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We present a novel component-based approach to hardware/software co-verification of embedded systems using
model checking. Embedded systems are pervasive and often mission-critical, therefore, they must be highly trust-
worthy. Trustworthy embedded systems require extensive verification. The close interactions between hardware
and software of embedded systems demand co-verification. Due to their diverse applications and often strict phys-
ical constraints, embedded systems are increasingly component-based and include only the necessary components
for their missions. In our approach, a component model for embedded systems which unifies the concepts of hard-
ware IPs (i.e., hardware components) and software components is defined. Hardware and software components
are verified as they are developed bottom-up. Whole systems are co-verified as they are developed top-down.
Interactions of bottom-up and top-down verification are exploited to reduce verification complexity by facilitating
compositional reasoning and verification reuse. Case studies on a suite of networked sensors have shown that our
approach facilitates major verification reuse and leads to order-of-magnitude reduction on verification complexity.

1. Introduction

Embedded systems are pervasive in the infras-
tructure of our society for diverse tasks such as
studying environmental phenomena, instrument-
ing and managing large-scale systems, and aiding
security. An embedded system often consists of a
generic processor, mission-specific hardware mod-
ules, and software modules that execute on the
processor and interact with hardware modules.

Embedded systems are usually strictly con-
strained in computation, memory, bandwidth,
and power. To lower production and deployment
costs, embedded systems are often equipped with
slow processor, small memory, rudimentary ra-
dio, and limited battery. These constraints re-
quire that for a given mission, only the necessary
hardware and software modules be loaded into
an embedded system. This makes component-
based development an appealing and appropriate
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approach to embedded system development. For
instance, the well-known TinyOS [14] run-time
system for networked sensors, an emerging type
of deeply embedded systems, is component-based.

Embedded systems are often mission-critical,
deployed in large quantity, and difficult to access
after deployment. Therefore, they must be highly
trustworthy. Embedded systems often support
concurrency intensive operations such as simul-
taneous monitoring, computation, and communi-
cation. However, locks and monitors commonly
used to safeguard concurrent operations are often
not used in embedded systems due to computa-
tional costs. Thus, to build trustworthy embed-
ded systems, they must be extensively verified.

Due to strict design constraints of embedded
systems, to achieve better performance, hardware
and software modules must closely interact and
the trade-off between hardware and software must
be exploited. This demands hardware/software
co-design and, therefore, hardware/software co-
verification of embedded systems.

Model checking [8,22] is a powerful formal ver-
ification method which has great potentials in
hardware/software co-verification of embedded
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systems. It provides exhaustive state space cov-
erage for the systems being verified. A stumbling
block to scalable application of model checking
to co-verification is the intrinsic complexity of
model checking. The number of possible states
and execution paths in a real-world system can be
extremely large, which makes naive application
of model checking intractable and requires state
space reduction. Co-verification of an embedded
system involves its hardware and software, which
makes state space reduction more challenging.

Compositional reasoning [1] is a powerful state
space reduction algorithm. Using compositional
reasoning, model checking of a property on a
system is accomplished by decomposing the sys-
tem into components, checking component prop-
erties locally on the components, and deriving the
system property from the component properties.
Compositional structures of embedded systems
may greatly simplify application of compositional
reasoning to hardware/software co-verification.

We propose a novel component-based approach
to hardware/software co-verification for building
trustworthy embedded systems. Embedded sys-
tems are structured following a component model
that unifies the concepts of hardware IPs [15]
(i.e., hardware components) and software compo-
nents [13,23]. In this model, verified properties of
hardware and software components are associated
with the components. Selection of components
for reuse is based on their functionalities and also
their verified properties. A special type of compo-
nents, bridge components, are introduced, which
inter-connect hardware and software components
and bridge their semantics gaps.

Our approach to co-verification is a synergis-
tic integration of bottom-up component verifica-
tion and top-down system verification. Hard-
ware and software components are verified as
they are developed bottom-up. Properties of a
primitive component are directly model-checked
while properties of a composite component are
checked on its abstractions constructed from ver-
ified properties of its sub-components. A system
is verified top-down as it is developed through re-
cursive partitions into its components. The par-
titions reuse components as possible. Verified
properties of the reused components are used in

constructing the abstractions for verifying prop-
erties of the system or higher-level components.
Our approach is based on translation-based co-
verification [29] where software and hardware
modules of a system are translated into a for-
mal model-checkable language, integrated, and
model-checked. Translation-based co-verification
provides a common formal semantics basis for
conducting compositional reasoning across hard-
ware/software boundaries and the basic mecha-
nisms for verifying primitive components and ab-
stractions of systems or composite components.

The contributions of our approach include the
component model for embedded systems that uni-
fies hardware IPs and software components, uni-
fied component property specification, and seam-
less integration of co-verification into component-
based development of embedded systems. Our
approach has great potentials in building trust-
worthy embedded systems by enabling effective
co-verification. Case studies have shown that
it achieves major verification reuse and order-of-
magnitude reduction on verification complexity.

The rest of this paper is organized as follows.
In Section 2, we provide the background of our
work. We define the component model for em-
bedded systems, which unifies hardware IPs and
software components, in Section 3. In Section 4,
we present our component-based approach to co-
verification and illustrate it with case studies on
a suite of networked sensors. We discuss related
work in Section 5 and conclude in Section 6.

2. Background

In this section, we first briefly introduce the
component-based development of hardware and
software. We then discuss our previous work on
translation-based co-verification and on bottom-
up verification of software components.

2.1. Component-based development
In both hardware and software industries, there

is a common trend of developing systems via as-
sembly of components [15,13,23]. (In hardware
industry, component-based development is known
as Intellectual Property (IP) based development.)
A main objective of component-based develop-
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ment is to reuse design and development efforts.
To achieve this objective, it is required that com-
ponents capture reusable concepts in an applica-
tion domain and have standard interfaces that ex-
port their functionalities. As verification becomes
increasingly important in system development, it
is also desired to reuse verification efforts.

