
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 643–654
Component-based hardware/software co-verification
for building trustworthy embedded systems q

Fei Xie a,*, Guowu Yang a, Xiaoyu Song b

a Department of Computer Science, Portland State University, Portland, OR 97207, USA
b Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97207, USA

Available online 27 September 2006
Abstract

We present a novel component-based approach to hardware/software co-verification of embedded systems using model checking.
Embedded systems are pervasive and often mission-critical, therefore, they must be highly trustworthy. Trustworthy embedded systems
require extensive verification. The close interactions between hardware and software of embedded systems demand co-verification. Due
to their diverse applications and often strict physical constraints, embedded systems are increasingly component-based and include only
the necessary components for their missions. In our approach, a component model for embedded systems which unifies the concepts of
hardware IPs (i.e., hardware components) and software components is defined. Hardware and software components are verified as they
are developed bottom-up. Whole systems are co-verified as they are developed top-down. Interactions of bottom-up and top-down
verification are exploited to reduce verification complexity by facilitating compositional reasoning and verification reuse. Case studies
on a suite of networked sensors have shown that our approach facilitates major verification reuse and leads to order-of-magnitude reduc-
tion on verification complexity.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Component-based embedded systems; Component model; Components; Model checking; Compositional reasoning; Hardware/software
co-verification; Verification reuse
1. Introduction

Embedded systems are pervasive in the infrastructure of
our society for diverse tasks such as studying environmen-
tal phenomena, instrumenting and managing large-scale
systems, and aiding security. An embedded system often
consists of a generic processor, mission-specific hardware
modules, and software modules that execute on the proces-
sor and interact with hardware modules.

Embedded systems are usually strictly constrained in
computation, memory, bandwidth, and power. To lower
production and deployment costs, embedded systems
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.08.015

q This research was supported by Semiconductor Research Corporation,
Contract RID 1356.001.

* Corresponding author. Tel.: +1 503 725 2403; fax: +1 503 725 3211.
E-mail addresses: xie@cs.pdx.edu (F. Xie), guowu@cs.pdx.edu

(G. Yang), song@ece.pdx.edu (X. Song).
are often equipped with slow processor, small memory,
rudimentary radio, and limited battery. These constraints
require that for a given mission, only the necessary hard-
ware and software modules be loaded into an embedded
system. This makes component-based development an
appealing and appropriate approach to embedded system
development. For instance, the well-known TinyOS (Hill
et al., 2000) run-time system for networked sensors, an
emerging type of deeply embedded systems, is component-
based.

Embedded systems are often mission-critical, deployed
in large quantity, and difficult to access after deployment.
Therefore, they must be highly trustworthy. Embedded
systems often support concurrency intensive operations
such as simultaneous monitoring, computation, and com-
munication. However, locks and monitors commonly used
to safeguard concurrent operations are often not used
in embedded systems due to computational costs. Thus,

mailto:xie@cs.pdx.edu
mailto:guowu@cs.pdx.edu
mailto:song@ece.pdx.edu


644 F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654
to build trustworthy embedded systems, they must be
extensively verified.

Due to strict design constraints of embedded systems,
to achieve better performance, hardware and software
modules must closely interact and the trade-off between
hardware and software must be exploited. This demands
hardware/software co-design and, therefore, hardware/
software co-verification of embedded systems.

Model checking (Clarke and Emerson, 1981; Quielle and
Sifakis, 1982) is a powerful formal verification method
which has great potentials in hardware/software co-verifica-
tion of embedded systems. It provides exhaustive state
space coverage for the systems being verified. A stumbling
block to scalable application of model checking to co-veri-
fication is the intrinsic complexity of model checking. The
number of possible states and execution paths in a real-
world system can be extremely large, which makes naive
application of model checking intractable and requires state
space reduction. Co-verification of an embedded system
involves its hardware and software, which makes state space
reduction more challenging.

Compositional reasoning (Abadi and Lamport, 1995) is a
powerful state space reduction algorithm. Using composi-
tional reasoning, model checking of a property on a system
is accomplished by decomposing the system into compo-
nents, checking component properties locally on the compo-
nents, and deriving the system property from the component
properties. Compositional structures of embedded systems
may greatly simplify application of compositional reasoning
to hardware/software co-verification.

We propose a novel component-based approach to hard-
ware/software co-verification for building trustworthy
embedded systems. Embedded systems are structured fol-
lowing a component model that unifies the concepts of
hardware IPs (Jacome and Peixoto, 2001) (i.e., hardware
components) and software components (Heineman and
Councill, 2001; Szyperski, 2002). In this model, verified
properties of hardware and software components are
associated with the components. Selection of components
for reuse is based on their functionalities and also their
verified properties. A special type of components, bridge

components, are introduced, which inter-connect hardware
and software components and bridge their semantics gaps.

Our approach to co-verification is a synergistic integra-
tion of bottom-up component verification and top-down
system verification. Hardware and software components
are verified as they are developed bottom-up. Properties
of a primitive component are directly model-checked while
properties of a composite component are checked on its
abstractions constructed from verified properties of its
sub-components. A system is verified top-down as it is
developed through recursive partitions into its compo-
nents. The partitions reuse components as possible. Veri-
fied properties of the reused components are used in
constructing the abstractions for verifying properties of
the system or higher-level components. Our approach is
based on translation-based co-verification (Xie et al.,
2005) where software and hardware modules of a system
are translated into a formal model-checkable language,
integrated, and model-checked. Translation-based co-veri-
fication provides a common formal semantics basis for
conducting compositional reasoning across hardware/soft-
ware boundaries and the basic mechanisms for verifying
primitive components and abstractions of systems or com-
posite components.

