
Verification of Component-Based Software
Application Families�

Fei Xie1 and James C. Browne2

1 Dept. of Computer Science, Portland State Univ., Portland, OR 97207
xie@cs.pdx.edu

2 Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712
browne@cs.utexas.edu

Abstract. We present a novel approach which facilitates formal verification of
component-based software application families using model checking. This ap-
proach enables effective compositional reasoning by facilitating formulation of
component properties and their environment assumptions. This approach inte-
grates bottom-up component verification and top-down system verification based
on the concept of application family architectures (AFA). The core elements of an
AFA are architectural styles and reusable components. Reusable components of
a family are defined in the context of its architectural styles and their correctness
properties are verified in bottom-up component compositions. Top-down system
verification utilizes architectural styles to guide decomposition of properties of
a system into properties of its components and formulation of assumptions for
the component properties. The component properties are reused if already veri-
fied; otherwise, they are verified top-down recursively. Architectural style guided
property decomposition facilitates reuse of verified component properties. Pre-
liminary case studies have shown that our approach achieves order-of-magnitude
reduction on verification complexities and realizes major verification reuse.

1 Introduction

Model checking [1] has great potential in formal verification of software systems. The
massive effort required for model checking whole systems “from scratch” has, how-
ever, hindered application of model checking to software. The observations that many
software systems are members of families of related systems which share common ar-
chitectural styles and common components and that compositional reasoning [2, 3] is
one of the most effective methods for reducing model checking complexities suggest
component-based software verification, where verification of whole systems is based
on compositional reasoning and on reuse of verified component properties.

A key challenge in component-based verification is formulation of component prop-
erties and their environment assumptions, i.e., what properties to verify on a component
and what are the assumptions under which the properties should be verified. This chal-
lenge is largely due to lack of knowledge about possible environments of components.
In the state of the art, property and assumption formulation is often ad-hoc and system-
specific. There has been recent research [4, 5] on automatic generation of assumptions

� This research was partially supported by NSF grants IIS-0438967 and CNS-0509354.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 50–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification of Component-Based Software Application Families 51

for safety properties of components. However, formulation of component properties and
formulation of assumptions for liveness properties still needs to be addressed.

This paper presents and illustrates a novel approach which facilitates formal veri-
fication of component-based software application families using model checking. This
approach contributes to addressing the component property and assumption formulation
challenge through extending the concept of software architectures to the concept of ap-
plication family architectures (AFA). An AFA of an application family consists of the
computation model, component model, architectural styles, and reusable components
of the family. Intuitively, the AFA concept addresses lack of knowledge about possible
environments of components by capturing common usage patterns and compositions of
components and provides a hierarchy of reusable components with verified properties.

In this approach, bottom-up component verification and top-down system verifica-
tion are integrated based on assume-guarantee compositional reasoning [2, 3] and the
AFA concept. The integration works as follows. Basic reusable components of a fam-
ily are derived from its architectural styles and are developed bottom-up as the family
is initialized. Properties of these components are derived from the architectural styles
and verified in the environments defined by these styles. The properties then serve as
abstractions of the components in bottom-up verification of larger composite compo-
nents. Top-down verification of a member system utilizes architectural styles to guide
decomposition of properties of the system into properties of its components and formu-
lation of environment assumptions of the component properties. The component prop-
erties are reused, if already verified; otherwise, they are verified top-down recursively.
Architectural style driven property decomposition addresses formulation of component
properties and their assumptions, and facilitates reuse of verified properties of reusable
components. Additional reusable components may be introduced as the family evolves.

Preliminary case studies on web service based systems have shown that our approach
is very effective in scaling verification: It achieved order-of-magnitude verification com-
plexity reductions for non-trivial component-based systems and realized major verifi-
cation reuse. The cost of our approach lies in configuring and evolving the AFA of a
family and is amortized among member systems of the family. Further case studies are
under way to evaluate if benefits obtained in verification and reuse justify the cost.

The rest of this paper is organized as follows. In Section 2, we introduce the concept
of AFA and present an AFA for the domain of university information systems (UIS)
based on web services. In Section 3, we discuss integrated bottom-up and top-down
verification for an application family, which is illustrated with its application to the UIS
domain in Section 5. In Section 6, we analyze the effectiveness and cost of integrated
verification. We discuss related work in Section 7 and conclude in Section 8.

2 Application Family Architectures (AFAs)

AFAs extend the concept of software architectures [6, 7] and target model checking of
component-based application families. An AFA for an application family is derived via
domain analysis of this family. It captures common architectural styles of the systems
in this family, which suggest properties that need to be verified on these systems and
provide knowledge about possible composition environments for reusable components.

52 F. Xie and J.C. Browne

It also catalogs reusable components and their verified properties. An AFA is a 4-tuple,
(computation model, component model, architectural style library, component library):

– The computation model defines the basic elements of a system: (1) the basic func-
tional entities, (2) the interaction mechanism of these entities, and (3) the units of
execution, and specifies the execution semantics in terms of these basic elements.

– The component model defines the concept of component, specifying the elements of
a component: executable representation, interfaces (including functional interfaces
and component properties), etc. It also defines the component composition rule.

– The architectural style library contains the common architectural styles that appear
in systems of this family. An architectural style specifies the types of components
that can be used in this style, the component interactions under this style, and a set
of properties required by this style on these components and on their composition.

– The component library contains the reusable components that have been constructed
for developing systems in this family. These components are reused in development
of new systems. This library is expanded when new components are introduced.