2.2. Translation-based co-verification
In [29], we have developed a translation-based

approach to co-verification of embedded systems
using model checking. Hardware and software
modules of an embedded system are automati-
cally translated into the input formal language of
a state-of-the-art model checker. The semantics
of hardware and software specification languages
are simulated by the semantics of the target for-
mal language. We interface the formal models
of hardware and software modules by inserting
a bridge module that bridges the gap between
the hardware and software semantics. The bridge
module interacts with the hardware and software
modules following the hardware and software se-
mantics, respectively. It propagates events across
hardware/software boundaries, for instance, gen-
erating software messages or invoking procedures
upon hardware interrupts and producing hard-
ware signals upon value changes in certain soft-
ware variables. The bridge module is specified
in a bridge specification language and translated
into the formal language.

We reduce co-verification complexity by (1)
leveraging state space reduction algorithms of the
target model checkers, (2) applying reduction al-
gorithms in translation and preserving validity of
the reductions when interfacing formal models of
hardware and software modules, and (3) compo-
sitional reasoning across the bridge module.

This translation-based approach has been im-
plemented for co-verification of software designs
in Executable UML (xUML) [20] and hardware
designs in Verilog [24]. The implementation
integrates two translation-based model check-
ers: FormalCheck [18] and ObjectCheck [28],
both of which are based on the COSPAN model
checker [12]. FormalCheck is a commercial tool
for hardware verification. ObjectCheck was de-
veloped in our previous work for verification of

executable software designs in xUML. xUML has
an asynchronous interleaving message-passing se-
mantics. In xUML, a system consists of object in-
stances which interact via asynchronous message-
passing. A system execution is an interleaving of
state transitions of these object instances, i.e., at
any moment only one object instance progresses.

2.2.1. Bridge specification
For translation-based co-verification of an em-

bedded system, a specification of the bridge mod-
ule is required, which specifies how to interface
the software and hardware modules: (1) what
software procedure calls or messages are triggered
by hardware interrupts; (2) what hardware sig-
nals are generated when a procedure call returns
or a message is received; (3) what variables in
software modules are mapped to hardware sig-
nals; (4) what are the scheduling policies for
software modules, for instance, interrupt priori-
ties and preemption policies. Translation of the
bridge specification depends on the software and
hardware modules since it refers to semantic enti-
ties in both the software and hardware modules.
(See Figure 9 for an example bridge specification.)

2.2.2. Unified property specification
In co-verification, a unified property specifica-

tion language for both hardware and software
is needed. We have developed such a language
for co-verification of software modules in xUML
and hardware modules in Verilog. This lan-
guage is presented in terms of a set of property
templates that have intuitive meanings and also
have rigorous mappings to ω-automata templates
written in S/R [12], the input formal language
of the COSPAN [12] model checker. (In S/R,
both systems and properties are formulated as
ω-automata.) An example of such a template is

After(e) Eventually(d)

where the enabling condition e and the discharg-
ing condition d are propositional logic predicates
declared over semantic entities in hardware or
software modules. The semantic meaning is that
after each occurrence of e there eventually follows
an occurrence of d. Although similar to the LTL
formula G(e → XF (d)), our property does not
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require a second d in case that the discharge con-
dition d is accompanied by a second e, whereas
an initial e is not discharged by an accompanying
d. This asymmetry meets many requirements of
software specification. (On account of this asym-
metry, our property cannot be expressed in LTL.)

Our property specification language is linear
time, with the expressiveness of ω-automata [17].
The property templates define parameterized au-
tomata. New templates are formulated as needed
by defining their mappings into S/R. A property
in this language consists of (1) declarations of
propositional predicates over semantic entities in
software and hardware modules, and (2) declara-
tions of temporal assertions. A temporal asser-
tion is declared by instantiating a property tem-
plate: each argument of the template is realized
by a propositional expression composed from the
declared propositional predicates. (See Section 3
for example properties specified in this language.)

2.3. Bottom-up
verification of software components

In [27], we have developed a bottom-up ap-
proach to verification of software components and
systems composed from these components. For a
primitive component (a component that is built
from scratch), its properties are directly model-
checked. The properties of a composite compo-
nent (a system is also a composite component),
instead of being directly verified on the compo-
nent, are verified on its abstractions. The ab-
straction for checking a property on a composite
component is constructed from verified properties
of the sub-components. A sub-component prop-
erty is included the abstraction if (1) it is related
to the property to be checked on the composite
component by cone-of-influence analysis [17], (2)
its assumptions are enabled, i.e., implied by the
properties of other sub-components and the en-
vironment assumptions of the composite compo-
nent, and (3) it is not involved in circular reason-
ing among the sub-component properties.

How to verify a property on a primitive com-
ponent or on the abstraction of a composite com-
ponent depends on the executable representation
and the property specification for the compo-
nents. For instance, for a primitive component

specified in xUML and properties specified in the
unified property specification language, the com-
ponent and its properties can be translated into
S/R with ObjectCheck and the properties can
then be verified on the component with COSPAN.
For a composite component, if the properties of
the component and its sub-components are all
specified in the unified property specification lan-
guage, a property of the composite component
can be verified on its abstraction by translating
both the property and the abstraction into S/R.

3. Unified Component Model

To define a unified component model for em-
bedded systems, we start by examining an ab-
stract but representative architecture of embed-
ded systems as shown in Figure 1(a). Under

Embedded OS
(Hardware Components)

ASICs

(Software Components)

Generic Processors

Figure 1. Abstract Architecture

this architecture, the software components of
an embedded system execute on generic proces-
sors while the hardware components are imple-
mented as Application Specific Integrated Cir-
cuits (ASICs). The software components and
hardware components interact through an em-
bedded OS that also schedules the execution of
the software components.