The contributions of our approach include the compo-
nent model for embedded systems that unifies hardware
IPs and software components, unified component property
specification, and seamless integration of co-verification
into component-based development of embedded systems.
Our approach has great potentials in building trustworthy
embedded systems by enabling effective co-verification.
Case studies have shown that it achieves major verification
reuse and order-of-magnitude reduction on verification
complexity.

The rest of this paper is organized as follows. In Section
2, we provide the background of our work. We define the
component model for embedded systems, which unifies
hardware IPs and software components, in Section 3. In
Section 4, we present our component-based approach to
co-verification and illustrate it with case studies on a suite
of networked sensors. We discuss related work in Section 5
and conclude in Section 6.

2. Background

In this section, we first briefly introduce the component-
based development of hardware and software. We then dis-
cuss our previous work on translation-based co-verification
and on bottom-up verification of software components.

2.1. Component-based development

In both hardware and software industries, there is a
common trend of developing systems via assembly of
components (Jacome and Peixoto, 2001; Heineman and
Councill, 2001; Szyperski, 2002). (In hardware industry,
component-based development is known as Intellectual
Property (IP) based development.) A main objective of
component-based development is to reuse design and
development efforts. To achieve this objective, it is required
that components capture reusable concepts in an applica-
tion domain and have standard interfaces that export their
functionalities. As verification becomes increasingly impor-
tant in system development, it is also desired to reuse
verification efforts.

2.2. Translation-based co-verification

In Xie et al. (2005), we have developed a translation-
based approach to co-verification of embedded systems
using model checking. Hardware and software modules
of an embedded system are automatically translated into
the input formal language of a state-of-the-art model



F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654 645
checker. The semantics of hardware and software specifica-
tion languages are simulated by the semantics of the target
formal language. We interface the formal models of hard-
ware and software modules by inserting a bridge module

that bridges the gap between the hardware and software
semantics. The bridge module interacts with the hardware
and software modules following the hardware and software
semantics, respectively. It propagates events across hard-
ware/software boundaries, for instance, generating soft-
ware messages or invoking procedures upon hardware
interrupts and producing hardware signals upon value
changes in certain software variables. The bridge module
is specified in a bridge specification language and translated
into the formal language.

We reduce co-verification complexity by (1) leveraging
state space reduction algorithms of the target model check-
ers, (2) applying reduction algorithms in translation and
preserving validity of the reductions when interfacing for-
mal models of hardware and software modules, and (3)
compositional reasoning across the bridge module.

This translation-based approach has been implemented
for co-verification of software designs in Executable
UML (xUML) (Mellor and Balcer, 2002) and hardware
designs in Verilog (Thomas and Moorby, 1991). The imple-
mentation integrates two translation-based model check-
ers: FormalCheck (Kurshan, 1998) and ObjectCheck (Xie
et al., 2002), both of which are based on the COSPAN
model checker (Hardin et al., 1996). FormalCheck is a
commercial tool for hardware verification. ObjectCheck
was developed in our previous work for verification of
executable software designs in xUML. xUML has an
asynchronous interleaving message-passing semantics. In
xUML, a system consists of object instances which interact
via asynchronous message-passing. A system execution is
an interleaving of state transitions of these object instances,
i.e., at any moment only one object instance progresses.

2.2.1. Bridge specification

For translation-based co-verification of an embedded
system, a specification of the bridge module is required,
which specifies how to interface the software and hardware
modules: (1) what software procedure calls or messages are
triggered by hardware interrupts; (2) what hardware signals
are generated when a procedure call returns or a message is
received; (3) what variables in software modules are
mapped to hardware signals; (4) what are the scheduling
policies for software modules, for instance, interrupt prior-
ities and preemption policies. Translation of the bridge
specification depends on the software and hardware mod-
ules since it refers to semantic entities in both the software
and hardware modules. (See Fig. 9 for an example bridge
specification.)

2.2.2. Unified property specification

In co-verification, a unified property specification lan-
guage for both hardware and software is needed. We have
developed such a language for co-verification of software
modules in xUML and hardware modules in Verilog. This
language is presented in terms of a set of property tem-
plates that have intuitive meanings and also have rigorous
mappings to x-automata templates written in S/R (Hardin
et al., 1996), the input formal language of the COSPAN
(Hardin et al., 1996) model checker. (In S/R, both systems
and properties are formulated as x-automata.) An example
of such a template is

AfterðeÞ EventuallyðdÞ

where the enabling condition e and the discharging condition
d are propositional logic predicates declared over semantic
entities in hardware or software modules. The semantic
meaning is that after each occurrence of e there eventually
follows an occurrence of d. Although similar to the LTL for-
mula G(e! XF(d)), our property does not require a second
d in case that the discharge condition d is accompanied by a
second e, whereas an initial e is not discharged by an accom-
panying d. This asymmetry meets many requirements of
software specification. (On account of this asymmetry, our
property cannot be expressed in LTL.)

Our property specification language is linear time, with
the expressiveness of x-automata (Kurshan, 1994). The
property templates define parameterized automata. New
templates are formulated as needed by defining their
mappings into S/R. A property in this language consists
of (1) declarations of propositional predicates over seman-
tic entities in software and hardware modules, and (2)
declarations of temporal assertions. A temporal assertion
is declared by instantiating a property template: each argu-
ment of the template is realized by a propositional expres-
sion composed from the declared propositional predicates.
(See Section 3 for example properties specified in this
language.)

2.3. Bottom-up verification of software components

In Xie and Browne (2003), we have developed a bottom-
up approach to verification of software components and
systems composed from these components. For a primitive
component (a component that is built from scratch), its
properties are directly model-checked. The properties of a
composite component (a system is also a composite
component), instead of being directly verified on the
component, are verified on its abstractions. The abstrac-
tion for checking a property on a composite component
is constructed from verified properties of the sub-compo-
nents. A sub-component property is included the abstrac-
tion if (1) it is related to the property to be checked on
the composite component by cone-of-influence analysis
(Kurshan, 1994), (2) its assumptions are enabled, i.e.,
implied by the properties of other sub-components and
the environment assumptions of the composite component,
and (3) it is not involved in circular reasoning among the
sub-component properties.