2.1 AFA for University Information System

To illustrate this concept, we present an AFA for the domain of university information
systems (UIS). A modern university is supported by many information systems such as
the registration system, the library system, and the event ticketing system. Their central
functionality is to process various electronic transactions. These systems are required
to correctly process these transactions following the designated protocols.

Computation Model. An emerging trend is to develop information systems using web
service technologies. Components of such systems are web services, implemented in
program languages such as Java and C# or design-level executable languages such as
Business Process Execution Language for Web Services (BPEL4WS) [8]. We formalize
(with simplifications) the semantics of web service based systems as an Asynchronous
Interleaving Message-passing (AIM) computation model. In this model, a system is
a finite set of interacting processes. The processes interact via asynchronous message-
passing. A system execution is an interleaving of the state transitions of these processes.
In our previous work [9], we have developed the ObjectCheck toolkit which supports
model checking of systems that follow the AIM semantics. We employ ObjectCheck as
the model checker for verifying components and systems of the UIS family.

Component Model. Web services, the components in web service based systems, can
be primitive (directly implemented) or composite (composed from simpler web ser-
vices). Their interfaces are specified in XML-based interface specification languages,
Web Service Definition Language (WSDL) [10] and Web Service Choreography Inter-
face (WSCI) [11]. WSDL defines the message types supported by a web service. WSCI
defines how the message types are interrelated in a choreographed interaction with the
web service.

Component – A component C is a pair (E, {S}). E is the executable specification
of C. Conceptually, E is a set of interacting AIM processes. (A primitive component

Verification of Component-Based Software Application Families 53

may contain multiple AIM processes.) Practically, E can be implemented in Java, C#,
or BPEL4WS. {S} is a set of services and each service S is a pair (M, F) as follows.

– M is the messaging interface through which C provides the service S and requests
the services necessary for providing S. M contains input and output message types
and is specified in WSDL.

– F is the functional specification of the service S and is a pair (provides, requires).
The provides is a pair (P (pro), A(pro)) where P (pro) is the temporal proper-
ties that define the service S and A(pro) specifies the assumptions of P (pro) on
the components that request S. To provide S, C often requires other services. The
requires is a set and each entry of the set is a pair (P (req), A(req)). A(req) speci-
fies the assumptions on a service S′ required by C. P (req) specifies the properties
of C necessary for enabling the assumptions in A(req), i.e., when C requests the
service S′, it must behave as P (req) specifies. The properties and assumptions are
formulated on the message types in M and are specified in WSCI.

This component definition facilitates assume-guarantee compositional reasoning by
specifying properties with their assumptions and guides verification reuse by grouping
properties and assumptions into the provides and requires format.

Component Composition – Composition of a set of components, C0, . . ., Cm−1, cre-
ates a composite component, C = (E, {S}), which provides services that aggre-
gate the services provided by C0, . . ., Cm−1. Suppose the services (M0, F0), . . .,
(Mn−1, Fn−1) of C0, . . ., Cm−1 are used to compose the service (M, F) of C. (n
can be bigger than m since multiple services of a component may be involved.)

– E is constructed from E0, . . ., Em−1 by establishing mappings between incoming
message types in Mi and outgoing message types in Mj , 0 ≤ i, j < n, in order to
fully or partially satisfy the requires of Fi with the provides of Fj .

– M includes all message types in M0, . . ., Mn−1 that are needed for C to interact
with its environment. F is defined on M . The provides of F is derived from the
provides of one or several Fi’s. The requires of F is derived from all entries in the
requires of F0, . . ., Fn−1 that are not satisfied inside the composition.

F is verified on an abstraction of C0, . . ., Cm−1 constructed from F0, . . ., Fn−1. The
abstraction includes all properties in the provides and requires of F0, . . ., Fn−1 whose
assumptions are satisfied by the composition or the assumptions in the provides and
requires of F . F is verified by checking the properties in the provides and requires of
F on the abstraction. (See [12] for details of abstraction construction.)

Architectural Style Library. An architectural style is a triple, (component templates,
service invocation graph, properties). The component templates are specified by com-
ponent service interfaces which can be complete or partially defined, i.e., with partially
defined messaging interfaces and (provides, requires) pairs. A component matches a
component template if its interfaces match the interfaces of the component template.
The service invocation graph is a directed graph that defines how the requires of the
component templates are satisfied by the provides of other component templates. In
a composite component following this style, the provides and requires of the sub-
components corresponding to the component templates must conform to the satisfaction

54 F. Xie and J.C. Browne

relationships. The properties are required to hold on a composite component following
this style. They are formally defined on the interfaces of the component templates if the
interfaces provide sufficient semantic information; otherwise, they are informally spec-
ified. A component is reusable if it matches a component template and its functionality
is common across multiple composite components following this style.

The UIS architectural style library includes (but not limited to) the following styles:

– Three-tier architecture. (1) Component templates: The application logic, the busi-
ness logic, and the database engine. The database engine is reusable. (2) Service
invocation graph: This style features layered service invocation. The user logic in-
vokes the business logic which, in turn, invokes the database engine. (3) Properties:
The three components interact properly to ensure that their composition correctly
processes each transaction received. The properties are informally specified due to
insufficient semantic information about the transactions.