From this architecture, we can derive a unified
component model shown in Figure 2, which uni-
fies hardware IPs and software components. An

Component

Software

Component
Software

Component

Component
Software

Component
Bridge

Component
Bridge

Hardware
Component

Hardware

Figure 2. Unified Component Model

embedded system is composed of a set of compo-
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nents. There are three types of primitive com-
ponents: software components, hardware compo-
nents, and bridge components. Bridge compo-
nents bridge the semantics gap between hardware
and software components by propagating events
across hardware/software boundaries. Software
schedulers are not explicitly represented in this
model. Instead, the scheduling constraints are
integrated into the component model as assump-
tions of the components. The bridge components
and the scheduling constraints together abstract
the embedded OS. Three types of composite com-
ponents may also be defined: software compo-
nents, hardware components, and hybrid com-
ponents. Sub-components of a composite soft-
ware (or hardware, respectively) component are
all software (or hardware) components. A hybrid
component contains both hardware and software
components, therefore, also bridge components.
This model essentially unifies hardware and soft-
ware component models.

3.1. Components
A component C is a triple (E, I, P ) where E is

the executable representation of C, I is the func-
tional interface of C, and P is a set of temporal
properties that are defined on I and have been
verified on E. Hardware components, software
components, and bridge components differ in the
representations of E and I, but share the same
representation of P . Each entry of P is a pair
(p, A(p)) where p is a temporal property and A(p)
is a set of assumptions (i.e., assumed properties)
on the environment of C for enabling the verifica-
tion of p on C. The environment of C is the set of
components interacting with C in a composition.

3.1.1. Software components
For a software component, E can be specified

in the C programming language or other software
languages. To support high-level design of soft-
ware components, we adopt the model-driven de-
velopment [20] and specify software components
in a design-level executable language, xUML. I of
a software component is a pair, (M, V ), where M
is a set of input and output messages and V is a
set of variables in E that are exported. The com-
ponent communicates with its environment via

asynchronous message-passing. The variables in
V are either variables to be mapped to hardware
signals or variables to be utilized in scheduling
the software component. This interface seman-
tics is determined by the asynchronous interleav-
ing message-passing semantics of xUML.

A software sensor component (denoted by S-
SEN), which controls a hardware sensor upon
clock interrupts, is shown in Figure 3. The dashed

Object 

Clock

SO_Task

ADC

Photo STQ

Sensor−Output

Component Boundary

A_IntrC_Intr C_Ret

Done_Ack Done

A_Ret S_Schd S_Ret Message Communication

OP_Ack

Output

Figure 3. Software sensor component

box denotes the component boundary. The in-
coming arrows denote input message types and
the outgoing arrows denote output message types.
S-SEN exports two variables: ADC.Pending and
STQ.Empty. A set of properties that have been
verified on S-SEN are shown in Figure 4. The
properties assert that S-SEN repeatedly outputs
and correctly handles the output handshakes.
The assumptions assert that the environment of
S-SEN correctly responses to the output hand-
shakes, correctly generates clock and sensor inter-
rupts, and correctly schedules the software tasks
in S-SEN. The property specification is intuitive,
for instance, the first statement claims that S-
SEN outputs repeatedly if it receives clock inter-
rupts repeatedly and the second statement claims
that after an output, S-SEN will not output un-
less after an acknowledgment is received.

A software network component (denoted by S-
NET) is shown in Figure 5. It exports two vari-
ables: NTQ.Empty and RFM.Pending. The ver-
ified properties of S-NET are shown in Figure 6.
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Properties:
IfRepeatedly (C Intr) Repeatedly (Output);
After (Output) Never (Output)

UnlessAfter (OP Ack);
Never (Output) UnlessAfter (S Schd);
After (Output) Never (Output) UnlessAfter(S Schd);
Never (S Ret) UnlessAfter (OP Ack);
After (S Ret) Never (S Ret) UnlessAfter(OP Ack);

After (C Intr) Eventually (C Ret);
Never (C Ret) UnlessAfter (C Intr);
After (C Ret) Never (C Ret) UnlessAfter (C Intr);

After (A Intr) Eventually (A Ret);
Never (A Ret) UnlessAfter (A Intr);
After (A Ret) Never (A Ret) UnlessAfter (A Intr);
After (ADC.Pending) Never (ADC.Pending)

UnlessAfter (A Ret);

After (S Schd) Eventually (S Ret);
Never (S Ret) UnlessAfter (S Schd);
After (S Ret) Never (S Ret) UnlessAfter (S Schd);
After (STQ.Empty=False)

Never (STQ.Empty=False) UnlessAfter(S Ret);

Assumptions:
After (Output) Eventually (OP Ack);
Never (OP Ack) UnlessAfter (Output);
After (OP Ack) Never (OP Ack)

UnlessAfter (Output);

After (C Intr) Never (C Intr+A Intr+S Schd)
UnlessAfter (C Ret);

After (ADC.Pending) Eventually (A Intr);
Never (A Intr) UnlessAfter (ADC.Pending);
After (A Intr) Never (C Intr+A Intr+S Schd)

UnlessAfter (A Ret);
After (A Ret) Never (A Intr)

UnlessAfter (ADC.Pending);

After (STQ.Empty=False) Eventually (S Schd);
Never (S Schd) UnlessAfter (STQ.Empty=False);
After (S Schd) Never (C Intr+A Intr+S Schd)

UnlessAfter (S Ret);
After (S Ret) Never (S Schd)

UnlessAfter (STQ.Empty=False);

Figure 4. Properties of software sensor

These properties assert that S-NET repeatedly
sets and clears the RFM.Pending variable if it re-
ceives data messages repeatedly and it correctly
handles the input handshakes. The assumptions
assert that the environment of S-NET correctly
conducts the input handshakes, responses to the
value changes of RFM.pending with interrupts,
and schedules the software tasks in S-NET.