How to verify a property on a primitive component or
on the abstraction of a composite component depends on



Done_Ack Done

646 F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654
the executable representation and the property specifica-
tion for the components. For instance, for a primitive com-
ponent specified in xUML and properties specified in the
unified property specification language, the component
and its properties can be translated into S/R with Object-
Check and the properties can then be verified on the com-
ponent with COSPAN. For a composite component, if the
properties of the component and its sub-components are all
specified in the unified property specification language, a
property of the composite component can be verified on
its abstraction by translating both the property and the
abstraction into S/R.

3. Unified component model

To define a unified component model for embedded sys-
tems, we start by examining an abstract but representative
architecture of embedded systems as shown in Fig. 1.
Under this architecture, the software components of an
embedded system execute on generic processors while the
hardware components are implemented as Application
Specific Integrated Circuits (ASICs). The software compo-
nents and hardware components interact through an
embedded OS that also schedules the execution of the soft-
ware components.

From this architecture, we can derive a unified compo-
nent model shown in Fig. 2, which unifies hardware IPs
and software components. An embedded system is com-
posed of a set of components. There are three types of
primitive components: software components, hardware com-
ponents, and bridge components. Bridge components bridge
the semantics gap between hardware and software compo-
nents by propagating events across hardware/software
boundaries. Software schedulers are not explicitly repre-
sented in this model. Instead, the scheduling constraints
are integrated into the component model as assumptions
of the components. The bridge components and the sched-
uling constraints together abstract the embedded OS.
Three types of composite components may also be defined:
software components, hardware components, and hybrid

components. Sub-components of a composite software (or
hardware, respectively) component are all software (or
Embedded OS
(Hardware Components)

ASICs

(Software Components)

Generic Processors

Fig. 1. Abstract Architecture.

Component

Software

Component
Software

Component

Component
Software

Component
Bridge

Component
Bridge

Hardware
Component

Hardware

Fig. 2. Unified Component Model.
hardware) components. A hybrid component contains
both hardware and software components, therefore, also
bridge components. This model essentially unifies hard-
ware and software component models.
3.1. Components

A component C is a triple (E, I,P) where E is the execut-
able representation of C, I is the functional interface of C,
and P is a set of temporal properties that are defined on
I and have been verified on E. Hardware components,
software components, and bridge components differ in
the representations of E and I, but share the same represen-
tation of P. Each entry of P is a pair (p,A(p)) where p is a
temporal property and A(p) is a set of assumptions (i.e.,
assumed properties) on the environment of C for enabling
the verification of p on C. The environment of C is the set
of components interacting with C in a composition.
3.1.1. Software components

For a software component, E can be specified in the C
programming language or other software languages. To
support high-level design of software components, we
adopt the model-driven development (Mellor and Balcer,
2002) and specify software components in a design-level
executable language, xUML. I of a software component
is a pair, (M,V), where M is a set of input and output mes-
sages and V is a set of variables in E that are exported. The
component communicates with its environment via asyn-
chronous message-passing. The variables in V are either
variables to be mapped to hardware signals or variables
to be utilized in scheduling the software component. This
interface semantics is determined by the asynchronous
interleaving message-passing semantics of xUML.

A software sensor component (denoted by S-SEN),
which controls a hardware sensor upon clock interrupts,
is shown in Fig. 3. The dashed box denotes the component
boundary. The incoming arrows denote input message
types and the outgoing arrows denote output message
types. S-SEN exports two variables: ADC.Pending and
Object

Clock

SO_Task

ADC

Photo STQ

Sensor–Output

Component Boundary

A_IntrC_Intr C_Ret A_Ret S_Schd S_Ret Message Communication

OP_Ack

Output

Fig. 3. Software sensor component.



Fig. 4. Properties of software sensor.

R_Ret

Int_to_RFM

Generic_Comm

GC_Task RFM

Data_Ack

Data

Sent Sent_Ack

N_Ret

NTQ

N_Schd R_Intr

Fig. 5. Software network component.

Fig. 6. Properties of software network.

F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654 647
STQ.Empty. A set of properties that have been verified on
S-SEN are shown in Fig. 4. The properties assert that S-

SEN repeatedly outputs and correctly handles the output
handshakes. The assumptions assert that the environment
of S-SEN correctly responses to the output handshakes,
correctly generates clock and sensor interrupts, and cor-
rectly schedules the software tasks in S-SEN. The property
specification is intuitive, for instance, the first statement
claims that S-SEN outputs repeatedly if it receives clock
interrupts repeatedly and the second statement claims that
after an output, S-SEN will not output unless after an
acknowledgment is received.

A software network component (denoted by S-NET) is
shown in Fig. 5. It exports two variables: NTQ.Empty

and RFM.Pending. The verified properties of S-NET are
shown in Fig. 6. These properties assert that S-NET repeat-
edly sets and clears the RFM.Pending variable if it receives
data messages repeatedly and it correctly handles the input
handshakes. The assumptions assert that the environment
of S-NET correctly conducts the input handshakes,
responses to the value changes of RFM.pending with inter-
rupts, and schedules the software tasks in S-NET.
3.1.2. Hardware components

For a hardware component, E can be specified in Veri-
log or other hardware specification languages. In our
study, we assume that E is specified in Verilog. I consists
of a set of signals that the hardware component imports
from or exports to its environment. A hardware compo-
nent communicates with its environment through the
exported or imported signals in I. This interface semantics



Fig. 8. Properties of hardware components.

