pending)Eventually (A Intr); After (STQ.Empty=False)Eventually (S Schd);
After (NTQ.Empty=False)Eventually (N Schd);After (RFM.Pending)Eventually (R Intr);

PB(3):
After (C Intr) Never (C Intr + A Intr + S Schd + NSchd + RIntr) UnlessAfter (C Ret);
Never (A Intr) UnlessAfter (ADC.Pending);
After (A Ret)Never (A Intr) UnlessAfter (ADC.Pending);
After (A Intr) Never (C Intr + A Intr + S Schd + NSchd + RIntr) UnlessAfter (A Ret);
Never (S Schd)UnlessAfter (STQ.Empty=False);
After (S Ret)Never (S Schd)UnlessAfter (STQ.Empty=False);
After (S Schd)Never (C Intr + A Intr + S Schd + NSchd + RIntr) UnlessAfter (S Ret);
Never (N Schd)UnlessAfter (NTQ.Empty=False);
After (N Ret)Never (N Schd)UnlessAfter (NTQ.Empty=False);
After (N Schd)Never (C Intr + A Intr + S Schd + NSchd + RIntr) UnlessAfter (N Ret);
Never (R Intr) UnlessAfter (RFM.Pending);
After (R Ret)Never (R Intr) UnlessAfter (RFM.Pending);
After (R Intr) Never (C Intr + A Intr + S Schd + NSchd + RIntr) UnlessAfter (R Ret);

Property of H-CLK,PHC :
PHC(1): Repeatedly(intr c);

Property of H-SEN,PHS :
PHS(1):

After (start s)Eventually (intr s);
Never (intr s) UnlessAfter (start s); After (intr s)Never (intr s)UnlessAfter (start s);

Property of H-NET,PHN :
PHN (1):

IfRepeatedly (d rdy) Repeatedly(flag); IfRepeatedly (d rdy=False)Repeatedly(flag=False);
PHN (2):

After (d rdy) Eventually (intr n);
Never (intr n) UnlessAfter (d rdy); After (intr n) Never (intr n) UnlessAfter (d rdy);

Fig. 6. Component properties and their sub-properties

13

PSS(1) → {PSN (2), PSN(3), PB(2), PB(3)}
PSS(2) → {PSN (2), PSN(3), PB(3)}
PSS(3) → {PSN (3), PB(3)}

PSN(1) → {PSS(3), PB(2), PB(3)}
PSN(2) → {PSS(3), PB(3)}
PSN(3) → {PSS(3), PB(3)}

PB(1) → {PSS(2), PSS(3), PHS(1), PHN(2)}
PB(2) → {PSS(2), PSS(3), PSN(2), PSN(3), PHS(1), PHN(2)}
PB(3) → {PSS(3), PSN(3), PHS(1), PHN (2)}

Fig. 7.Dependencies among component sub-properties

and the propertyPB of BRDG. If PSS , PSN , andPB are used straightforwardly in
Rule 2, Condition C3’ does not hold. However, if we conduct dependency refinement
and examine the dependencies among the component sub-properties, we can success-
fully establish the property ofS&B using Rule 2.PSS(3), PSN (3), andPB(3) forms
a dependency cycle on which C3’ holds sincePSS(3), PSN (3), andPB(3) are safety
properties. Thus,PSS(3), PSN (3), andPB(3) holds. Following the dependencies back-
ward, we can show all other sub-properties hold. Therefore,the property ofS&Bholds.

In Step 2, we derive the system property by applying Rule 1 toS&B, H-CLK, H-
SEN, andH-NETsince these components do not share any sub-component. The proper-
ties ofH-CLK, H-SEN, andH-NETare verified directly, thus C1 holds. Since the system
property is implied byPHC(1), PB(1), PSS(1), PSN (1), andPHN (1), C2 holds. There
is no need to check C3 since there are no circular dependencies among the properties
of S&B, H-CLK, H-SEN, andH-NET. Therefore, the system property holds.

If the system property is verified using the straightforwardtranslation-based co-
verification approach in [19]: translating the entire system into S/R and verify it using
COSPAN, 50800 seconds and 730.54 megabytes are needed. The time and memory
usages for establishing C1’ in Step 1 and C1 in Step 2: model checking the compo-
nent properties, are shown in Table 1. In Step 1, C2’ holds trivially and since the sub-

Components Time (Seconds) Memory (MBytes)
S-SEN 18.66 8.49
S-NET 18.06 9.11
BRDG 86.05 15.83
H-CLK 0.21 3.38
H-SEN 0.22 3.38
H-NET 0.22 3.38

Table 1.Time and memory usages for model checking the component properties

properties for which C3’ must be checked are safety properties, C3’ also holds trivially.
In step 2, C2 can be established by checking the system property on the component
properties using 0.1 seconds and 3.4 megabytes. It can be observed that our component-
based approach to co-verification achieved order-of-magnitude reduction on verification
complexities over the translation-based approach in verifying this sensor instance.

14

7 Conclusions and Future Work

In this paper, we have presented a novel approach to compositional reasoning for co-
verification. Its key contributions include integration ofcompositional reasoning for
hardware and software based on translation, development ofa new compositional rea-
soning rule allowing components to share sub-components, and extending applicability
of compositional reasoning rules via dependency refinement. Case studies on networked
sensors have shown that our approach is very effective. Future work will be focused on
automation of compositional reasoning with heuristics that explore architectural pat-
terns of embedded systems to formulate system and componentproperties, decompose
system properties into component properties, and facilitate dependency refinement.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Proc. of Logic of Programs Workshop. (1981)

2. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:
Proc. of Symposium on Programming. (1982)

3. Chandy, K.M., Misra, J.: Proofs of networks of processes.IEEE Transaction on Software
Engineering7(4) (1981)

4. Jones, C.B.: Development methods for computer programs including a notion of interfer-
ence. PhD thesis, Oxford University (1981)

5. Abadi, M., Lamport, L.: Conjoining specifications. TOPLAS17(3) (1995)
6. Alur, R., Henzinger, T.: Reactive modules. FMSD15(1) (1999)
7. McMillan, K.L.: A methodology for hardware verification using compositional model check-

ing. Cadence Design Systems Technical Reports (1999)
8. Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.: Assume-guarantee based composi-

tional reasoning for synchronous timing diagrams. In: Proc. of TACAS. (2001)
9. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositional and Non-compositional Proof
Methods. Cambridge University Press (2001)

10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System architecture
directions for networked sensors. In: Proc. of ASPLOS. (2000)

11. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture.
Addison Wesley (2002)

12. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning. In: Proc. of
CAV. (2000)

13. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)

14. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters21(4) (1985)
15. Hardin, R.H., Har’El, Z., Kurshan., R.P.: COSPAN. In: Proc. of CAV. (1996)
16. Kurshan, R.P.: FormalCheck User Manual. Cadence (1998)
17. Xie, F., Levin, V., Browne, J.C.: Objectcheck: A model checking tool for executable object-

oriented software system designs. In: Proc. of FASE. (2002)
18. Xie, F., Browne, J.C., Kurshan, R.P.: Translation-based compositional reasoning for software

systems. In: Proc. of FME. (2003)
19. Xie, F., Song, X., Chung, H., Nandi, R.: Translation-based co-verification. In: Proc. of

MEMOCODE. (2005)

15