3.1.2. Hardware components
For a hardware component, E can be spec-

ified in Verilog or other hardware specification
languages. In our study, we assume that E is

R_Ret

Int_to_RFM

Generic_Comm

GC_Task RFM

Data_Ack

Data

Sent Sent_Ack

N_Ret

NTQ

N_Schd R_Intr

Figure 5. Software network component

Properties:
IfRepeatedly (Data) Repeatedly (RFM.Pending);
IfRepeatedly (Data)

Repeatedly (RFM.Pending=False);

After (Data) Eventually(Data Ack);
Never (Data Ack) UnlessAfter (Data);
After (Data Ack) Never (Data Ack)

UnlessAfter (Data);

After (N Schd) Eventually (N Ret);
Never (N Ret) UnlessAfter (N Schd);
After (N Ret) Never (N Ret) UnlessAfter (N Schd);
After (NTQ.Empty=False)

Never(NTQ.Empty=False) UnlessAfter(N Ret);

After (R Intr) Eventually (R Ret);
Never (R Ret) UnlessAfter (R Intr);
After (R Ret) Never (R Ret) UnlessAfter (R Intr);
After (RFM.Pending) Never (RFM.Pending)

UnlessAfter (R Ret);

Assumptions:
After (Data) Never (Data + N Schd + R Intr)

UnlessAfter (Data Ack);

After (NTQ.Empty=False) Eventually (N Schd);
Never (N Schd) UnlessAfter (NTQ.Empty=False);
After (N Schd) Never (Data + N Schd + R Intr)

UnlessAfter (N Ret);
After (N Ret) Never (N Schd)

UnlessAfter (NTQ.Empty=False);

After (RFM.Pending) Eventually (R Intr);
Never (R Intr) UnlessAfter (RFM.Pending);
After (R Intr) Never (Data + N Schd + R Intr)

UnlessAfter (R Ret);
After (R Ret) Never (R Intr)

UnlessAfter (RFM.Pending);

Figure 6. Properties of software network
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specified in Verilog. I consists of a set of signals
that the hardware component imports from or ex-
ports to its environment. A hardware component
communicates with its environment through the
exported or imported signals in I. This inter-
face semantics is determined by the synchronous
clock-driven semantics of Verilog.

The interfaces of three hardware components,
clock, sensor, and network (denoted by H-CLK,
H-SEN, and H-NET, respectively) are shown in
Figure 7. The incoming arrows denote imported

d_rdy

88

SENSOR NETWORK

reset

system

CLOCK

intr_n

clock

stop

dout

din

start

intr_c

start_s

intr_s

Figure 7. Basic hardware components

signals and the outgoing arrows denote exported
signals. A set of verified properties of the three
components are shown in Figure 8. The proper-

Properties of hardware clock component:
Repeatedly (intr c);

Properties of hardware sensor component:
After (start s) Eventually (intr s);
Never (intr s) UnlessAfter (start s);
After (intr s) Never (intr s) UnlessAfter (start s);

Properties of hardware network component:
After (d rdy) Eventually (intr n);
Never (intr n) UnlessAfter (d rdy);
After (intr n) Never (intr n) UnlessAfter (d rdy);
IfRepeatedly (d rdy) Repeatedly (flag);
IfRepeatedly (d rdy=False) Repeatedly (flag=False);

Figure 8. Properties of hardware components

ties of H-CLK assert that H-CLK generates inter-
rupts repeatedly. The properties of H-SEN assert
that after H-SEN is started, it will generate an in-
terrupt eventually and it will not generate the in-
terrupt unless after it is started. The properties
of H-NET assert that (1) after H-NET receives
data, it will eventually generate a transmission
complete interrupt and it will not generate the in-
terrupt unless after it is started and (2) if H-NET
receives data repeatedly, it transmits repeatedly.

3.1.3. Bridge components
Bridge components inter-connect hardware and

software components. They extend the concept
of bridge module (introduced in [29] and briefly
discussed in Section 2.2.1) by allowing multiple
bridge components in a system. This enables
more flexible composition of hardware and soft-
ware components and creation of composite com-
ponents include both hardware and software sub-
components. The interface of a bridge component
is a pair (IH , IS). IH is a synchronous shared-
variable interface for interacting with hardware
components and IS is an asynchronous message-
passing interface for interacting with software
components. The interface of the bridge com-
ponent is determined by the hardware and soft-
ware components that it connects. E of a bridge
component is specified in the bridge specification
language discussed in Section 2.2.1.

We illustrate the concept of bridge compo-
nent by defining a bridge component that inter-
connects S-SEN, H-CLK, and H-SEN. The bridge
component is shown in Figure 9. The interface of

Bridge interface:
IH = {input signals = {H-CLK.intr c, H-SEN.intr s}

output signals = {H-SEN.start}}

IS = {output msgs = {S-SEN.C Intr, S-SEN.A Intr,
S-SEN.S Schd}

input msgs = {S-SEN.C Ret, S-SEN.A Ret,
S-SEN.S Ret}

vars = {S-SEN.ADC.On, S-SEN.STQ.Empty}}

Bridge executable representation:
/*Hardware interrupt to software message mapping*/
(H-CLK.intr c, S-SEN.C Intr)
(H-SEN.intr s, S-SEN.A Intr)

/*Software variable to hardware signal mapping*/
(S-SEN.ADC.On, H-SEN.start)

/*Interrupt priority*/
Priorities(H-CLK.intr c, H-SEN.intr s) = {0, 0}

/*Messages for initiating software tasks*/
SchdSet =
{(S-SEN.STQ.S Schd | (S-SEN.STQ.Empty=False))}

Figure 9. A bridge component example

the bridge component is derived from the inter-
faces of S-SEN, H-CLK, and H-SEN by including
the same messages and signals but reversing their
input/output directions. The executable specifi-



8 F. Xie, et al.

cation of the bridge component defines: (1) how
hardware signals are mapped to software mes-
sages, for instance, the hardware clock interrupt,
intr c, is mapped to the C Intr message of the
software clock; (2) how software variables are
mapped to hardware signals, for instance, the On
variable of the ADC object is mapped to the start
signal of the hardware sensor; (3) the interrupt
priorities, for instance, both interrupts are of the
same priority; (4) messages that initiate software
tasks, for instance, the Schedule message of the
STQ object, and the conditions under which the
tasks are ready to be scheduled.