Fig. 9. A bridge component example.

d_rdy

88

SENSOR NETWORK

reset

system

CLOCK

intr_n

clock

stop

dout

din

start

intr_c

start_s

intr_s

Fig. 7. Basic hardware components.

648 F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654
is determined by the synchronous clock-driven semantics of
Verilog.

The interfaces of three hardware components, clock,
sensor, and network (denoted by H-CLK, H-SEN, and
H-NET, respectively) are shown in Fig. 7. The incoming
arrows denote imported signals and the outgoing arrows
denote exported signals. A set of verified properties of
the three components are shown in Fig. 8. The properties
of H-CLK assert that H-CLK generates interrupts repeat-
edly. The properties of H-SEN assert that after H-SEN is
started, it will generate an interrupt eventually and it will
not generate the interrupt unless after it is started. The
properties of H-NET assert that (1) after H-NET receives
data, it will eventually generate a transmission complete
interrupt and it will not generate the interrupt unless after
it is started and (2) if H-NET receives data repeatedly, it
transmits repeatedly.

3.1.3. Bridge components

Bridge components inter-connect hardware and soft-
ware components. They extend the concept of bridge mod-
ule (introduced in Xie et al. (2005) and briefly discussed in
Section 2.2.1) by allowing multiple bridge components in a
system. This enables more flexible composition of hard-
ware and software components and creation of composite
components include both hardware and software sub-
components. The interface of a bridge component is a pair
(IH, IS). IH is a synchronous shared-variable interface
for interacting with hardware components and IS is an
asynchronous message-passing interface for interacting
with software components. The interface of the bridge
component is determined by the hardware and software
components that it connects. E of a bridge component is
specified in the bridge specification language discussed in
Section 2.2.1.
We illustrate the concept of bridge component by defin-
ing a bridge component that inter-connects S-SEN, H-

CLK, and H-SEN. The bridge component is shown in
Fig. 9. The interface of the bridge component is derived
from the interfaces of S-SEN, H-CLK, and H-SEN by
including the same messages and signals but reversing their
input/output directions. The executable specification of the
bridge component defines: (1) how hardware signals are
mapped to software messages, for instance, the hardware
clock interrupt, intr_c, is mapped to the C_Intr message
of the software clock; (2) how software variables are
mapped to hardware signals, for instance, the On variable
of the ADC object is mapped to the start signal of the hard-
ware sensor; (3) the interrupt priorities, for instance, both
interrupts are of the same priority; (4) messages that initi-
ate software tasks, for instance, the Schedule message of
the STQ object, and the conditions under which the tasks
are ready to be scheduled.

The bridge components not only abstract the hardware/
software interfaces, but also abstract part of the embedded
OS by providing necessary information about what are the
software tasks that need to be scheduled to execute and
their enabling conditions. Software schedulers are not
explicitly specified in this component model. Instead,
scheduling policies are specified as assumptions of the soft-
ware components. The embedded OS determines the sched-
uling polices.

3.1.4. Hybrid components

Hybrid components package hardware and software
components into reusable units since hardware and soft-
ware components are often closely related and reused
together, e.g., a device and its driver. A hybrid component
may have only a software interface if its hardware can be
completely encapsulated or it may have a hybrid hard-
ware/software interface similar to the interface of a bridge
component. (Examples of hybrid components are given in
Section 4.)



Bridge

H–CLK H–SEN H–NET

S–SEN S–NET

Bridge

Fig. 10. A basic sensor system.

Table 1
Time and memory usages for verifying the properties of primitive
components

Components Time (s) Memory (megabyte)

S-SEN 18.66 8.49
S-NET 18.06 9.11
H-CLK 0.21 3.38
H-SEN 0.22 3.39
H-NET 0.22 3.39

F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654 649
3.2. Composition

A composite component, C = (E, I,P), is composed
from a set of simpler components, C0 = (E0, I0,P0),. . .,
Cn�1 = (En�1, In�1,Pn�1), as follows. E is constructed from
E0,. . .,En�1 by connecting E0, . . ., En�1 through I0, . . ., In�1.
I may be a hardware interface, a software interface, or a
hybrid hardware/software interface depending what types
of components C0, . . ., Cn�1 are. Essentially, I includes
the semantic entities from I0, . . ., In�1 that are needed for
C to interact with its environment or for specification of
scheduling constraints of C. We discuss how to establish
properties of a composite component from properties of
its sub-components in Section 4.

4. Component-based co-verification

In this section, we present our approach to component-
based co-verification of embedded systems and illustrates
this approach with its application to a suite of networked
sensors. Our approach seamlessly integrates verification
into the component-based development lifecycle of embed-
ded systems and is a synergistic integration of bottom-up
component verification and top-down system verification.

The component-based development lifecycle for an
embedded system family consists of three major activities,
basic component development, system development, and new

component development. Basic component development
takes place when the family is created. As the family evolves,
system development and new component development are
repeated as needed and often interleave.

4.1. Bottom-up verification of basic components

When an embedded system family is created, its primi-
tive hardware and software components are identified by
domain analysis and developed from scratch. These primi-
tive components can be further composed bottom-up to
develop basic composite components of the family.

For verification of basic components, we extend the bot-
tom-up approach developed in Xie and Browne (2003).
Properties of the components are formulated according
to domain analysis. A primitive hardware (or software,
respectively) component is verified using FormalCheck
(or ObjectCheck) through translation of the component
and its properties into S/R. Properties of a composite com-
ponent are verified by checking the properties on abstrac-
tions of the composite component. The verification is
again through translation into S/R.