– Agent-dispatcher. (1) Component templates: A pool of agents and a dispatcher man-
aging the agents. The dispatcher is a reusable component while the agents are dif-
ferent for different transactions, however, the agents conform to a partial interface
whose provides is partially determined by the requires of the dispatcher. (2) Ser-
vice invocation graph: The environment of a composite component following this
style invokes the services of the dispatcher and agents. The dispatcher invokes the
service of the agents. An agent provides services to the environment of the compos-
ite component and the dispatcher via the same messaging interface. (3) Properties:
Upon a request from the environment if a free agent exists it must be dispatched.
A dispatched agent is eventually freed. The properties are formally defined on the
interfaces of the dispatcher template and the agent template.

Systems in the UIS family are transaction-oriented and circular service invocation
is not permitted. The service invocation graphs are directed and acyclic. Dependencies
between a service requester and its provider are captured in their requires and provides.
Such dependencies do not cause circular reasoning due to the sequencing relationships
among the messages of two interacting sub-components in executing a transaction.

Component Library. Basic reusable components of the UIS family, such as the data-
base engine, are derived from its architectural styles. The desired properties of the data-
base engine assert that it correctly handles each query. The properties have assumptions
that databases are locked before and unlocked after they are queried and if multiple
databases are accessed, they must be locked in a proper order to avoid deadlocks. The
properties and their assumptions are parameterized by how many and what databases
are accessed simultaneously. An instantiation of the properties for accessing a single
database is shown in Figure 1. Space limitation prohibits showing the WSCI repre-
sentations of the properties and assumptions. Instead, in Figure 1, the properties and
assumptions are concisely specified in an ω-automaton based property specification
language [9]. Each assertion is instantiated from a property template and is correspond-
ing to an ω-automaton. Properties in this language are intuitive, for instance, the first
assertion in Figure 1 asserts that after receiving a lock message, the database engine
will eventually reply with a locked message. These specifications are translated from
the WSCI specifications when the properties are verified using the ObjectCheck toolkit.

Verification of Component-Based Software Application Families 55

Provides:
P(pro):
After(Lock) Eventually(Locked); Never(Locked) UnlessAfter(Lock);
After(Locked) Never(Locked) UnlessAfter(Lock);
After(Unlock) Eventually(Unlocked); Never(Unlocked) UnlessAfter(Unlock);
After(Unlocked) Never(Unlocked) UnlessAfter(Unlock);

A(pro):
After(Lock) Never(Lock) UnlessAfter(Unlocked);
After(Locked) Eventually(Unlock); Never(Unlock) UnlessAfter(Locked);
After(Unlock) Never(Unlock)UnlessAfter(Locked);

Fig. 1. Properties of Database Engine

(For simplicity, only properties that are related to locking/unlocking are shown and the
transaction identifiers are omitted from the messages.) The properties in P(pro) define
the desired behaviors of the database engine. The assumptions in A(pro) specify the
required behaviors of other components requesting the service. The database engine
requires no other services. Besides the database engine, the agent-dispatcher style sug-
gests the dispatcher service. These components are the initial components in the library.

2.2 Relationships of AFA to Verification

AFA extends the concept of software architectures to enable operational support for
bottom-up component verification, top-down system verification, and their integration.
The inclusion of a computation model and a component model in an AFA relates soft-
ware architectures to component implementations and compositions, thus making the
concept of software architectures operational for verification. The computation model
guides the selection of model checkers. The component model provides compositional
structures necessary for compositional reasoning. The architectural styles suggest com-
ponent properties and how these properties are decomposed if needed.

3 Integrating Bottom-Up and Top-Down Verification

In this section, we present how the AFA concept facilitates bottom-up component verifi-
cation, top-down system verification, and their integration. Our approach utilizes archi-
tecture styles captured by the AFA to guide property formulation and decomposition,
and reduces complexities of verifying member systems based on compositional reason-
ing and on reuse of verified properties of reusable components available in the AFA.

3.1 Bottom-Up Component Verification in Family Initialization

As an application family is initialized, its basic reusable components are derived from
its architectural styles. The properties of the components are formulated according to
these styles. The assumptions of the component properties are also formulated accord-
ing to how the components interact under the architectural styles. Derivation of reusable
components and formulation of properties and assumptions requires manual efforts.
Verification of the component properties follows the bottom-up approach developed in
our previous work [12]. The properties of a primitive component, which is developed

56 F. Xie and J.C. Browne

from scratch, are directly model-checked. The properties of a composite component,
instead of being checked on the component directly, are checked on its abstractions that
are constructed from the verified properties of its sub-components. If the properties of
the composite component cannot be verified on the abstractions, the abstractions are
refined by introducing and verifying additional properties of the sub-components.

3.2 Top-Down System Verification in Member System Development

Development of a member system of an application family is top-down. The system is
partitioned into its components which are reused from the component library, directly
implemented, or partitioned recursively. A system is a composite component. There-
fore, we discuss how a composite component is verified as it is developed top-down.

For a composite component following an architectural style, we integrate verification
into its top-down development and utilize the architecture style to guide the decompo-
sition of its properties into the properties of its sub-components.1 We assume that the
component interface has been designed. The properties of the composite component
are formulated in the (provides, requires) format based on the interface and according
to the architectural style. For architecture styles with informally specified properties, for
instance, the 3-tier architecture, the property formulation requires manual efforts. The
composite component is developed and verified using a top-down process as follows:

1. Composite component layout. The component is partitioned into its sub-components
according to the architectural style. The sub-component interfaces are defined and
the sub-component interactions are specified. This step requires manual efforts of
the designers. The representation for sub-component interactions, for instance,
High-level Message Sequence Charts (HMSC) [13] for the UIS family, are selected
in conformance to the computation model and the component model of the family.