The bridge components not only abstract the
hardware/software interfaces, but also abstract
part of the embedded OS by providing necessary
information about what are the software tasks
that need to be scheduled to execute and their
enabling conditions. Software schedulers are not
explicitly specified in this component model. In-
stead, scheduling policies are specified as assump-
tions of the software components. The embedded
OS determines the scheduling polices.

3.1.4. Hybrid components
Hybrid components package hardware and soft-

ware components into reusable units since hard-
ware and software components are often closely
related and reused together, e.g. a device and
its driver. A hybrid component may have only
a software interface if its hardware can be com-
pletely encapsulated or it may have a hybrid
hardware/software interface similar to the inter-
face of a bridge component. (Examples of hybrid
components are given in Section 4.)

3.2. Composition
A composite component, C = (E, I, P ), is

composed from a set of simpler components, C0

= (E0, I0, P0), . . ., Cn−1 = (En−1, In−1, Pn−1),
as follows. E is constructed from E0, . . ., En−1 by
connecting E0, . . ., En−1 through I0, . . ., In−1. I
may be a hardware interface, a software interface,
or a hybrid hardware/software interface depend-
ing what types of components C0, . . ., Cn−1 are.
Essentially, I includes the semantic entities from
I0, . . ., In−1 that are needed for C to interact with
its environment or for specification of scheduling

constraints of C. We discuss how to establish
properties of a composite component from prop-
erties of its sub-components in Section 4.

4. Component-Based Co-Verification

In this section, we present our approach
to component-based co-verification of embedded
systems and illustrates this approach with its ap-
plication to a suite of networked sensors. Our ap-
proach seamlessly integrates verification into the
component-based development lifecycle of embed-
ded systems and is a synergistic integration of
bottom-up component verification and top-down
system verification.

The component-based development lifecycle for
an embedded system family consists of three ma-
jor activities, basic component development, sys-
tem development, and new component develop-
ment. Basic component development takes place
when the family is created. As the family evolves,
system development and new component develop-
ment are repeated as needed and often interleave.

4.1. Bottom-up
verification of basic components

When an embedded system family is created,
its primitive hardware and software components
are identified by domain analysis and developed
from scratch. These primitive components can
be further composed bottom-up to develop basic
composite components of the family.

For verification of basic components, we extend
the bottom-up approach developed in [27]. Prop-
erties of the components are formulated accord-
ing to domain analysis. A primitive hardware
(or software, respectively) component is verified
using FormalCheck (or ObjectCheck) through
translation of the component and its properties
into S/R. Properties of a composite component
are verified by checking the properties on abstrac-
tions of the composite component. The verifica-
tion is again through translation into S/R.

4.1.1. Verification of primitive components
A domain analysis on the family of networked

sensors based on UC Berkeley motes [14] identi-
fies a set of primitive components of the family.
The set includes three hardware components: H-
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CLK, H-SEN, and H-NET, and two software com-
ponents: S-SEN and S-NET, which have been
defined in Section 3. We have verified H-CLK,
H-SEN, and H-NET with FormalCheck and we
have also verified S-SEN and S-NET with Ob-
jectCheck. The time and memory usages for these
verification runs are shown in Table 1. The prop-

Table 1
Time and memory usages for verifying the prop-
erties of primitive components

Components Time (Seconds) Memory (MBytes)
S-SEN 18.66 8.49
S-NET 18.06 9.11
H-CLK 0.21 3.38
H-SEN 0.22 3.39
H-NET 0.22 3.39

erties of the components are verified under their
corresponding environment assumptions.

4.1.2. Verification of a basic sensor system
After the primitive components of the sensor

system family are developed, the natural next
step is to develop a basic sensor system from
these components so that these components can
be evaluated in a system context. Note that a
system is also a composite component. Figure 10
shows how the basic components are composed
bottom-up into a basic system. H-CLK generates

Bridge

H−CLK H−SEN H−NET

S−SEN S−NET

Bridge

Figure 10. A basic sensor system

periodical interrupts to S-SEN. Upon a clock in-
terrupt, S-SEN starts H-SEN. When H-SEN fin-
ishes sensing, it interrupts S-SEN to pass sensor
readings to S-SEN. S-SEN sends sensor readings
to S-NET. If H-NET is free, S-NET delivers a
data packet to H-NET. After the packet is trans-
mitted, H-NET interrupts S-NET to report the
transmission. The hardware and software compo-
nents are connected via two bridge components.

Formulating the properties of the bridge com-
ponents and their assumptions is straightforward.
Properties (or assumptions, respectively) of the
software and hardware components that are for-
mulated on the interactions with the bridge com-
ponents are essentially assumptions (or proper-
ties) of the bridge components. For instance, the
second group of properties (or assumptions, re-
spectively) of S-SEN in Figure 4, which are for-
mulated on the clock interrupts generated by the
bridge component between S-SEN and hardware
and their responses from S-SEN, are assumptions
(or properties) of the bridge component. The
properties of the two bridge components are ver-
ified using 3.76 seconds and 6.03 megabytes and
0.66 seconds and 4.07 megabytes, respectively.

A system-level property P1 to be verified on
the basic sensor system is shown in Figure 11.
P1 asserts that the basic sensor system transmits

Repeated(H-NET.flag); Repeated(H-NET.flag=False);

Figure 11. Repeated transmission property

on the network repeatedly. Repeated setting and
clearing of a flag in H NET indicates repeated
transmission. To verify P1, we construct an ab-
straction of the basic sensor system as follows:

1. A system in the S/R language is con-
structed to abstract the sensor system. For
each hardware or software component, a
S/R process is introduced. The S/R process
simulates the interface of the component.
Within the constraint of the interface, the
S/R process behaves non-deterministically.
Essentially, we translate the interface of the
component into S/R. All these S/R pro-
cesses are composed together through the
simulated interfaces as how the components
are composed in Figure 10.

2. Starting from P1, a cone-of-influence analy-
sis is conducted on verified properties of the
hardware and software components based
on the component interfaces and the com-
ponent composition graph. All component
properties related to P1 by the analysis are
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included in the abstraction. They are used
to constrain the S/R system: A property of
a hardware or software component is trans-
lated to a S/R process and composed with
the S/R process abstracting the component.

