Compositional Reasoning for Hardware/Software
Co-Verification *

Fei Xie!, Guowu Yang, and Xiaoyu Song

! Dept. of Computer Science, Portland State Univ., Portl@R®I 97207
{xie, guowu@cs.pdx.edu
2 Dept. of Electrical & Computer Engineering, Portland Statev., Portland, OR 97207
song@ece.pdx.edu

Abstract. In this paper, we present and illustrate an approach to csitiquaal
reasoning for hardware/software co-verification of emieeldsl/stems. The major
challenges in compositional reasoning for co-verificaiineiude: (1) the hard-
ware/software semantic gaps, (2) lack of common properécifipation lan-
guages for hardware and software, and (3) lack of compasiti@asoning rules
that are applicable across the hardware/software bowwsdddiur approach ad-
dresses these challenges by (1) filling the hardware/sétaamantic gaps via
translation of hardware and software into a common formajlage, (2) defin-
ing a unified property specification language for hardwanéwsare, and entire
systems, and (3) enabling application of existing compwsad reasoning rules
across the hardware/software boundaries based on tianskdveloping a new
rule for compositional reasoning with components that elsarb-components,
and extending the applicability of these rules via depeogesfinement. Our ap-
proach has been applied to co-verification of networkedssn$he case studies
have shown that our approach is very effective in enablingiegttion of compo-
sitional reasoning to co-verification of non-trivial embled systems.

1 Introduction

Embedded systems are pervasive in the infrastructure ofaciety. They are often
mission-critical, therefore, must be highly trustwortBymbedded systems often sup-
port concurrency intensive operations such as simultamewmnitoring, computation,
and communication. Thus, to build trustworthy embeddetesys, they must be exten-
sively verified. Due to strict design constraints of embetslestems, to achieve better
performance, hardware and software components must gligelact and the trade-
off between hardware and software must be exploited. Thisathels hardware/software
co-design and, therefore, hardware/software co-verifioaif embedded systems.
Model checking [1, 2] is a powerful formal verification methehich has great po-
tential in hardware/software co-verification of embeddgsteams. It provides exhaus-
tive state space coverages for the systems being verifiade¥#w, a stumbling block
to scalable application of model checking to co-verificati®the intrinsic complexity
of model checking. The number of possible states and exetptiths in a real-world

* This research was supported by Semiconductor Researcloi@tgm, Contract 1356.001.

system can be extremely large, which makes naive applicafionodel checking in-
tractable and requires state space reduction. Compaditieasoning [3-9], as applied
in model checking, is a powerful state space reduction dlgar Using compositional
reasoning, model checking of a property on a system is aclisimeg by decomposing
the system into components, model checking the componepepies locally on the
components, and deriving the system property from the commpiproperties.
Co-verification of an embedded system involves both its Wward and software
components, which leads to the following major challengemmpositional reasoning:

1. Hardware/software semantic gapgdardware usually follows synchronous clock-
driven semantics while software semantics are more dfiedse.g., asynchronous
interleaving message-passing semantics and event-adélereturn semantics.

2. Lack of unified property specification languagefective compositional reasoning
can benefit greatly from uniform specification of propertiésoth hardware and
software components and, furthermore, properties ofentitbedded systems.

3. Lack of appropriate rules for co-verificatiofExisting compositional reasoning
rules do not readily address the special needs of co-veiifitacompaositional
reasoning involving components of different semantics@mponents that share
sub-components, e.g., an execution scheduler shared twasefcomponents.

In this paper, we present and illustrate an approach to ceitiqueal reasoning for
hardware/software co-verification of embedded systems dpproach addresses the
above challenges as follows:

1. The hardware/software semantic gaps are filled via @éiosl of both hardware
and software components into a formal language whose sawna®rves as the
common semantic basis for co-verification and compositiceesoning.

2. Aunified property specification language is defined, wiighports property spec-
ification for hardware components, software components,farthermore entire
embedded systems. This unification of property specifindtgilitates composi-
tional reasoning across the hardware/software semanticdzoies.

3. A new compositional reasoning rule supports composticgasoning for compo-
nents that share sub-components. The new rule and thengxislies are applied
across the hardware/software boundaries based on tiansl@he applicability of
these rules is further extended through dependency refimeme

Our approach has been applied to co-verification of netwbskasors, an emerging
type of embedded systems. Hardware components of sensospexified in Verilog
while software components are specified in C following amablyonous event-driven
call-run semantics of TinyOS [10] or in xXUML [11], an exechi dialect of UML,
following the asynchronous interleaving message-passngantics. The case studies
have shown that our approach enables compositional reagofinon-trivial embedded
systems and achieves order-of-magnitude reduction oficagion complexities.