2. Architectural style driven property decomposition. The properties of the compos-
ite component are decomposed into the properties of its sub-components. The de-
composition is guided by the architectural style and based on the sub-component
interactions. How architectural styles guide property decomposition is discussed in
detail in Section 4. The validity of the decomposition is established by ensuring that
the properties of the sub-components imply the properties of the composite compo-
nent and there exists no circular reasoning among sub-component properties. For a
well-studied application domain, this step can be largely automated.

3. Reuse or recursive development of sub-components. The architectural style sug-
gests whether a sub-component is reusable. There may be a set of components in the
library which are reusable in a given sub-component role even though they are dif-
ferent in their interfaces or properties. A component is selected from the set based
on their interfaces and properties. If no qualified component is found for a sub-
component or it is suggested to be application-specific by the architectural style, it
needs to be developed. If the sub-component is primitive, it is implemented, and its
properties are verified through direct model checking of its implementation. If the

1 A composite component may or may not follow an architecture style. A composite component
following no style can be verified through compositional reasoning based on user-guided de-
composition of properties of the composite component into properties of its sub-components.

Verification of Component-Based Software Application Families 57

sub-component is composite, it is developed and verified top-down. If it follows an
architectural style, the top-down process discussed herein is applied recursively.

4. Composition. After all the sub-components are selected from the library or recur-
sively developed, they are composed to construct the composite component by us-
ing the composition rule in Section 2.1 following the architectural style.

In each step of this process, failure to achieve the goal of the step will lead to revisions
and re-executions of the previous steps or abortion of this process.

3.3 Bottom-Up Component Verification in Component Library Expansion

In the top-down development and verification of a member system, new components
may be introduced. Some of these components are application-specific while the others
are reusable. The properties of the reusable components have been established when
the system is verified. These newly introduced reusable components may be further
composed among themselves or with the existing reusable components to build larger
reusable components bottom-up. Such a composite component is identified in the de-
velopment of the member system and its sub-components together achieve a reusable
functionality. The interface of the composite component is derived from the interfaces
of its sub-components. The properties of the composite component are verified on its
abstractions constructed from the properties of its sub-components. The sub-component
properties are available from either verification of the member system or the component
library. All these reusable components are then included into the component library.

3.4 Interactions of Bottom-Up and Top-Down Verification

Bottom-up and top-down verification are synergistic in their integration into the devel-
opment lifecycle of an application family. Bottom-up component verification in family
initialization provides the basis for verification reuse. Top-down member system devel-
opment and verification expands the component library by introducing new reusable
components and by enabling bottom-up construction and verification of larger reusable
components. Component library expansion raises the level of component reuse and re-
duces the number of decompositions needed in top-down verification of a new system.

4 Architectural Style Driven Decomposition

The central step of top-down system verification is the architectural style driven prop-
erty decomposition. In this step, the properties of a composite component (a system
is a composite component) are decomposed into the properties of its sub-components
based on the architectural style guiding the composition and on the sub-component in-
teractions. For a well-studied domain, the decomposition procedure can be largely auto-
mated. How the decomposition procedure operates also depends on the representations
of architectural styles, component interfaces, component interactions, and properties.

We present a decomposition procedure for the UIS family. (With slight modifica-
tions, this procedure can be generalized to many other transaction processing centric
families.) Given a composite component C and a service (M, F) that C is expected

58 F. Xie and J.C. Browne

to provide, the procedure decomposes the properties and assumptions in the provides
and requires of F into the properties and assumptions of the sub-components of C fol-
lowing the architectural style of C. Properties and assumptions of a sub-component are
grouped to define the services provided and required by the sub-component.

Under the UIS architectural styles, component interactions are transaction-oriented.
To provide the service S, the sub-components C0, . . ., Cn−1 of C interact following a
transaction: a sequence of message communications through the messaging interfaces
of C0, . . ., Cn−1. Component interfaces are service-oriented: a component provides a
service and to provide the service, it requires services from other components.

We assume as C is designed, the interactions among C0, . . ., Cn−1 are specified
as a High-level Message Sequence Chart (HMSC) [13]. A HMSC allows branching
upon different messages, repetitions of sub-sequences, and skips of sub-sequences. We
also extend HMSCs by grouping the messages interactions among the sub-components
according to service invocations. The message interactions for invoking a service are
explicitly annotated. The external component that requires the service of C (denoted by
P-ENV) and the set of the external components that provide the services required by C
(denoted by R-ENV) are also represented in the HMSC. The message communications
with P-ENV and R-ENV are derived from the provides and requires of F . Specifying
HMSCs adds little extra costs to the design process of message-passing based systems.