The constrained S/R system is the abstraction.
Note that to include a related component prop-
erty into the abstraction, two conditions must be
validated: (1) the assumptions of the property
are implied by the properties of other compo-
nents, which can be validated via a simple model
checking run; (2) the property does not involve
in circular reasoning among component proper-
ties. Circular reasoning can be avoided using the
following methods (but not limited to them): (1)
avoid using an assumption that creates a depen-
dency cycle; (2) use temporal induction proposed
by McMillan [19]; or (3) use the compositional
reasoning rule proposed by Amla, et al [4].

The abstraction constructed includes the prop-
erties of S-SEN in Figure 4, the properties of S-
NET in Figure 6, the properties of the hardware
components in Figure 8, and the properties of
the bridge components. The assumptions of S-
SEN and S-NET are satisfied by the properties
of the hardware components through the conver-
sion of the bridge components. S-SEN and S-
NET satisfy the handshake-related properties of
each other. The properties of the hardware, soft-
ware, and bridge components shown in Figure 12
imply P1. (Note that S-SEN.Output is mapped
to S-NET.Data.) The implication relationship is
established by model checking P1 on the abstrac-
tion, which takes 0.1 seconds and 3.40 megabytes.

The abstraction is conservative. If the prop-
erty holds on the abstraction, it holds on the sys-
tem; otherwise, the abstraction can be refined by
verifying additional component properties and in-
cluding them into the abstraction. If the property
does not hold on the system, error trace analysis
and abstraction refinement are likely to uncover
the cause. (See below for an example of bug de-
tection.) Verification of additional properties are
rarely needed for widely reused components.

This approach to abstraction construction ex-
tends the approach in [27] and constructs abstrac-
tions of embedded systems composed of hard-

Repeatedly (H-CLK.intr c);
IfRepeatedly (H-CLK.intr c)

Repeatedly (S-SEN.C Intr);
IfRepeatedly (S-SEN.C Intr)

Repeatedly (S-SEN.Output);
IfRepeatedly (S-NET.Data)

Repeatedly (S-NET.RFM.Pending);
IfRepeatedly (S-NET.Data) Repeatedly

(S-NET.RFM.Pending=False);
IfRepeatedly (S-NET.RFM.Pending)

Repeatedly (H-NET.d rdy);
IfRepeatedly (S-NET.RFM.Pending=False)

Repeatedly (H-NET.d rdy=False);
IfRepeatedly (H-NET.d rdy)

Repeatedly (H-NET.flag);
IfRepeatedly (H-NET.d rdy=False)

Repeatedly (H-NET.flag=False);

Figure 12. Comp. properties that imply P1

ware, software, and bridge components. It is en-
abled by the unified component model and the
unified component property specification. An ab-
straction of a composite component that is not a
complete system is constructed the same way ex-
cept that an additional S/R process is added to
create a closed S/R system. This S/R process is
constrained by the environment assumptions of
the composite component.

The second property P2 to be verified on the
basic system is shown in Figure 13. P2 asserts

Never ((S-NET.RFM.Prev = 1)
AND (S-NET.RFM.Buf = 1)
AND (S-NET.RFM.Status = Transmitting));

Figure 13. No consecutive 1’s property

that there are no consecutive 1’s in the trans-
mission sequence numbers. We construct an ab-
straction for verifying P2. However, no compo-
nent properties are included since no component
properties related to P2 have been verified.

This abstraction need to be refined. The com-
ponent properties needed for verifying P2 are
introduced based on domain knowledge. An
abstraction is constructed from the component
properties assuming they hold. If P2 is success-
fully verified on the abstraction, the component
properties are then verified. The following prop-
erties are introduced for S-SEN: there are no con-
secutive 1’s in the sequence numbers of the out-
puts of S-SEN and S-SEN will not output a new
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sensor reading unless after it receives transmis-
sion acknowledgment for the previous reading.
(For conciseness, the formal property specifica-
tions are not shown.) The verification of the new
property of S-SEN detects a bug in S-SEN: S-
SEN may output a new sensor reading to S-NET
although S-NET has not acknowledged the trans-
mission of the last sensor reading. The bug is
fixed. The property is successfully verified on the
corrected S-SEN. For conciseness, the properties
of other components are not shown. After all new
component properties are successfully verified, we
can conclude that P2 holds on the basic system.

4.2. Top-down system verification
New systems in the embedded system family

are developed top-down. Given its functional re-
quirements, a system is partitioned into hardware
and software components. The partition is guided
by domain knowledge and considers the available
components. The interface of each component is
defined and its properties are specified. If there
is a component available that matches the inter-
face and the properties, the component can be
reused. If there is no matching component, the
component is either developed from scratch as a
primitive component or further partitioned.

Verification is integrated in the top-down sys-
tem development. As a composite component
is decomposed into its sub-components, the sub-
component properties are formulated. The prop-
erties of the composite component are veri-
fied on its abstractions constructed from the
sub-component properties assuming the sub-
component properties hold. If the properties of
the composite components are successfully ver-
ified on the abstraction, the top-down system
development proceeds; otherwise, the decompo-
sition or the sub-component properties are re-
vised. For a reusable sub-component, if the re-
quired properties has been verified on the sub-
component, nothing need to be done; otherwise,
the properties are verified on the component top-
down. For a new primitive component, its prop-
erties are verified by directly model checking its
executable representation. For a new composite
component, its properties are verified as it is fur-
ther partitioned top-down. If the properties of a

component cannot be verified, the component de-
sign or the previous decompositions are revised.