Related Work. There has been much research on compositional reasonirgg@icu-
larly relevant is assume-guarantee compositional reagomihich was introduced by
Chandy and Misra [3] and Jones [4] for analyzing safety pribge Abadi and Lam-
port [5], Alur and Henzinger [6], and McMillan [7] extendedsmme-guarantee com-
positional reasoning to liveness properties. Howevesdtextensions are incomplete,

i.e., there exist properties of systems which are true bupravable under these ex-
tensions [12]. Amla, Emerson, Namjoshi, and Trefler [8] sgd a sound and com-
plete compositional reasoning rule for both safety andss properties. Our approach
builds on the previous work on compositional reasoning amabkes application of
compositional reasoning across the hardware/softwaraedaries. This is based on
translating hardware and software into the same formal tadueckable language.
The rest of this paper is organized as follows. In Section & pwovide the back-
ground of this work. We discuss how translation fills the maacke/software semantic
gaps in Section 3. In Section 4, we define a unified propertyipation language. We
present compositional reasoning for co-verification int®acs. In Section 6, we illus-
trate our approach with case studies on networked senserso¥¢lude in Section 7.

2 Background

2.1 A Formal Semantics:w-Automaton Semantics

We adopt thd.-process model af-automaton semantics. Details of this model can be
found in [13]. Only the concepts essential for understamttins paper are given below.

Definition 1. For an L-processw, its languagef(w), is the set of all infinite sequences
accepted bw.

Definition 2. For an L-processw, L. (w) denotes the set of all finite prefixes{fv).

Definition 3. For L-processesws,...,w,, their synchronous parallel composition,
w=w1 ®...Q wy,is also anL-process and’(w) = NL(w;).

Definition 4. For L-processesy, .. .,w,, their Cartesian sumy = w; ® ... ® wy,
is also anL-process and’(w) = UL(w;).

For a language of infinite sequences over a set of variabl&s,the safety clo-
sure [14] of £, denoted bycl(L£), is defined as the set of infinite sequences d¥er
wherez € cl(L) iff for each finite prefixy of z, there exists an infinite sequenege
y:z € L. (y : zdenotes the concatenatiomoéndz wherey andz are sequences over
V.) In[13], cl(L) is termed as the smallest limit prefix-closed language coing.L.

Definition 5. The safety closur€ L(w) of an L-processv is an L-process whose lan-
guage is the safety closure of the language of (CL(w)) = cl(L(w)).

CL(w) can be derived fromv by changing the fairness condition®fto true.

Definition 6. For a setS of finite sequences over a set of variablésthe limit of S,
denoted byim(S), is the set of infinite sequences whose finite prefixes am 4ll i

Notations.Given two languages; andLq, £1 = Lo denotes; C Lo, andLy = Lo
denotesC; C L, andLy C L.

Lemmal. cl(L(w)) = lim L, (w)

Proof of Lemma 1: Follows from the definitions ofl andi:m. O

Under thev-automaton semantics model checking is reduced to cheékprgcess
language containment. Suppose a system is modeled by thmostonw;, ® ... ® w,
of L-processesy,...,w,, and a property to be checked on the system is modeled
by an L-processesy. The property holds on the system if and only if the langu&ge o
w1 ® ... R wy, Is contained by the languageof L(w; ® ... @ wy,) C L(w).

Definition 7. Given twoL-processes; andws, w; implementsv, (denoted by, =
(.Ug) if E(wl) g ﬁ(wg).

2.2 S/R Language: A Realization ofu-Automaton Semantics

The S/R language is the input formal language of the COSPANeichecker [15].
In S/R, a systenP is composed of synchronously interacting processes, ponaky
w-automata. A process consists of state variables, satedidgables, inputs, state tran-
sition rules, and selection rules. Selection variablesdefie outputs of the process.
Each process inputs a subset of all the selection variabteber processes. State tran-
sition rules update state variables as functions of thecatistate, selection variables,
and inputs. Selection rules assign values to selectioalias as functions of state vari-
ables. Such a function is non-deterministic if several @alare possible for a selection
variable in a state. The “selection/resolution” executioodel of S/R is synchronous
clock-driven, under which a system of processes behaveg-iphase procedure every
logical clock cycle:[1: Selection PhaseEvery process “selects” a value possible in
its current state for each of its selection variables. Theesof the selection variables
of all the processes form the global selection of the sysf2niResolution Phaselv-
ery process “resolves” the current global selection siamdbusly by updating its state
variables according to its state transition rules. In S/Braperty to be checked is also
modeled by anv-automaton?’. COSPAN performs the verification by checking the
language containmenf,(P) C £(T), using either an explicit state space enumeration
algorithm or a symbolic (BDD-based or SAT-based) searcbrélgn.

2.3 A Hardware Semantics: Synchronous Clock-Driven Semaits of Verilog

In the IEEE standard, the semantics of the Verilog hardwaseidption language is
defined informally by means of a discrete event simulatoradépt the semantics of a
Verilog subset that can be formalized via translation td8HRlanguage. The translation
has been implemented in FormalCheck [16]. Abstractly, dlagmodel consists of a
number of modules. The sequential portion of a module ctmefdlip-flops that keep
the states of the module. The outputs of a flip-flop can be @odadsed on its inputs at
the positive edge or the negative edge of the system cloekotitputs of combinational
circuits are updated based on their inputs instantly if zefday is assumed.