The decomposition procedure for compositions whose service invocation graphs
have tree structures is given as pseudo code in Figure 2. (Space limitation prohibits

procedure Decompose (style, comp-set, hmsc, current, parent)
begin
if (current == P-ENV) then
{children} = Find-Children (style, comp-set, hmsc, current);
foreach child ∈ {children} do
Decompose (style, comp-set, hmsc, child, current);

endfor;
elseif (current �∈ R-ENV) then
provides = Derive-Provides-from-HMSC (hmsc, current, parent));
{children} = Find-Children (style, comp-set, hmsc, current);
foreach child ∈ {children} do
req = Derive-Requires-from-HMSC (hmsc, current, child);
requires = requires ∪ {req};
Decompose (style, comp-set, hmsc, child, current);

endfor;
Attach-Service-to-Component (current, (provides, requires));

endif;
end;

Fig. 2. The decomposition procedure

presenting the more complex decomposition procedure for compositions with directed
acyclic service invocation graphs, which follows the same basic idea.) It inputs the ar-
chitectural style guiding the composition, the set of sub-components represented by
their messaging interfaces, the HMSC, the current sub-component whose service is
to be derived, and the parent sub-component that requires the service of the current
sub-component. The parent-children relationships among the sub-components are de-
termined by the service invocation relationships among the sub-components defined in

Verification of Component-Based Software Application Families 59

the architectural style and the service annotations in HMSC. A component may appear
in the children set of another components multiple times if it provides multiple services
to its parent. The procedure is invoked with P-ENV as the current and NULL as the
parent since P-ENV is the root of the transaction, and invokes itself recursively.

1. If current is P-ENV, the procedure locates all sub-components providing services
to P-ENV and invokes itself recursively on each of these sub-components.

2. If current is not P-ENV and also not in R-ENV, the procedure first derives the pro-
vides of current from its interactions with its parent (the sub-component to which
it provides the service). The procedure then finds all children of current (the sub-
components that provide services to current), derives each entry of the requires of
current from the interaction with each child, and invokes itself recursive on each
child. The service, (provides, requires), is then associated with current.

3. If current is in R-ENV, then nothing need be done.

Deriving the provides and requires of current from the HMSC is essentially pro-
jecting the HMSC onto current and the sub-components that interact with current. To
derive the provides, the interactions of current with its parent are projected. To derive
an entry of the requires, the interactions of current with one of its children are pro-
jected. The properties and assumptions in the provides and the requires are specified
as WSCI processes. A WSCI process is a simple state machine that captures the be-
haviors of a sub-component as specified in the HMSC: receiving incoming messages
and responding with outgoing messages. The derivation algorithm is straightforward.
Receiving and sending messages in the HMSC is captured as atomic messaging activi-
ties in the WSCI process. Sequencing relationships among messages in the HMSC are
captured by sequence activities in the WSCI process. Branchings according to different
messages received in the HMSC are captured by choice activities in the WSCI process.

Space limitation precludes presentation of a detailed correctness proof of the decom-
position procedure. The intuition is as follows. The procedure always terminates since
it goes through each component following an order determined by the architectural
style. The procedure ensures that the composition of the derived services of the sub-
components implies the service of the composite component. The requires of P-ENV is
satisfied by the provides of its children sub-components whose requires are satisfied by
their children recursively. The requires of the sub-components that interact with R-ENV
are satisfied by the provides of R-ENV. Therefore, the composite provides the requires
of P-ENV if R-ENV provides the requires of the composite. In addition, the acyclic ser-
vice invocations among the sub-components and the sequencing relationships among
the messages of two interacting sub-components prevent circular reasoning.

5 Integrated Bottom-Up and Top-Down Verification of UIS

5.1 Bottom-Up Component Verification in Family Initialization

As the UIS family is initialized, its architectural styles suggest two reusable compo-
nents: the database engine and the dispatcher. Verification of database engines is out of
the scope of this paper. We assume that the properties of the database engine hold. The

60 F. Xie and J.C. Browne

Provides:
P(pro): After(Login) Eventually(TryLater + Dispatch); Never(TryLater + Dispatch) UnlessAfter(Login);

After(TryLater + Dispatch) Never(TryLater + Dispatch) UnlessAfter(Login);
A(pro): (Empty)
Requires:
A(req): After(Dispatch) Eventually(Free); Never(Free) UnlessAfter(Dispatch);

After(Free) Never(Free) UnlessAfter(Dispatch);
P(req): After(Dispatch) Never(Dispatch) UnlessAfter(Free);

Fig. 3. Properties of Dispatcher

dispatcher is a primitive component. Its properties and their assumptions are shown
in Figure 3. The properties in P(pro) and P(req) are checked on the dispatcher un-
der a non-deterministic environment whose interface complements the interface of the
dispatcher and which is constrained by the assumptions in A(pro) and A(req). The prop-
erties were verified in 0.9 seconds and 0.16 megabytes which are order-of-magnitude
lower than the time and memory usages for verifying a system utilizing the dispatcher
service (see Section 6). No composite reusable components are introduced in family
initialization.

5.2 Top-Down System Verification in Member System Development

We illustrate top-down system verification through verifying the registration system
from the UIS family. The registration system is structured following the 3-tier architec-
ture. It consists of three components: the application logic, the business logic, and the
database engine. The interactions among these components and the environment of the
registration system are captured by a HMSC. Upon a login request, the system execu-
tion may take three branches: (1) log the user in; (2) reject the user; (3) ask the user to
try later. For illustration purposes, the first two branches are shown in Figure 4 as two

Unlock(A)

AddClassReq/
DelClassReq AddClass/

DelClass

Logout

LoggedOut

Unlocked(C)

Unlocked(S)

Unlock(S)

Locked(S)

Lock(S)

Locked(C)

Lock(C)

AddClassReply/
DelClassReply

AddRes/
DelRes

App−Logic Database

Login

P−Env

AuthReq

Bus−Logic

LoggedIn

AuthReply

Lock(A)

Locked(A)

Unlocked(A)

Unlock(C)

Unlock(A)

App−Logic Database

Login

P−Env

AuthReq

Bus−Logic

AuthReply

Lock(A)

Locked(A)

Unlocked(A)

Rejected

Fig. 4. A flattened view of the HMSC for component interactions under the 3-tier architecture

Verification of Component-Based Software Application Families 61

MSCs with the following extensions: The forward dashed arrow denotes the skip of a
sub-sequence and the backward dashed arrow denotes the repetition of a sub-sequence.
For instance, after a user logs in, she may or may not add or delete classes, and she may
add or delete multiple classes. In Figure 4, service annotations that group messages into
service invocations are not shown for simplicity. The message interactions between the
application logic and the business logic are grouped into two service invocations: one
for authentication and the other for adding or deleting classes. Similarly, the message
interactions between the business logic and the database engine are grouped into two
service invocations: one for access to the authentication database and the other for si-
multaneous access to the class database and the student database.