4.1.1. Verification of primitive components

A domain analysis on the family of networked sensors
based on UC Berkeley motes (Hill et al., 2000) identifies a
set of primitive components of the family. The set includes
three hardware components: H-CLK, H-SEN, and H-NET,
and two software components: S-SEN and S-NET, which
have been defined in Section 3. We have verified H-CLK,
H-SEN, and H-NET with FormalCheck and we have also
verified S-SEN and S-NET with ObjectCheck. The time
and memory usages for these verification runs are shown
in Table 1. The properties of the components are verified
under their corresponding environment assumptions.
4.1.2. Verification of a basic sensor system

After the primitive components of the sensor system fam-
ily are developed, the natural next step is to develop a basic
sensor system from these components so that these compo-
nents can be evaluated in a system context. Note that a sys-
tem is also a composite component. Fig. 10 shows how the
basic components are composed bottom-up into a basic sys-
tem. H-CLK generates periodical interrupts to S-SEN.
Upon a clock interrupt, S-SEN starts H-SEN. When
H-SEN finishes sensing, it interrupts S-SEN to pass sensor
readings to S-SEN. S-SEN sends sensor readings to
S-NET. If H-NET is free, S-NET delivers a data packet to
H-NET. After the packet is transmitted, H-NET interrupts
S-NET to report the transmission. The hardware and soft-
ware components are connected via two bridge components.

Formulating the properties of the bridge components
and their assumptions is straightforward. Properties (or
assumptions, respectively) of the software and hardware
components that are formulated on the interactions with
the bridge components are essentially assumptions (or
properties) of the bridge components. For instance, the
second group of properties (or assumptions, respectively)
of S-SEN in Fig. 4, which are formulated on the clock
interrupts generated by the bridge component between
S-SEN and hardware and their responses from S-SEN,
are assumptions (or properties) of the bridge component.
The properties of the two bridge components are verified
using 3.76 s and 6.03 megabyte and 0.66 s and 4.07 mega-
byte, respectively.

A system-level property P1 to be verified on the basic
sensor system is shown in Fig. 11. P1 asserts that the basic
sensor system transmits on the network repeatedly.



Fig. 11. Repeated transmission property.

Fig. 13. No consecutive 1’s property.

Fig. 12. Comp. properties that imply P1.

650 F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654
Repeated setting and clearing of a flag in H_NET indicates
repeated transmission. To verify P1, we construct an
abstraction of the basic sensor system as follows:

1. A system in the S/R language is constructed to abstract
the sensor system. For each hardware or software com-
ponent, a S/R process is introduced. The S/R process
simulates the interface of the component. Within the
constraint of the interface, the S/R process behaves
non-deterministically. Essentially, we translate the inter-
face of the component into S/R. All these S/R processes
are composed together through the simulated interfaces
as how the components are composed in Fig. 10.

2. Starting from P1, a cone-of-influence analysis is
conducted on verified properties of the hardware and
software components based on the component interfaces
and the component composition graph. All component
properties related to P1 by the analysis are included in
the abstraction. They are used to constrain the S/R
system: A property of a hardware or software compo-
nent is translated to a S/R process and composed with
the S/R process abstracting the component.

The constrained S/R system is the abstraction. Note that
to include a related component property into the abstrac-
tion, two conditions must be validated: (1) the assumptions
of the property are implied by the properties of other com-
ponents, which can be validated via a simple model check-
ing run; (2) the property does not involve in circular
reasoning among component properties. Circular reason-
ing can be avoided using the following methods (but not
limited to them): (1) avoid using an assumption that creates
a dependency cycle; (2) use temporal induction proposed
by McMillan (1999); or (3) use the compositional reasoning
rule proposed by Amla et al. (2001).

The abstraction constructed includes the properties of
S-SEN in Fig. 4, the properties of S-NET in Fig. 6, the
properties of the hardware components in Fig. 8, and the
properties of the bridge components. The assumptions of
S-SEN and S-NET are satisfied by the properties of the
hardware components through the conversion of the bridge
components. S-SEN and S-NET satisfy the handshake-
related properties of each other. The properties of the
hardware, software, and bridge components shown in
Fig. 12 imply P1. (Note that S-SEN.Output is mapped to
S-NET.Data.) The implication relationship is established
by model checking P1 on the abstraction, which takes
0.1 s and 3.40 megabyte.

The abstraction is conservative. If the property holds on
the abstraction, it holds on the system; otherwise, the
abstraction can be refined by verifying additional compo-
nent properties and including them into the abstraction.
If the property does not hold on the system, error trace
analysis and abstraction refinement are likely to uncover
the cause. (See below for an example of bug detection.)
Verification of additional properties are rarely needed for
widely reused components.

This approach to abstraction construction extends the
approach in Xie and Browne (2003) and constructs
abstractions of embedded systems composed of hardware,
software, and bridge components. It is enabled by the uni-
fied component model and the unified component property
specification. An abstraction of a composite component
that is not a complete system is constructed the same way
except that an additional S/R process is added to create a
closed S/R system. This S/R process is constrained by the
environment assumptions of the composite component.

The second property P2 to be verified on the basic sys-
tem is shown in Fig. 13. P2 asserts that there are no consec-
utive 1’s in the transmission sequence numbers. We
construct an abstraction for verifying P2. However, no
component properties are included since no component
properties related to P2 have been verified.

This abstraction need to be refined. The component
properties needed for verifying P2 are introduced based
on domain knowledge. An abstraction is constructed from
the component properties assuming they hold. If P2 is
successfully verified on the abstraction, the component
properties are then verified. The following properties are
introduced for S-SEN: there are no consecutive 1’s in the
sequence numbers of the outputs of S-SEN and S-SEN

will not output a new sensor reading unless after it
receives transmission acknowledgment for the previous
reading. (For conciseness, the formal property specifica-
tions are not shown.) The verification of the new property
of S-SEN detects a bug in S-SEN: S-SEN may output a
new sensor reading to S-NET although S-NET has not
acknowledged the transmission of the last sensor reading.