2.4 Two Software Semantics

Asynchronous Event-Driven Call-Return Semantics of TinyGs TinyOS [10] is an
operating system for networked sensors. It is componesieand is readily extensi-
ble and configurable via developing new components anddimauonly the necessary

components in the system configuration for a given missiono#plete TinyOS sys-
tem configuration consists of a scheduler and a graph of coergs. A component has
four interrelated parts: a set of command handlers, a satavftdandlers, a fixed-size
data frame, and a bundle of tasks. Command handlers, evedliehs, and tasks execute
in the context of the frame and operate on its state and arkeingmted as functions
which are invoked following the call-return semantics. lig level components issue
commands to lower level components and lower level compsreégnal events to the
higher level components. The lowest level of componentsatts physical hardware.

Event handlers are invoked to deal with hardware eventserdirectly or indi-
rectly. The lowest level components have handlers condalttectly to hardware in-
terrupts. An event handler can deposit information intofritggne, post tasks, signal
higher level events or call lower level commands. A hardvessent triggers a fountain
of processing that goes upward through events and can bewdigod through com-
mands. In order to avoid cycles in the command/event chaimneands cannot signal
events. Commands and events are intended to perform a éwedlamount of work.

Tasks perform the primary work. They are atomic with resfeother tasks, though
they can be preempted by events. Tasks can call lower leveinands, signal higher
level events, and post other tasks within a component. Timausgcs of tasks make it
possible to allocate a single stack that is assigned to tirerdly executing task. Tasks
allow concurrency since they execute asynchronously \epect to events. However,
tasks must never block or spin wait or they will prevent pesgrin other components.
While events and commands approximate light-weight irtatsous computations,
task bundles provide a way to incorporate arbitrary contjmrta into the event-driven
model. The task scheduler is FIFO, utilizing a bounded stheduling queue.

Asynchronous Interleaving Message-Passing (AIM) Semartts of Executable UML
Executable UML (xUML) [11] is an executable dialect of UML paorting model-
driven development of embedded software. System modeldiilxcan be simulated
with execution simulators and can also be automaticallypited into C/C++. xXUML
features an asynchronous interleaving message-passimanses. Under this seman-
tics, a system consists of a set of interacting object itgmnThe behavior of each
object instance is specified by an extended Moore state nmodddich each state may
be associated with a state action. A state action is a progegment that executes upon
entry to the state. Object instances communicate with ety through asynchronous
message-passing. In a system execution, at any given mamigrane object instance
can progress by executing a state transition or a statendatits extended Moore state
model. The execution of a state transition or a state actioari-to-completion.

3 Translations of Hardware and Software

For practical reasons, hardware and software componeiits embedded system are
often specified in various languages with different sentanftior instance, the ones
given in Section 2. However, to formally verify correctngseperties of the entire

system, a common formal semantic basis is needed, upon etéctts in hardware and
software components can be precisely defined and, furthrermedated to one another.

This enables meaningful specification and reasoning oeeyevel properties which
often span across the hardware and software boundaries.

Leveraging the formal semantic basis to fill the hardwafeisre semantic gaps
requires translations of the hardware and software laregitgthe formal language.
The translations formalize the hardware and software stosalny simulating them
with the formal semantics. (Restrictions are applied tosthféware semantics to ensure
software components be finite-state.) The translationblerrause of model checkers
and compositional reasoning rules that have been devefopétke formal semantics.

The translation from Verilog to S/R has been implementeddmfalCheck [16],
which simulates the synchronous clock-driven semantic¥esflog with the selec-
tion/resolution semantics of S/R. The xUML-to-S/R tratista has been implemented
in ObjectCheck [17], which simulates the AIM semantics with selection/resolution
semantics of S/R. In this section, we briefly discuss thestedion from TinyOS to S/R.

3.1 Translation from TinyOS to S/IR

The TinyOS-to-S/R translation simulates the asynchroewast-driven call-return se-
mantics of TinyOS with the selection/resolution semardicS/R and is currently being
implemented. Each component in a TinyOS system is mappediltipte automata in
the resulting S/R system: the fixed-size data frame is mddgtean automaton which
keeps the state of the data frame and each event handler,axwarimandler, or task is
also modeled as an automaton which updates the data framtebgdting with the data
frame automaton. An additional automatenheduleris introduced in the S/R system
and it determines which event handler, command handlegasérgshould be executed.
The schedulerexports a selection variablehoice imported by the automata corre-
sponding to event handlers, command handlers, and taskmyAgiven moment, the
schedulerselects an automaton corresponding to an event handlemaathhandler,
or task by settinghoiceto a particular value. Only the chosen automaton executes a
state transition corresponding to the execution of a C laggstatement in the event
handler, command handler, or task. Other automata folloslfd@op transition back to
their current states.

Event handlers, command handlers, and tasks are implethast€ functions in
TinyOS. The call-return semantics is simulated with the aatias of S/R as follows.
The caller exports a Boolean selection variable which istedétue when the call is
made. The callee imports this variable and responds to théf tae variable is set
to true. Parameters of the call are passed via additionattéeh variables. The callee
exports a selection variable which indicates the call retund is imported by the caller.
The return value of the call is passed via additional sedactariables of the callee.

In TinyOS, tasks are atomic with respect to other tasks, bothe preempted by
events. We assume that a task can be preempted in betweerethgien of two con-
secutive C language statements. The preemption is impkehérough thescheduler
adjusting the value of thehoicevariable. In between the execution of two consecutive
C language statements in a task, sebedulerchecks for hardware interrupts. If there
exists an interrupt, thehoiceis set to the automaton simulating the event handler of the
interrupt. Thechoiceis set back to the task when the interrupt handling is done.