4.2.1. Verification of multi-sensor system
We illustrate top-down system verification by

verifying a multi-sensor system. The functional
requirement of this system is that it should prop-
erly control multiple hardware sensors, for in-
stance, a temperature sensor and a humidity sen-
sor. The sensor system can be partitioned into
hardware and software components as shown in
Figure 14. It can be observed that the multi-

S−NET

H−CLK H−SEN 1 H−SEN 2 H−NET

S−SEN

BridgeBridge

Figure 14. Multi-sensor system

sensor system reuses the existing components
with a new bridge component that connects S-
SEN, H-CLK, and the two hardware sensors.
Upon a clock interrupt, S-SEN starts both hard-
ware sensors. Upon completion of sensing, each
sensor interrupts and passes data to S-SEN.

We verify P1 on the multi-sensor system. (For
simplicity, hereafter, we only verify P1 on sensor
systems.) All components of the system, except
the new bridge component, are reusable and their
properties have been verified. Properties of the
bridge component (not shown for conciseness) are
formulated the same way as those of the bridge
components in the basic system. They are verified
using 10.24 seconds and 6.05 megabytes. The ab-
straction of the multi-sensor system for verifying
P1 is constructed from the component properties.
P1 was successfully verified on the abstraction us-
ing 0.1 seconds and 3.40 megabytes.

4.2.2. Verification
of encryption-enabled sensor system

Development of new sensor systems may intro-
duce new components. For instance, to develop
a security enhanced sensor network, it is desired
that some sensors in a sensor network be able to
encrypt the sensor readings before transmitting
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the readings. Based on the requirement of such a
sensor system, the system can be partitioned into
its components as shown in Figure 15. A hard-

Bridge

H−NETH−SENH−CLK

S−NETS−SEN S−ENC

H−ENC

Bridge Bridge

Figure 15. Encryption-enabled sensor system

ware encoder, H-ENC and its software controller,
S-ENC are introduced. In system execution, S-
SEN passes sensor readings to S-ENC which in-
vokes H-ENC to encrypt the sensor readings.

The interface of S-ENC is defined as fol-
lows: input message types = {Raw, Encoded Ack,
E intr}, output message types = {Raw Ack, En-
coded, E Ret}, and externally visible variables =
{ENC.Pending}. The properties of S-ENC for
verifying P1 on the whole system are shown in
Figure 16. The properties assert that S-ENC
outputs encoded data repeatedly if it inputs raw
data repeatedly and it correctly handles the input
and output handshakes. The assumptions assert
that the environment correctly handles the hand-
shakes with S-ENC and generates interrupts to
S-ENC in response to its encoding requests. The
interface of H-ENC and the properties of H-ENC
for verifying P1 are also formulated (not shown
for conciseness). The properties of S-ENC are
verified on its executable using 0.24 seconds and
3.57 megabytes while verification of H-ENC takes
0.22 seconds and 3.39 megabytes. A new bridge
component connecting S-ENC and H-ENC is in-
troduced. Its properties are verified using 0.18
seconds and 3.56 megabytes. The abstraction for
verifying P1 on the encryption-enabled sensor sys-
tem is constructed from the properties of its com-
ponents. P1 is successfully verified on the abstrac-
tion using 0.13 seconds and 3.56 megabytes.

4.3. Integrated bottom-up and top-down
verification of new components

Verification of new components exploits the in-
teraction of bottom-up and top-down verification.

Properties:
IfRepeatedly (Raw) Repeatedly (Encoded);

After (Raw) Eventually (Raw Ack);
Never (Raw Ack) UnlessAfter (Raw);
After (Raw Ack) Never (Raw Ack)

UnlessAfter (Raw);

After (Encoded) Never (Encoded)
UnlessAfter (Encoded Ack);

Never (Encoded) UnlessAfter (E Int);
After (Encoded) Never (Encoded)

UnlessAfter(E Intr);
Never (E Ret) UnlessAfter (Encoded Ack);
After (E Ret) Never (E Ret)

UnlessAfter(Encoded Ack);

After (E Intr) Eventually (E Ret);
Never (E Ret) UnlessAfter (E Intr);
After (E Ret) Never (E Ret)

UnlessAfter (E Intr);
After (ENC.Pending) Never (ENC.Pending)

UnlessAfter (E Ret);

Assumptions:
After (Raw) Never (Raw + E Intr)

UnlessAfter (Raw Ack);

After (Encoded) Eventually (Encoded Ack);
Never (Encoded Ack) UnlessAfter (Encoded);
After (Encoded Ack) Never (Encoded Ack)

UnlessAfter (Encoded);

After (ENC.Pending) Eventually (E Intr);
Never (E Intr) UnlessAfter (ENC.Pending);
After (E Intr) Never (Raw + E Intr)

UnlessAfter (E Ret);
After (E Ret) Never (E Intr)

UnlessAfter (ENC.Pending);

Figure 16. Properties of software encoder

New components may be introduced and verified
in top-down development of new systems, such as
S-ENC and H-ENC and they may also be intro-
duced and verified through bottom-up component
development due to technology advances, such as
new sensing and communication modules.

The new components can be further composed
with existing components or among themselves to
construct larger composite components bottom-
up. For instance, S-ENC, S-NET, H-ENC, and
H-NET can be composed into an encryption-
enabled network component, E-NET, as shown
in Figure 17. S-NET and H-NET have been veri-
fied bottom-up as basic components. S-ENC and
H-ENC has been verified in top-down verification
of the encryption-enabled sensor system. Based
on their properties, E-NET is verified bottom-
up. The interface of E-NET includes the fol-
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Bridge

S−NETS−ENC

H−ENC H−NET

Bridge

Figure 17. Encryption-enabled network comp.

lowing messages: Raw and Raw Ack for interac-
tion with other components and E Intr, N Schd,
R Intr, E Ret, N Ret, and R Ret for specification
of scheduling constraints. The properties of E-
NET are shown in Figure 18. The properties

IfRepeatedly (Raw) Repeatedly (HNET.flag);
IfRepeatedly (Raw) Repeatedly (HNET.flag=False);

After (Raw) Eventually(Raw Ack);
Never (Raw Ack) UnlessAfter (Raw);
After (Raw Ack) Never(Raw Ack) UnlessAfter(Raw);