F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654 651
The bug is fixed. The property is successfully verified on the
corrected S-SEN. For conciseness, the properties of other
components are not shown. After all new component prop-
erties are successfully verified, we can conclude that P2

holds on the basic system.
4.2. Top-down system verification

New systems in the embedded system family are devel-
oped top-down. Given its functional requirements, a system
is partitioned into hardware and software components. The
partition is guided by domain knowledge and considers the
available components. The interface of each component is
defined and its properties are specified. If there is a compo-
nent available that matches the interface and the properties,
the component can be reused. If there is no matching com-
ponent, the component is either developed from scratch as a
primitive component or further partitioned.

Verification is integrated in the top-down system
development. As a composite component is decomposed
into its sub-components, the sub-component properties
are formulated. The properties of the composite compo-
nent are verified on its abstractions constructed from the
sub-component properties assuming the sub-component
properties hold. If the properties of the composite
components are successfully verified on the abstraction,
the top-down system development proceeds; otherwise,
the decomposition or the sub-component properties are
revised. For a reusable sub-component, if the required
properties has been verified on the sub-component, nothing
need to be done; otherwise, the properties are verified on
the component top-down. For a new primitive component,
its properties are verified by directly model checking its exe-
cutable representation. For a new composite component,
its properties are verified as it is further partitioned top-
down. If the properties of a component cannot be verified,
the component design or the previous decompositions are
revised.
4.2.1. Verification of multi-sensor system
We illustrate top-down system verification by verifying a

multi-sensor system. The functional requirement of this
system is that it should properly control multiple hardware
sensors, for instance, a temperature sensor and a humidity
sensor. The sensor system can be partitioned into hardware
and software components as shown in Fig. 14. It can be
observed that the multi-sensor system reuses the existing
components with a new bridge component that connects
S–NET

H–CLK H–SEN 1 H–SEN 2 H–NET

S–SEN

BridgeBridge

Fig. 14. Multi-sensor system.
S-SEN, H-CLK, and the two hardware sensors. Upon a
clock interrupt, S-SEN starts both hardware sensors. Upon
completion of sensing, each sensor interrupts and passes
data to S-SEN.

We verify P1 on the multi-sensor system. (For simplicity,
hereafter, we only verify P1 on sensor systems.) All compo-
nents of the system, except the new bridge component, are
reusable and their properties have been verified. Properties
of the bridge component (not shown for conciseness) are
formulated the same way as those of the bridge compo-
nents in the basic system. They are verified using 10.24 s
and 6.05 megabyte. The abstraction of the multi-sensor
system for verifying P1 is constructed from the component
properties. P1 was successfully verified on the abstraction
using 0.1 s and 3.40 megabyte.
4.2.2. Verification of encryption-enabled sensor system

Development of new sensor systems may introduce new
components. For instance, to develop a security enhanced
sensor network, it is desired that some sensors in a sensor
network be able to encrypt the sensor readings before
transmitting the readings. Based on the requirement of
such a sensor system, the system can be partitioned into
its components as shown in Fig. 15. A hardware encoder,
H-ENC and its software controller, S-ENC are introduced.
In system execution, S-SEN passes sensor readings to S-

ENC which invokes H-ENC to encrypt the sensor readings.
The interface of S-ENC is defined as follows: input mes-

sage types = {Raw, Encoded_Ack, E_intr}, output message
types = {Raw_Ack, Encoded, E_Ret}, and externally visible
variables = {ENC.Pending}. The properties of S-ENC for
verifying P1 on the whole system are shown in Fig. 16.
The properties assert that S-ENC outputs encoded data
repeatedly if it inputs raw data repeatedly and it correctly
handles the input and output handshakes. The assumptions
assert that the environment correctly handles the hand-
shakes with S-ENC and generates interrupts to S-ENC in
response to its encoding requests. The interface of H-ENC

and the properties of H-ENC for verifying P1 are also for-
mulated (not shown for conciseness). The properties of S-

ENC are verified on its executable using 0.24 s and
3.57 megabyte while verification of H-ENC takes 0.22 s
and 3.39 megabyte. A new bridge component connecting
S-ENC and H-ENC is introduced. Its properties are verified
using 0.18 s and 3.56 megabyte. The abstraction for
verifying P1 on the encryption-enabled sensor system is
constructed from the properties of its components. P1 is
Bridge

H–NETH–SENH–CLK

S–NETS–SEN S–ENC

H–ENC

Bridge Bridge

Fig. 15. Encryption-enabled sensor system.



Fig. 16. Properties of software encoder.

Bridge

S–NETS–ENC

H–ENC H–NET

Bridge

Fig. 17. Encryption-enabled network comp.

Fig. 18. Properties of E-NET.

Table 2
Time and memory usage comparison

Usages Basic Multi Encrypting

TB Time (s) 31272.8 – –
TB Mem. (megabyte) 1660.62 – –
CB Time (s) 41.89 10.34 0.77
CB Mem. (megabyte) 9.11 6.05 3.57

652 F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654
successfully verified on the abstraction using 0.13 s and
3.56 megabyte.

4.3. Integrated bottom-up and top-down verification of new

components

Verification of new components exploits the interaction
of bottom-up and top-down verification. New components
may be introduced and verified in top-down development
of new systems, such as S-ENC and H-ENC, and they
may also be introduced and verified through bottom-up
component development due to technology advances, such
as new sensing and communication modules.