4 Unified Property Specification Language

Co-verification examines both hardware and software compisnand entire embed-
ded systems. It is highly desirable to have a unified propgrégification language for
both hardware and software components, and entire systenkave developed such
a language based amrautomata, which extends the hardware property specditati
language of FormalCheck [16]. This unified language is preeskin terms of a set of
property templates shown in Figure 1, which have intuitiveamings and also rigorous

Always/Never (f)

After (e) Always/Never (f) [Unless[After] (d)]
After (e) Always/Never (f) [Until[After] (d)]
Always/Never (f) Unless[After] (d)
Always/Never (f) Until[After] (d)

After (e) Eventually (f) [Unless (d)]
Eventually (f) [Unless (d)]

IfRepeatedly (e) Repeatedly/Eventually (f)
IfRepeatedly (e) EventuallyAlways (f)

After (e) EventuallyAlways (f) [Unless (d)]
EventuallyAlways (f)

EventuallyAlways (f) Unless (d)

After (e) Repeatedly (f) [Unless (d)]
Repeatedly (f) [Unless (d)]
IfEventuallyAlways (e) Repeatedly/Eventually (f)
IfEventuallyAlways (e) EventuallyAlways (f)

Fig. 1. A list of available property templates

mappings to property templates written in S/R. (Note tha®iR, both systems and
properties are formulated asautomata.) An example of such templates is

After(e) Eventually(d)

where theenablingconditione and thedischargingconditiond are Boolean proposi-
tions declared over semantic entities of hardware or softwkhe semantic meaning is
that after each occurrence ethere eventually follows an occurrencedfAlthough
similar to the LTL formulaG(e — X F(d)), our property does not require a second
d in case the discharge conditianis accompanied by a secoadwhereas an initial
e is not discharged by an accompanyihdrhis asymmetry meets many requirements
of software specification. (On account of this asymmetry, moperty cannot be ex-
pressed in LTL.) The formal semantics of a property instdimtg this template can be
precisely defined based on the mappings from the hardwarsddtvdare semantics to
the semantics of S/R and the mapping of this template to alt&genpritten in S/R. The
property can be automatically translated into S/R basetiesetmappings.

Our property specification language is linear-time, with #xpressiveness af-
automata [13]. The templates define parameterized autoiffa¢éalanguage is readily
extensible: new templates can be formulated as needed. geqyoin this language

consists of (1) declarations of Boolean propositions ogéingre or hardware semantic
entities, and (2) declarations of temporal assertions.mpteral assertion is declared
through instantiating a property template: each argumithisotemplate is realized by
a Boolean expression composed from the declared Booleg@ogitmns.

5 Compositional Reasoning for Co-Verification

5.1 Previous Work: Translation-Based Compositional Reasting for Software

In [18], we developed translation-based compositionaaamg (TBCR), an approach
to application of compositional reasoning in model chegldoftware systems based
on translation. If a translation can be shown to preservedlidity of properties (e.g.,
for the xXUML-to-S/R translation, we established that tlamsiation is linear-monotonic
with respect to language containment), then given a softwgstem and a property to
be checked, compositional reasoning in the software seesasttonducted as follows.
(1) The system is decomposed into components on the sofsearantics level. (2) The
component properties are formulated. The components aidgfoperties are trans-
lated into the formal semantics. A compositional reasonihgin the formal semantics
is reused. The conditions of the rule are checked. (3) If tralitions hold, then it can
be concluded on the software semantics level that the systeperty holds.

TBCR has been realized for software specified in xXUML. The XUd-S/R trans-
lation implements the semantic mapping from the AIM seneanid thew-automaton
semantics. Based on this translation, we have reused, fificaéion of XUML models,
a rule [8] that has been established in thautomaton semantics, Rule 1.

Rule 1 For w-automataP; and P, modeling two components of a system, ghod-
eling a property of the system, to show tifat2 P, | @, findw-automata®); and Q-
modeling the component properties such that the followonglitions are satisfied.

Cl: PA®Q:EQrandP, ® Q1 E Q2
C2: Q1@ EQ
C3: EitherP, @ CL(Q) E (Q® Q1 ® Q2) or P, @ CL(Q) = (Q & Q1 ® Q2)

5.2 Translation-Based Compositional Reasoning for Co-Véfication

The translation-based nature of TBCR enables its natutahsion to support compo-
sitional reasoning for co-verification. Given an embeddegiesn and a system prop-
erty in the unified property specification language, compwsil reasoning for co-
verification can be conducted as follows: (1) The systemiititimaned into its hardware
and software components. (2) The properties of the hardaratsoftware components
are formulated. The hardware and software components airdoifoperties are trans-
lated into a formal language with their corresponding ti@ess. The conditions of
a compositional reasoning rule in the formal semantics heeked. (3) If the condi-
tions hold, it can be concluded that the system propertyshald shown in Figure 2,

! An additional condition of Rule 2 is thap; (or Q-) does not blockP, (or P;). A process
@ does not block procesB iff (i) any initial state of P can be extended to an initial state of
P ® @, and (ii) for any reachable state & @ @, any transition ofP from that state can be
extended to a transition d? ® Q. The condition holds trivially in the-automaton semantics.