The 3-tier architecture requires verifying that the registration system follows the des-
ignated message sequences for a registration transaction when interacting with a well-
behaved user. Essentially, we verify that the system interacts with such a user following
the message sequences between P-ENV and the application logic in Figure 4.

The properties of the registration system can be automatically derived from the
HMSC as follows. A WSCI process is created from the HMSC and captures the mes-
sages from P-ENV to the system, the response messages of the system, and the se-
quencing relationships among the messages observed by the system. Essentially, the
WSCI process is obtained from the HMSC by projecting the interactions between the
system and P-ENV onto the system. Space limitation prohibits showing the WSCI
process. Instead, its formal translation is shown in Figure 5. The temporal predicates
in P(pro) encode the WSCI process, i.e., capturing the temporal relationships among
the messages, for instance, the first three predicates in P(pro) capture the temporal
relationships between Login and LoggedIn, Rejected, and TryLater. A(pro) is derived
from the HMSC by projecting the interactions of P-ENV and the system onto P-ENV.
For instance, the first predicate in A(pro) specifies an assumption on P-ENV that it
never sends an AddClassReq, DelClassReq, or Logout message unless after it receives a
LoggedIn message. The properties in P(pro) and the assumptions in A(pro) are inter-
dependent and together they capture the message interactions between P-ENV and
the system. Since the registration system requires no other services, its requires is
empty.

Provides:
P(pro):
After(Login) Eventually(LoggedIn+Rejected+TryLater);
Never(LoggedIn+Rejected+TryLater) UnlessAfter(Login);
After (LoggedIn+Rejected+TryLater) Never (LoggedIn+Rejected+TryLater) UnlessAfter(Login);
After(AddClassReq) Eventually(AddClassReply); Never(AddClassReply) UnlessAfter(AddClassReq);
After(AddClassReply) Never(AddClassReply) UnlessAfter(AddClassReq);
After(DelClassReq) Eventually(DelClassReply); Never(DelClassReply) UnlessAfter(DelClassReq);
After(DelClassReply) Never(DelClassReply) UnlessAfter(DelClassReq);
After(Logout) Eventually(LoggedOut); Never(LoggedOut) UnlessAfter(Logout);
After(LoggedOut) Never(LoggedOut) UnlessAfter(Logout);

A(pro):
Never(AddClassReq+DelClassReq+Logout) UnlessAfter(LoggedIn);
After(AddClassReq) Never (AddClassReq+DelClassReq+Logout) UnlessAfter(AddClassReply);
After(DelClassReq) Never (AddClassReq+DelClassReq+Logout) UnlessAfter(DelClassReply);
After(LoggedIn) Eventually (Logout); After(Logout) Never(AddClassReq+DelClassReq+Logout);

Fig. 5. Properties of Registration System

62 F. Xie and J.C. Browne

The properties of the registration system are decomposed into the properties of its
sub-components by the decomposition procedure in Section 4. The procedure starts
with P-ENV and invokes itself recursively on the three sub-components of the sys-
tem following the service invocation graph of the 3-tier architecture. The first com-
ponent whose properties are derived is the application logic. The derived properties
and assumptions of the application logic are shown in Figure 6. The application logic

Provides: (same as the provides in Figure 5.)
Requires 1:
A(req):
After(AuthReq) Eventually(AuthReply); Never(AuthReply) UnlessAfter(AuthReq);
After(AuthReply) Never(AuthReply) UnlessAfter(AuthReq);

P(req): After(AuthReq) Never(AuthReq) UnlessAfter(AuthReply);
Requires 2:
A(req):
After(AddClass) Eventually(AddRes); Never(AddRes) UnlessAfter(AddClass);
After(AddRes) Never(AddRes) UnlessAfter(AddClass);
After(DelClass) Eventually(DelRes); Never(DelRes) UnlessAfter(DelClass);
After(DelRes) Never(DelRes) UnlessAfter(DelClass);

P(req):
After(AddClass) Never(AddClass+DelClass) UnlessAfter(AddRes);
After(DelClass) Never(AddClass+DelClass) UnlessAfter(DelRes);

Fig. 6. Properties of Application Logic

provides the registration service to P-ENV. The procedure derives the provides inter-
face of the application logic from its message interactions with P-ENV. The provides
interface is derived by projecting the message interactions between P-ENV and the ap-
plication logic and it is essentially the same as the provides interface of the registra-
tion system. The procedure determines from the HMSC that to provide the registration
service, the application logic requires two services from the business logic: one for au-
thentication and the other for adding or deleting classes. The corresponding requires
entry for each of the two services is derived from the message interactions with the
business logic. The A(req) is derived by projecting the message interactions onto the
business logic while P(req) is derived by projecting the message interactions onto the
application logic.