The new components can be further composed with
existing components or among themselves to construct
larger composite components bottom-up. For instance,
S-ENC, S-NET, H-ENC, and H-NET can be composed
into an encryption-enabled network component, E-NET,
as shown in Fig. 17. S-NET and H-NET have been verified
bottom-up as basic components. S-ENC and H-ENC has
been verified in top-down verification of the encryption-
enabled sensor system. Based on their properties, E-NET

is verified bottom-up. The interface of E-NET includes
the following messages: Raw and Raw_Ack for interaction
with other components and E_Intr, N_Schd, R_Intr,
E_Ret, N_Ret, and R_Ret for specification of scheduling
constraints. The properties of E-NET are shown in
Fig. 18. The properties assert that E-NET repeatedly
transmits if there are inputs repeatedly and that it properly
handles input handshakes. The assumptions assert that the
environment correctly handles the handshakes with E-NET

and respects the scheduling constraints of E-NET. The
properties are successfully verified on an abstraction of
E-NET, constructed from the verified properties of
S-NET, S-ENC, H-NET, H-ENC, and the two bridge
components. The verification takes 0.13 s and 3.55 mega-
byte. E-NET and its properties can then be reused in
building new sensor systems.
4.4. Evaluation

We evaluate our approach to component-based co-
verification by comparing the time and memory usages
for verifying P1 on the three sensor systems: the basic sys-
tem, the multi-sensor system, and the encryption-enabled
sensor system using this approach with the time and mem-
ory usages for verifying the three systems using the basic
translation-based approach discussed in 2.2. The compari-
son is shown in Table 2. (CB denotes the component-based
approach, TB denotes the translation-based approach, and



F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654 653
‘‘-’’ denotes running out of memory.) All verification runs
are conducted on a SUN workstation with dual CPUs at
1 GHZ and 2 GB physical memory. The time (or memory,
respectively) usage of verifying a system using the compo-
nent-based approach is the sum (or max) of the time (or
memory) usages of verifying the new components and the
abstraction. It can be observed that the component-based
approach has order-of-magnitude reduction on the verifica-
tion time and memory usages for verifying the basic sensor
system. The reductions on the multi-sensor system and the
encryption-enabled sensor system are more significant since
the translation-based approach runs out of memory on
both systems while the component-based approach achieves
major reuse of verification efforts and only requires to verify
the new hardware, software, and bridge components and
the abstractions of the two systems. The component-based
approach requires the extra cost of abstraction construction
and the manual effort of formulating component properties
which, we believe, can be greatly reduced by domain knowl-
edge and are compensated by being able to verify systems
that cannot be verified, otherwise.

5. Related work

There has been much research on component-based
hardware and software development (Jacome and Peixoto,
2001; Heineman and Councill, 2001; Szyperski, 2002). A
fundamental problem in component-based development is
how to derive the properties of compositions from the
properties of components, including correctness properties,
performance properties, real-time properties, etc. A well-
known project targeting this problem in component-based
software development is the PACC initiative from CMU/
SEI: Predictable Assembly from Certifiable Components
(CMU/SEI; Wallnau, 2003). The vision of PACC is that
software components have certified properties (for example,
performance) and the behavior of systems assembled from
components is predictable. Our project shares the same
vision as PACC while extending this vision by (1) defining
a component model for embedded systems that unifies
hardware and software components and (2) formally estab-
lishing the properties of an embedded system from the
properties of its hardware and software components.

There has also been research on component-based soft-
ware engineering for embedded systems such as (Crnkovic,
2005), focusing on embedded software. Due to the close
interactions between hardware and software of embedded
systems, there is a desire to reason about hardware and
software components under a unified component model.

Co-verification of embedded systems falls into two
major categories: co-simulation and formal co-verification.
Our approach belongs to the latter. Hardware/software co-
simulation of embedded systems is supported by industrial
tools such as Mentor Graphics and academic projects such
as Ptolemy (Berkeley). Co-simulation does not provide
exhaustive state space coverage and may be insufficient
for building highly trustworthy embedded systems.
Various formal languages have been proposed for speci-
fying embedded systems, e.g., Hybrid Automata (Alur
et al., 1996), LOTOS (van Eijk et al., 1989), Co-design
Finite State Machines (CFSMs) (Balarin et al., 1996), and
petri-net based languages such as PRES (Cortes et al.,
2000). Hybrid automata and CFSMs have been directly
model-checked. LOTOS and PRES have been verified via
translation to directly model-checkable languages. Our
approach differs by supporting specification of hardware
or software components in their native languages and
exploiting compositional structures of embedded systems
for co-verification.

Formal co-verification with model checking provides
exhaustive state space coverage while may suffer from state
space explosion. There has been much research (Abadi and
Lamport, 1995; Alur and Henzinger, 1999; McMillan,
1999; Amla et al., 2001) on compositional reasoning in
model checking of hardware systems or software systems.
Our approach builds on the previous work on composi-
tional reasoning. It differs from the previous work in that
it applies compositional reasoning across the hardware/
software boundary. This is enabled by the component
model for embedded systems which unifies hardware IPs
and software components and the unified component prop-
erty specification. This is also enabled by translation-based
co-verification which provides a common formal semantics
basis for compositional reasoning and provides the basic
mechanisms for verifying primitive hardware or software
components and abstractions of systems or composite
components.

There has also been research on formal verification of
IP-based hardware systems (Karlsson et al., 2004) and of
component-based software systems (Chaki et al., 2003;
Xie and Browne, 2003). Our work differs by co-verifying
hardware and software components of embedded systems.

6. Conclusions and future work

We have presented a component-based approach to
hardware/software co-verification of embedded systems
using model checking. This approach has great potential
in building highly trustworthy embedded systems. It
achieves major verification reuse and order-of-magnitude
reduction on co-verification complexity, therefore, enabling
co-verification of more complex embedded systems. Its
effectiveness roots in seamless integration of verification
into the component-based development lifecycle of embed-
ded systems and exploitation of their compositional struc-
tures. As the next step, we plan to further automate our
approach in system decomposition and property formula-
tion, by leveraging domain knowledge such as composition
patterns of embedded systems.