Asynchronous Event-Drive Semantics Mapping _ Semantics Mapping Synchronous
Call-Return (or AIM) Omega-automatg Clock-Driven
A

0 * 0
1 1 1
| Semantics Semanticy Semanticy

I Conformance Conformancel Conformancel
1 1

i XUML-to-S/R translation) Verilog-to—-S/R translation| i
TinyOS (or XUML) S/IR

Fig. 2. Model translations realize semantic mappings for co-\eaiibn.

TinyOS-to-S/R translation (or ! !

the Verilog-to-S/R translation and the TinyOS-to-S/R (biL-to-S/R, respectively)
translation realize the semantic mappings from the symaius clock-driven semantics
and the asynchronous event-driven call-return semaraidhi¢ AIM semantics) to the
w-automaton semantics, therefore, enables compositieaabning for systems with
hardware in Verilog and with software in the C subset for $y(or in xXUML).

This extension of TBCR requires that the hardware and softwanslations pre-
serve the validity of the hardware and software propergeas,, TinyOS-to-S/R and
Verilog-to-S/R translations are linear-monotonic witspect to language containment.

5.3 Compositional Reasoning with Components That Share SuGomponents

Compositional reasoning for co-verification requires neles that support reasoning
about components that share sub-components. Simulatiofvease semantics with
the common formal semantics often requires modeling of achaler in the formal se-
mantics. The translation of a TinyOS system into S/R ingetttse resulting S/R system
a scheduler that interacts with the automata simulating saftware component. The
translation of an XUML system into S/R inserts a schedulat ititeracts with each au-
tomaton simulating an object instance. (A component in XUy contain multiple
object instances.) These schedulers make schedulingatecisased on interactions
with hardware. When each software component is verified, dften the case that the
scheduler must be included in the verification since usisg@mptions to abstract the
scheduler is often difficult. Therefore, the scheduler bee®a shared sub-component.
Rule 1 does not apply here since it does not allow componeststre sub-components.
We propose a new compositional reasoning rule, Rule 2, adihgethis problem:

Rule 2 For w-automataP; and P, modeling two components of a systeéfimodeling
a common component, ag modeling the system property, to show thak P; ®

P, = Q, findw-automata®); and @2 modeling the component properties such that the
following conditions are satisfied.

Cl: SOP®Qy=QrandS® P, ® Q1 = Qs
C2: S®Q1®Q2 = Q
C3: EitherS®PioCL(Q) E (REQ19Q2)or SO P,RCL(Q) = (Q® Q19 Q2)

Lemma2. L,(S® P @ P) = L.(S® Q1 ®Q2)

Proof of Lemma 2: Follows from C1’ by induction on length of finite prefixes. O

Theorem 1. (Soundness) Fow-automatas, P, P, @1, @2, and @ satisfying the
conditions of Rule 25 ® P, @ P> E Q.

We decompose the proof of Theorem 1 into a safety proof andeadss proof ac-
cording to the decomposition &(Q) into its safety part and liveness paf(Q) =
d(L(Q)) A (=cl(L(Q)) V L(Q)). The safety proof shows thadi(S @ P, ® P») =
c(L(Q)) while the liveness proof shows thafS ® P, ® P2) A cl(L(Q)) = L(Q).

Proof of Safety Part of Theorem 1:

LS® P, ® P,)
= c(L(S® P ® P,)) {Closure is weakening
=limL,(S®@P®P) {Lemmal
=limL(S®Q1®Q2) {limis monotonic; Lemma}p
=cd(L(S®Q1®Q2)) {Lemmal
= cl(L£(Q)) {Closure is monotonic; Condition Cp’

Proof of Liveness Part of Theorem 1:

L(S® P ®Py) Acd(L(Q))

(S®PL®P)ANL(CL(Q)) {Closure represents language clogure

(S) A L(Py) A L(Py) A L(CL(Q))

{Composition is conjunction of languages

= LSYNLP)NL(P)ANL(Q D Q1 ®Q2) {Condition C3}

= L(S) A L(P) A L(P) A L(Q) V L(@Q1) V £(Q2))
{Cartesian sum is disjunction of languages

= L(Q) V (L(S) NL(PL) A (L(Q2)) V (L£(S) NL(P2) NL(Qr))
{Distribution of A over\V; dropping conjuncts

= L(Q)V (L(S)ANL(Q1) ANL(Q2)) {Condition C1}

= L(Q) {Condition C2}

L
L

O

Theorem 2. (Completeness) Fav-automatasS, P, P, andQ@,if S®@ P, @ P» E Q,
there exist); and Q- that satisfy the conditions of Rule 2.