Following the service invocation relation between the application logic and the busi-
ness logic, the decomposition procedure is invoked to derive the properties of the busi-
ness logic. Based on the HMSC service annotations, the procedure is invoked for each
service that the business logic provides. The properties are shown in Figure 7, capturing
the services provided to the application logic and required from the database engine.

The database engine processes two types of service invocations: access to the au-
thentication database and simultaneous access to the student and class databases. The
properties and assumptions in the provides of the database engine are the same as the as-
sumptions and properties in the requires of the business logic. The database engine has
no requires. The properties and assumptions of the two service invocations differ since
they are instantiated differently. The database engine introduced in the family initializa-
tion is selected for reuse since it has a matching messaging interface and its properties
(or assumptions), instantiated by how many and what databases are accessed, imply (or
are implied by) the properties (or assumptions) derived in the top-down decomposition.

Verification of Component-Based Software Application Families 63

/* Service 1 */
Provides:
P(pro) (or A(pro), respectively) is the same as A(req) (or P(req)) of Requires 1 of Application Logic.
Requires:
A(req) (or P(req), respectively) is same as P(pro) (or A(pro)) of Provides of the DB engine in Figure 1.
/* Service 2 */
Provides:
P(pro) (or A(pro)) is same as A(req) (or P(req)) of Requires 2 of Application Logic.)
Require:
A(req):
After(Lock(C)) Eventually(Locked(C)); Never(Locked(C)) UnlessAfter(Lock(C));
After(Locked(C)) Never(Locked(C)) UnlessAfter(Lock(C));
After(Lock(S)) Eventually(Locked(S)); Never(Locked(S)) UnlessAfter(Lock(S));
After(Locked(S)) Never(Locked(S)) UnlessAfter(Lock(S));
After(Unlock(S)) Eventually(Unlocked(S)); Never(Unlocked(S)) UnlessAfter(Unlock(S));
After(Unlocked(S)) Never(Unlocked(S)) UnlessAfter(Unlock(S));
After(Unlock(C)) Eventually(Unlocked(C)); Never(Unlocked(C)) UnlessAfter(Unlock(C));
After(Unlocked(C) Never(Unlocked(C)) UnlessAfter(Unlock(C));

P(req):
After(Lock(C)) Never(Lock(C)) UnlessAfter(Unlocked(C));
After(Locked(C)) Eventually(Lock(S)); Never(Lock(S)) UnlessAfter(Locked(C));
After(Lock(S)) Never(Lock(S)) UnlessAfter(Locked(C));
After(Locked(S)) Eventually(Unlock(S)); Never(Unlock(S)) UnlessAfter(Locked(S));
After(Unlock(S)) Never(Unlock(S)) UnlessAfter(Locked(S));
After(Unlocked(S)) Eventually(Unlock(C)); Never(Unlock(C)) UnlessAfter(Unlocked(S));
After(Unlock(C)) Never(Unlock(C)) UnlessAfter(Unlocked(S))

Fig. 7. Properties of Business Logic

The structure of the application logic follows the agent-dispatcher style. For each
user request, the dispatcher dispatches an agent to serve the user if there exists a free
agent; otherwise, it asks the user to try later. The properties of the application logic are
decomposed into the properties of the dispatcher and the agents. Based on the derived
properties for the dispatcher, the dispatcher that has been introduced and verified when
the UIS family is initialized is selected for reuse. The provides and requires of the
agents are largely the same as those of the application logic except the properties and
assumptions that are related to agent dispatching, which are shown in Figure 8.

Provides:
P(pro):
After(Dispatch) Eventually(LoggedIn+Rejected); Never(LoggedIn+Rejected) UnlessAfter(Dispatch);
After(LoggedIn+Rejected) Never(LoggedIn+Rejected) UnlessAfter(Dispatch);
After(Dispatch) Eventually(Free); Never(Free) UnlessAfter(Dispatch);
After(Free) Never(Free) UnlessAfter(Dispatch);

A(pro): After(Dispatch) Never(Dispatch) UnlessAfter(Free);

Fig. 8. Properties and Assumptions of Agents Related to Dispatching

The business logic is partitioned into the authentication processor and the registration
processor. Each implements a service of the business logic shown in Figure 7.

5.3 Bottom-Up Component Verification in Component Library Expansion

As the registration system is developed, the authentication processor is introduced in
the business logic layer and it interacts with the database engine to provide the user

64 F. Xie and J.C. Browne

authentication. The two components is composed bottom-up to build an authentication
service that processes authentication requests and replies to these requests. The desired
properties of the authentication service is shown in Figure 9. The properties, instead

Provides:
A(req):
After(AuthReq) Eventually(AuthReply); Never(AuthReply) UnlessAfter(AuthReq);
After(AuthReply) Never(AuthReply) UnlessAfter(AuthReq);

P(req): After(AuthReq) Never(AuthReq) UnlessAfter(AuthReply);

Fig. 9. Properties of Authentication Service

of being checked directly on the authentication service, is checked on its abstraction.
The abstraction is constructed from the verified properties of the authentication proces-
sor and the database engine. The properties of the authentication processor have been
established in the top-down system verification while the properties of the database en-
gine have been established in the family initialization. The introduction of the authenti-
cation service suggests the introduction of a new architectural style: 3-tier architecture
with authentication, as shown in Figure 10. In development of new systems such as the

Database EngineBusiness Logic

Authentication Service

Application Logic

Fig. 10. 3-tier architecture with authentication

library system and the ticket sale system, the new style can be selected to structure these
systems and, therefore, facilitate reuse of the authentication service and its properties.