Acknowledgements

We gratefully acknowledge the contributions and help
from James C. Browne, Robert P. Kurshan, and Vladimir



654 F. Xie et al. / The Journal of Systems and Software 80 (2007) 643–654
Levin. We also thank Haera Chung and Ranajoy Nandi
for their help.

References

Abadi, Martin, Lamport, Leslie, 1995. Conjoining specifications.
TOPLAS 17 (3), 507–534.

Alur, Rajeev, Henzinger, Thomas, 1999. Reactive modules. FMSD 15 (1),
7–48.

Alur, Rajeev, Henzinger, Thomas A., Ho, P.H., 1996. Automatic symbolic
verification of embedded systems. IEEE TSE 22 (3), 181–201.

Amla, Nina, Emerson, Allen. E., Namjoshi, Kedar S., Trefler, Richard.
2001. Assume-guarantee based compositional reasoning for synchro-
nous timing diagrams. In: Proceedings of TACAS.

Balarin, F., Hsieh, H., Jurecska, A., Lavagno, L., Sangiovanni-Vincentelli,
A., 1996. Formal verification of embedded systems based on CFSM
networks. In: Proceedings of DAC.

Berkeley. Ptolemy project. Available from: <http://ptolemy.eecs.berkeley.
edu/index.htm>.

Chaki, Sagar, Clarke, Edmund, Groce, Alex, Jha, Somesh, Veith, Helmut.
2003. Modular verification of software components in C. In: ICSE.

Clarke, Edmund M, Allen Emerson, E., 1981. Design and synthesis of
synchronization skeletons using branching time temporal logic. In:
Proceedings of Logic of Programs Workshop.

CMU/SEI. The PACC (Predictable Assembly from Certifiable Compo-
nents) initiative. Available from: <http://www.sei.cmu.edu/pacc>.

Cortes, Luis Alejandro, Eles, Petru, Peng, Zebo, 2000. Formal coverifi-
cation of embedded systems using model checking. In: Proceedings of
EUROMICRO.

Crnkovic, Ivica, 2005. Component-based software engineering for embed-
ded systems. In: ICSE.

Hardin, Ronald H., Har’El, Zvi, Kurshan, Robert P., 1996. COSPAN. In:
Proceedings of CAV.

Heineman, George T., Councill, William T. (Eds.), 2001. Component-
Based Software Engineering: Putting the Pieces Together. Addison-
Wesley, Reading, MA.
Hill, Jason, Szewczyk, Robert, Woo, Alec, Hollar, Seth, Culler, David E.,
Pister, Kristofer S.J., 2000. System architecture directions for net-
worked sensors. In: Proceedings of ASPLOS.

Jacome, Margarida F., Peixoto, Helvio P., 2001. A survey of digital design
reuse. IEEE Design and Test of Computers 18 (3), 98–107.

Karlsson, Daniel, Dles, Petru, Peng, Zebo, 2004. A formal verification
methodology for IP-based designs. In: Proceedings of DSD.

Kurshan, Robert P., 1994. Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach. Princeton University
Press, Princeton, NJ.

Kurshan, Robert P., 1998. FormalCheck User Manual. Cadence.
McMillan, Ken L., 1999. A methodology for hardware verification using

compositional model checking. Cadence Design Systems Technical
reports.

Mellor, Stephen J., Balcer, Marc J., 2002. Executable UML: A Founda-
tion for Model Driven Architecture. Addison Wesley, Reading, MA.

Mentor Graphics. Seamless. Available from: <http://www.mentor.com>.
Quielle, Jean Pierre, Sifakis, Joseph, 1982. Specification and verification of

concurrent systems in CESAR. In: Proceedings of Symposium on
Programming.

Szyperski, Clemens, 2002. Component Software – Beyond Object-
Oriented Programming. Addison Wesley, Reading, MA.

Thomas, Donald E., Moorby, Philip R., 1991. The VERILOG Hardware
Description Language. Kluwer Academic Publishers, Dordrecht.

van Eijk, P.H.J., Vissers, C.A., Diaz, M. (Eds.), 1989. The Formal
Description Technique LOTOS. Elsevier, Amsterdam.

Wallnau, Kurt C., 2003. A technology for predictable assembly from
certifiable components. Technical report, CMU/SEI-2003-TR-009.

Xie, Fei, Browne, James C., 2003. Verified systems by composition from
verified components. In: Proceedings of ESEC/FSE.

Xie, Fei, Levin, Vladimir, Browne, James C., 2002. Objectcheck: a model
checking tool for executable object-oriented software system designs.
In: Proceedings of FASE.

Xie, Fei, Song, Xiaoyu, Chung, Haera, Nandi, Ranajoy, 2005. Transla-
tion-based co-verification. In: Proceedings of MEMOCODE.

http://ptolemy.eecs.berkeley.edu/index.htm
http://ptolemy.eecs.berkeley.edu/index.htm
http://www.sei.cmu.edu/pacc
http://www.mentor.com

	Component-based hardware/software co-verification for building trustworthy embedded systems
	Introduction
	Background
	Component-based development
	Translation-based co-verification
	Bridge specification
	Unified property specification

	Bottom-up verification of software components

	Unified component model
	Components
	Software components
	Hardware components
	Bridge components
	Hybrid components

	Composition

	Component-based co-verification
	Bottom-up verification of basic components
	Verification of primitive components
	Verification of a basic sensor system

	Top-down system verification
	Verification of multi-sensor system
	Verification of encryption-enabled sensor system

	Integrated bottom-up and top-down verification of new components
	Evaluation

	Related work
	Conclusions and future work
	Acknowledgements
	References