Assumptions:
After (Raw) Never (Raw+E Intr+N Schd+R Intr)

UnlessAfter (Raw Ack);
After (E Intr) Never (Raw+E Intr+N Schd+R Intr)

UnlessAfter (E Ret);
After (N Schd) Never (Raw+E Intr+N Schd+R Intr)

UnlessAfter (N Ret);
After (R Intr) Never (Raw+E Intr+N Schd+R Intr)

UnlessAfter (R Ret);

Figure 18. Properties of E-NET

assert that E-NET repeatedly transmits if there
are inputs repeatedly and that it properly han-
dles input handshakes. The assumptions assert
that the environment correctly handles the hand-
shakes with E-NET and respects the scheduling
constraints of E-NET. The properties are success-
fully verified on an abstraction of E-NET, con-
structed from the verified properties of S-NET,
S-ENC, H-NET, H-ENC, and the two bridge com-
ponents. The verification takes 0.13 seconds and
3.55 megabyte. E-NET and its properties can
then be reused in building new sensor systems.

4.4. Evaluation
We evaluate our approach to component-based

co-verification by comparing the time and mem-
ory usages for verifying P1 on the three sensor
systems: the basic system, the multi-sensor sys-

tem, and the encryption-enabled sensor system
using this approach with the time and memory
usages for verifying the three systems using the
basic translation-based approach discussed in 2.2.
The comparison is shown in Table 2. (CB denotes

Table 2
Time and memory usage comparison

Usages Basic Multi Encrypting
TB Time (Sec) 31272.8 - -
TB Mem. (MB) 1660.62 - -
CB Time (Sec) 41.89 10.34 0.77
CB Mem. (MB) 9.11 6.05 3.57

the component-based approach, TB denotes the
translation-based approach, and “-” denotes run-
ning out of memory.) All verification runs are
conducted on a SUN workstation with dual CPUs
at 1 GHZ and 2 GB physical memory. The time
(or memory, respectively) usage of verifying a sys-
tem using the component-based approach is the
sum (or max) of the time (or memory) usages of
verifying the new components and the abstrac-
tion. It can be observed that the component-
based approach has order-of-magnitude reduction
on the verification time and memory usages for
verifying the basic sensor system. The reductions
on the multi-sensor system and the encryption-
enabled sensor system are more significant since
the translation-based approach runs out of mem-
ory on both systems while the component-based
approach achieves major reuse of verification ef-
forts and only requires to verify the new hard-
ware, software, and bridge components and the
abstractions of the two systems. The component-
based approach requires the extra cost of abstrac-
tion construction and the manual effort of formu-
lating component properties which, we believe,
can be greatly reduced by domain knowledge and
are compensated by being able to verify systems
that cannot be verified, otherwise.

5. Related Work

There has been much research on component-
based hardware and software development [15,
13,23]. A fundamental problem in component-
based development is how to derive the proper-
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ties of compositions from the properties of com-
ponents, including correctness properties, per-
formance properties, real-time properties, etc.
A well-known project targeting this problem in
component-based software development is the
PACC initiative from CMU/SEI: Predictable As-
sembly from Certifiable Components [9,26]. The
vision of PACC is that software components have
certified properties (for example, performance)
and the behavior of systems assembled from com-
ponents is predictable. Our project shares the
same vision as PACC while extending this vision
by (1) defining a component model for embedded
systems that unifies hardware and software com-
ponents and (2) formally establishing the proper-
ties of an embedded system from the properties
of its hardware and software components.

There has also been research on component-
based software engineering for embedded systems
such as [11], focusing on embedded software. Due
to the close interactions between hardware and
software of embedded systems, there is a desire to
reason about hardware and software components
under a unified component model.

Co-verification of embedded systems falls into
two major categories: co-simulation and formal
co-verification. Our approach belongs to the lat-
ter. Hardware/software co-simulation of embed-
ded systems is supported by industrial tools such
as Mentor Graphics Seamless [21] and academic
projects such as Ptolemy [6]. Co-simulation does
not provide exhaustive state space coverage and
may be insufficient for building highly trustwor-
thy embedded systems.

Various formal languages have been proposed
for specifying embedded systems, e.g., Hybrid
Automata [3], LOTOS [25], Co-design Finite
State Machines (CFSMs) [5], and petri-net based
languages such as PRES [10]. Hybrid automata
and CFSMs have been directly model-checked.
LOTOS and PRES have been verified via transla-
tion to directly model-checkable languages. Our
approach differs by supporting specification of
hardware or software components in their native
languages and exploiting compositional struc-
tures of embedded systems for co-verification.

Formal co-verification with model checking
provides exhaustive state space coverage while

may suffer from state space explosion. There has
been much research [1,2,19,4] on compositional
reasoning in model checking of hardware sys-
tems or software systems. Our approach builds
on the previous work on compositional reason-
ing. It differs from the previous work in that it
applies compositional reasoning across the hard-
ware/software boundary. This is enabled by the
component model for embedded systems which
unifies hardware IPs and software components
and the unified component property specifica-
tion. This is also enabled by translation-based
co-verification which provides a common formal
semantics basis for compositional reasoning and
provides the basic mechanisms for verifying prim-
itive hardware or software components and ab-
stractions of systems or composite components.

There has also been research on formal veri-
fication of IP-based hardware systems [16] and
of component-based software systems [7,27]. Our
work differs by co-verifying hardware and soft-
ware components of embedded systems.

6. Conclusions and Future Work

We have presented a component-based ap-
proach to hardware/software co-verification of
embedded systems using model checking. This
approach has great potential in building highly
trustworthy embedded systems. It achieves major
verification reuse and order-of-magnitude reduc-
tion on co-verification complexity, therefore, en-
abling co-verification of more complex embedded
systems. Its effectiveness roots in seamless inte-
gration of verification into the component-based
development lifecycle of embedded systems and
exploitation of their compositional structures. As
the next step, we plan to further automate our ap-
proach in system decomposition and property for-
mulation, by leveraging domain knowledges such
as composition patterns of embedded systems.
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