6 Effectiveness and Cost of Integrated Verification

Our integrated approach has major potential for improving reliability of a component-
based application family. It enables effective verification of member systems of the
family by greatly reducing verification complexities of the systems and facilitating ver-
ification reuse. Direct verification of the properties of the registration system with a
configuration of 3 concurrent users and 2 agents takes 7034.27 seconds and 502.31
megabytes and it does not scale to large configurations. In verifying the same system
with our approach, only the properties of the agent, the authentication processor, and
the registration processor must be verified and the properties of other components are
reused. The time and memory usages for verifying these components are shown in Ta-
ble 1. It can be observed that our approach achieves order-of-magnitude reduction in
verification time and memory usages. Our approach scales to member systems of large
configuration via systematic partition of a system into components of manageable size.

Verification of Component-Based Software Application Families 65

Table 1. Verification time and message usage

Agent Authentication Processor Registration Processor
Time (Seconds) 0.75 0.1 4.09

Memory (MBytes) 0.29 0.31 0.31

The cost of our approach lies in initializing, maintaining, and evolving the AFA:
identifying and capturing architectural styles, bootstrapping the component library, and
expanding the library. The cost, however, is amortized across the member systems of
an application family. Architectural style driven property decomposition procedures are
often reused across multiple application families, for instance, the decomposition pro-
cedure in Section 4 can be reused across many transaction processing centric families.
We are currently conducting further case studies on families of web service based sys-
tems and embedded systems to evaluate whether the cost of applying our approach can
be justified by the benefits obtained in system verification and verification use.

7 Related Work

The concept of AFAs extends the concept of software architectures [6, 7] and targets
verification of families of component-based systems. Space limitation prohibits full
coverage of related work on software product families. The Product Line Initiative [14]
at SEI focuses on design and implementation issues for software product families. Our
work differentiates by focusing systematic verification of software application families.

Pattern reuse is often conducted at two levels: design level and architectural level.
Design patterns [15] are concerned with reuse of programming structures at the algo-
rithmic or data structure level. Architectural styles (a.k.a., architectural patterns) [6, 7]
are concerned with reusable structural patterns of software systems with respect to their
components. Architectural styles have been applied in system design, documentation,
validation, etc. Our research utilizes architectural styles of a component-based applica-
tion family to facilitate component property formulation and decomposition.

A major challenge to assume-guarantee compositional reasoning is formulation of
component properties and their environment assumptions. There are approaches [4, 5]
to automatic generation of assumptions for safety properties of components. Our ap-
proach addresses this challenge via architectural style guided property formulation in
bottom-up component verification and via architectural style driven property decompo-
sition in top-down system verification. It handles both safety and liveness properties and
complements automatic assumption generation for safety properties of components.

8 Conclusions and Future Work

We have presented a novel approach to formal verification of software application fam-
ilies. This approach synergistically integrates bottom-up component verification and
top-down system verification into the development lifecycle of software application

66 F. Xie and J.C. Browne

families. Its application to the UIS family has shown that it enables verification of non-
trivial systems and reuse of major verification efforts. Currently, we are conducting
further case studies to evaluate whether the benefits obtained by our approach in system
verification and verification reuse can justify the cost of our approach.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (1999)
2. Chandy, K.M., Misra, J.: Proofs of networks of processes. IEEE TSE 7(4) (1981)
3. Jones, C.B.: Development methods for computer programs including a notion of interference.

PhD thesis, Oxford University (1981)
4. Gannakopoulou, D., Pasareanu, C., Barringer, H.: Assumption generation for software com-

ponent verification. In: ASE. (2002)
5. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional reasoning by learning assump-

tions. In: CAV. (2005)
6. Perry, D., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT SEN

17(2) (1992)
7. Shaw, M., Garlan, D.: Software Architecture: Perspective on An Emerging Discipline. Pren-

tice Hall (1996)
8. IBM: Business Process Execution Language for Web Services (BPEL4WS), Ver. 1.1. (2003)
9. Xie, F., Levin, V., Kurshan, R.P., Browne, J.C.: Translating software designs for model

checking. In: FASE. (2004)
10. W3C: Web Services Description Language (WSDL), Ver. 1.1. (2001)
11. W3C: Web Service Choreography Interface (WSCI), Ver. 1.0. (2002)
12. Xie, F., Browne, J.C.: Verified systems by composition from verified components. In:

ESEC/SIGSOFT FSE. (2003)
13. ITU: Rec. Z.120, Message Sequence Chart. (1999)
14. Clements, P.C., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-

Wesley (2002)
15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Object-

Oriented Software. Addison-Wesley (1994)

	Introduction
	Application Family Architectures (AFAs)
	AFA for University Information System
	Relationships of AFA to Verification

	Integrating Bottom-Up and Top-Down Verification
	Bottom-Up Component Verification in Family Initialization
	Top-Down System Verification in Member System Development
	Bottom-Up Component Verification in Component Library Expansion
	Interactions of Bottom-Up and Top-Down Verification

	Architectural Style Driven Decomposition
	Integrated Bottom-Up and Top-Down Verification of UIS
	Bottom-Up Component Verification in Family Initialization
	Top-Down System Verification in Member System Development
	Bottom-Up Component Verification in Component Library Expansion

	Effectiveness and Cost of Integrated Verification
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