Proof of Theorem 2: By choosingP; andP, asQ; andQ-, the proofis trivial. O

5.4 Dependency Refinement

Both Rule 1 and Rule 2 share the same intuition: using CamditC3 and C3’ to pre-
vent circular reasoning by showing that at least one comptoni#l take the first step

10

Qll—> Q21

Q15Q11, Q12, Q13} Q2=(Q21, Q22, Q23}
Component M1 Component M2 le;QZZ
Q13— Q2
(@) (b)

Fig. 3. A motivating example for dependency refinement

voluntarily. However, naive application of these ruled fall to establish system prop-
erties in many cases where the interaction between the twipapents of a system
has more than two steps which form a dependency cycle. Sepghasa system has
two components)/; and Mo, as shown in Figure 3(a). The property &f; (or Ms,
respectively) Q1 (or Q2), is actually the conjunction of a set of sub-properti@s;,
QR12, andQ13 (or Q21, @22, andQ23), each of which asserts on a step of the interac-
tion. The circular dependency amo@g and()-, in fact, consists of more complicated
dependencies amorig) 1, Q12, @13, @21, @22, andQ23 as shown in Figure 3(b). H;
and@)- are used straightforwardly in Rule 1 (or Rule 2, respeciivél3 (or C3’) does
not hold since the left-hand side of C3 (or C3’) implies thb-guoperties of); or @
asserted on the first step of the interaction, but not thaseriasl on the other steps.
Our solution to the above problem is dependency refineméhd¢compose the
component properties into their sub-properties, derieadfined dependency graph of
the sub-properties, and identify the cycles in the refineglyy (2) apply C3 or C3' to
break each of the identified cycles; (3) if all cycles in thiéred dependency graph can
be broken, the compositional reasoning is sound and the aoemp properties can be
established. For the example in Figure 3, suppose that westahlish C3 fof), i.e.,
M takes the first step. We can then conclude that the comporapeies); andQ-
hold since there is a single cycle. Currently, manual effare required to decompose
the component properties into their sub-properties, rdfieedependency graph, and
identify the first sub-property in a dependency cycle forahithe conditions C3 or C3’
should be checked first. We are exploring heuristics thabtaomate these steps.

6 Case Studies

Our approach to compositional reasoning for co-verificatias been applied to net-
worked sensors with hardware specified in Verilog and sothspecified in xUML fol-
lowing the asynchronous interleaving message-passingrs@s or in C following the
asynchronous event-driven call-return semantics. Ingaetion, we illustrate our ap-
proach with its application to a sensor instance with saféwa XUML. The approach
is applied to sensor instances with software in C the same (Wegnslation of sensor
software in C to S/R currently requires manual efforts duthéounfinished translator.)
The architecture of the sensor instance with software in kU81shown in Fig-
ure 4. Its software is partitioned into two components:\safe sensor§-SEN and
software network $-NET and its hardware is partition into three components: hard-
ware clock H-CLK), hardware sensoHtSEN, and hardware networlHENET). The

11

Legend: - 7D7a7tai(707u'£p7ut7) [

777777777 - Software Sensor [_~"""""""""""™} Software Network
Software Message A) OP_Ack (Data_Ack)

I 0 I I 0 I I 0 I

Hardware Signal
8,
Hardware Hardware
"L Sensor "L Network
system clocl

reset

it
Jou 0

'

—
o2}
=,
o

«Q
[
(N

nop
s uels
Api p

Hardware
Clock

Fig. 4. Architecture of a sensor instance with software in XUML aaddware in Verilog

software components execute on a generic processor whileatdware components
are implemented as application specific integrated cBqSICs). The software and
hardware components are connected through a bridge comip(@RDG which in-
teracts with the software components following the sofevsemantics and with the
hardware components following the hardware semantics esghgates events such as
software messages and hardware interrupts across thedra/deftware boundary.
The property shown in Figure 5 is to be verified on the entistesy. This property

Repeated(H-NET.flag = true); Repeated(H-NET.flag = false);

Fig. 5. Repeated transmission property

asserts that the sensor system transmits on the networktegihe Repeated setting and
clearing of a flag inH_NET indicates repeated transmission. The system property is
manually decomposed into the properties of its componantsawn in Figure 6. Note
that asS-SENandS-NETare composed, th@utput(or OutputAck respectively) mes-
sage type 05-SENs mapped to th®ata (or Data AcK) message type &-NET The
ADC.Pendingvariable inS-SENand theRFM.Pendingvariable inS-NETare mapped
to thestart s signal inH-SENand thed_rdy signal inH-NET via BRDG, respectively.
STQ.Emptyor NTQ.Emptyrespectively) is a variable i8-SENor S-NET).

We verify the system property with compositional reasomimigvo steps. In Step 1,
we establish the property of the composite compoS&R that is composed @&-SEN
S-NET andBRDG In this step, we apply Rule 2 since although not shown in feiguy
S-SENS-NET andBRDGshare a scheduler that schedules the execution of the xXUML
object instances in each component. The scheduler is éasetten the xUML model
is translated into S/R. The propertiesS¥SENS-NET andBRDGcan be directly veri-
fied by assuming the properties of the others hddRDGalso has assumptions on the
hardware components.) Therefore, Condition C1’ holdsc&ine define the property
of S&Bas the conjunction of the properties of its sub-componé&usgdition C2’ holds
trivially. The dependencies among the sub-properties @tctmponent properties are
shown in Figure 7. It can be observed that on the componepieptwlevel, there is
a dependency cycle among the propefly of S-SEN the propertyPsy of S-NET

12

Property ofS-SEN,Ps s:
Pss(l):
IfRepeatedly (C_Intr) Repeatedly(Output);
Pss(2):
After (C_Intr) Eventually (C_Ret); After (A_Intr) Eventually (A_Ret); After (S_Schd)Eventually (S_Ret);
Pss(B)Z
After (Output)Never (Output)UnlessAfter (OP-Ack);
Never (Output)UnlessAfter (S.Schd);After (Output)Never (Output)UnlessAfter(S_Schd);
Never (S_Ret) UnlessAfter (OP-Ack); After (S_Ret) Never (S_Ret) UnlessAfter(OP_Ack);
Never (C_Ret) UnlessAfter (C_Intr); After (C_Ret)Never (C_Ret)UnlessAfter (C_Intr);
Never (A_Ret)UnlessAfter (A_Intr); After (A_Ret)Never (A_Ret)UnlessAfter (A_Intr);
After (ADC.PendingNever (ADC.Pending)UnlessAfter (A_Ret);
Never (S_Ret)UnlessAfter (S_Schd);After (S_Ret)Never (S_Ret)UnlessAfter (S.Schd);
After (STQ.Empty=FalselNever (STQ.Empty=FalseYnlessAfter(S_Ret);

Property of S-NETPs n':
Psn (1):

IfRepeatedly (Data)Repeatedly(RFM.Pending)jfRepeatedly (Data) Repeatedly(RFM.Pending=False);
Psn (2):

After (Data)Eventually(DataAck); After (N_Schd)Eventually (N_Ret); After (R_Intr) Eventually (R-Ret);
Psn (3):

Never (DataAck) UnlessAfter (Data); After (DataAck) Never (Data.Ack) UnlessAfter (Data);

Never (N_Ret) UnlessAfter (N_Schd);After (N_Ret)Never (N_Ret) UnlessAfter (N_Schd);

After (NTQ.Empty=FalseNeverNTQ.Empty=FalseYnlessAfter(N_Ret);

Never (R_Ret) UnlessAfter (R_Intr); After (R_.Ret)Never (R_Ret)UnlessAfter (R_Intr);

After (RFM.PendingNever (RFM.PendinglUnlessAfter (R-Ret);

Property of BRDG Pg:

Pp (1):
IfRepeatedly (intr_c) Repeatedly(C_Intr);
IfRepeatedly (RFM.PendingRepeatedly(d_rdy);
IfRepeatedly (RFM.Pending=FalseéRepeatedly(d_rdy=False);

' After (ADC.Pending)Eventually (A_Intr); After (STQ.Empty=Falseffventually (S.Schd);
After (NTQ.Empty=FalseEventually (N_Schd);After (RFM.PendingEventually (R_Intr);

After (C_Intr) Never (C_Intr + A_Intr + S_.Schd + NSchd + RIntr) UnlessAfter (C_Ret);
Never (A_Intr) UnlessAfter (ADC.Pending);

After (A_Ret)Never (A_Intr) UnlessAfter (ADC.Pending);

After (A_Intr) Never (C_Intr + A_Intr + S.Schd + NSchd + RIntr) UnlessAfter (A_Ret);
Never (S_Schd)UnlessAfter (STQ.Empty=False);

After (S_Ret)Never (S_Schd)UnlessAfter (STQ.Empty=False);

After (S_Schd)Never (C_Intr + A_Intr + S.Schd + NSchd + RIntr) UnlessAfter (S_Ret);
Never (N_Schd)UnlessAfter (NTQ.Empty=False);

After (N_Ret)Never (N_Schd)UnlessAfter (NTQ.Empty=False);

After (N_Schd)Never (C_Intr + A_Intr + S_Schd + NSchd + Rintr) UnlessAfter (N_Ret);
Never (R_Intr) UnlessAfter (RFM.Pending);

After (R_Ret)Never (R_Intr) UnlessAfter (RFM.Pending);

After (R_Intr) Never (C_Intr + A_Intr + S_.Schd + NSchd + RIntr) UnlessAfter (R_Ret);

Property of H-CLK,Pg ¢
Prc (1): Repeatedly(intr_c);

Property of H-SENPg s
Pys (1) :
After (starts)Eventually (intr_s);
Never (intr_s) UnlessAfter (starts); After (intr_s)Never (intr_s) UnlessAfter (starts);

Property of H-NETPy N :
PH N (1) :

IfRepeatedly (d_rdy) Repeatedly(flag); IfRepeatedly (d_rdy=False)Repeatedly(flag=False);
PH N (2):

After (d_rdy) Eventually (intr_n);

Never (intr_n) UnlessAfter (d_rdy); After (intr_n) Never (intr_n) UnlessAfter (d_rdy);

Fig. 6. Component properties and their sub-properties

13

Pss(1) — {PSN(2)7PSN(3)7 Pp
Pss(2) — {PSN(2)7PSN(3) Pp
Pss(3) — {Psn(3), Ps(3)}

Psn(1) — {Pss(3), Pr(2), Ps(3)}
Psn(2) — {Pss(3), Pe(3)}
Psn(3) — {Pss(3), Pe(3)}

Pp(1) — {Pss(2), Pss(3), Pus(1), Pun(2)}
Pp(2) — {Pss(2), Pss(3), Psn(2), Psn(3), Pus(1), Pun(2)}
P5(3) — {Pss(3), Psn(3), Pus(1), Pun(2)}

Fig. 7. Dependencies among component sub-properties

and the property’sz of BRDG If Psg, Psy, and Pg are used straightforwardly in
Rule 2, Condition C3’ does not hold. However, if we condugbetedency refinement
and examine the dependencies among the component sulrfgepee can success-
fully establish the property db&B using Rule 2.Pss(3), Psy(3), and Pg(3) forms

a dependency cycle on which C3’ holds siégs(3), Psn(3), and Pg(3) are safety
properties. ThusPss(3), Psn(3), andPg(3) holds. Following the dependencies back-
ward, we can show all other sub-properties hold. Theretheeproperty o5&B holds.

In Step 2, we derive the system property by applying Rule $&®, H-CLK, H-
SEN andH-NETsince these components do not share any sub-componentdperp
ties ofH-CLK, H-SEN andH-NETare verified directly, thus C1 holds. Since the system
property is implied byPr (1), Ps(1), Pss(1), Psn(1), andPg (1), C2 holds. There
is no need to check C3 since there are no circular dependesitieng the properties
of S&B, H-CLK, H-SEN andH-NET. Therefore, the system property holds.

If the system property is verified using the straightforwaahslation-based co-
verification approach in [19]: translating the entire sysiato S/R and verify it using
COSPAN, 50800 seconds and 730.54 megabytes are neededniehantd memory
usages for establishing C1' in Step 1 and C1 in Step 2: modetlthg the compo-
nent properties, are shown in Table 1. In Step 1, C2’ holdgtly and since the sub-

Components Time (Seconds) Memory (MBytes)
S-SEN 18.66 8.49
S-NET 18.06 9.11
BRDG 86.05 15.83
H-CLK 0.21 3.38
H-SEN 0.22 3.38
H-NET 0.22 3.38

Table 1. Time and memory usages for model checking the componenepiep

properties for which C3’ must be checked are safety proger@3’ also holds trivially.
In step 2, C2 can be established by checking the system pyoperthe component
properties using 0.1 seconds and 3.4 megabytes. It can beveldghat our component-
based approach to co-verification achieved order-of-ntadereduction on verification
complexities over the translation-based approach inyiedfthis sensor instance.

14

7 Conclusions and Future Work

In this paper, we have presented a novel approach to corigy@diteasoning for co-
verification. Its key contributions include integration @mpositional reasoning for
hardware and software based on translation, developmenbefv compositional rea-
soning rule allowing components to share sub-componemissgtending applicability
of compositional reasoning rules via dependency refinerase studies on networked
sensors have shown that our approach is very effectiver&utork will be focused on
automation of compositional reasoning with heuristicg #wplore architectural pat-
terns of embedded systems to formulate system and comppropdrties, decompose
system properties into component properties, and fateldapendency refinement.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of sgortzation skeletons using
branching time temporal logic. In: Proc. of Logic of ProgsaWorkshop. (1981)

2. Quielle, J.P., Sifakis, J.: Specification and verifigatdd concurrent systems in CESAR. In:
Proc. of Symposium on Programming. (1982)

3. Chandy, K.M., Misra, J.: Proofs of networks of procesSEEE Transaction on Software
Engineering7(4) (1981)

4. Jones, C.B.: Development methods for computer prograsiading a notion of interfer-
ence. PhD thesis, Oxford University (1981)

5. Abadi, M., Lamport, L.: Conjoining specifications. TOPEA7(3) (1995)

6. Alur, R., Henzinger, T.: Reactive modules. FM351) (1999)

7. McMillan, K.L.: A methodology for hardware verificatiorsing compositional model check-
ing. Cadence Design Systems Technical Reports (1999)

8. Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.: Asmiguarantee based composi-
tional reasoning for synchronous timing diagrams. In: Pe6@ACAS. (2001)

9. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, Jhreak, Y., Poel, M., Zwiers,
J.: Concurrency Verification: Introduction to Compositiand Non-compositional Proof
Methods. Cambridge University Press (2001)

10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D,PRister, K.S.J.: System architecture
directions for networked sensors. In: Proc. of ASPLOS. (200

11. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundatior Model Driven Architecture.
Addison Wesley (2002)

12. Namijoshi, K.S., Trefler, R.J.: On the completeness ofpmmitional reasoning. In: Proc. of
CAV. (2000)

13. Kurshan, R.P.: Computer-Aided Verification of Coordiimg Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)

14. Alpern, B., Schneider, F.: Defining liveness. InformatProcessing Lettetxl(4) (1985)

15. Hardin, R.H., Har’El, Z., Kurshan., R.P.. COSPAN. Ino€rof CAV. (1996)

16. Kurshan, R.P.: FormalCheck User Manual. Cadence (1998)

17. Xie, F., Levin, V., Browne, J.C.: Objectcheck: A modeécking tool for executable object-
oriented software system designs. In: Proc. of FASE. (2002)

18. Xie, F., Browne, J.C., Kurshan, R.P.: Translation-dasenpositional reasoning for software
systems. In: Proc. of FME. (2003)

19. Xie, F.,, Song, X., Chung, H., Nandi, R.: Translationdshso-verification. In: Proc. of
MEMOCODE. (2005)

15

