
Component-Based Hardware/Software Co-Simulation ∗

Ping Hang Cheung
Dept. of ECE

Portland State University
Portland, OR 97207, USA

cheung@ece.pdx.edu

Kecheng Hao
Dept. of Computer Science
Portland State University
Portland, OR 97207, USA

kecheng@cs.pdx.edu

Fei Xie
Dept. of Computer Science
Portland State University
Portland, OR 97207, USA

xie@cs.pdx.edu

Abstract

Developing highly efficient and reliable embedded sys-
tems demands hardware/software (HW/SW) co-design and,
therefore, co-simulation. In order to be highly configurable,
embedded systems are increasingly component-based in
both hardware and software. In this paper, we present
a novel approach to hardware/software co-simulation of
component-based embedded systems. Our approach fea-
tures a component model which unifies hardware and soft-
ware component models with the concept of bridge compo-
nent. Bridge components raise the level of abstraction for
designing HW/SW interfaces. Their specifications are used
to configure the co-simulators. Our approach has been ap-
plied to co-simulation of sensor system instances included
in the TinyOS distribution. The case studies have demon-
strated that our approach is readily applicable to real-world
embedded systems and reduces co-simulation complexities.

1 Introduction

In this paper, we present a novel approach to hard-
ware/software (HW/SW) co-simulation of component-
based embedded systems. Our approach is based on a com-
ponent model that unifies hardware and software compo-
nent models. The key to this component model is the con-
cept of bridge component, which raises the level of abstrac-
tion for designing HW/SW interfaces. Bridge components
inter-connect hardware and software components and prop-
agate events across the HW/SW boundaries. The abstrac-
tion using bridge components is enabled by a platform-
specific bridge specification language and its supporting
compiler. For co-simulation, this compiler compiles the
bridge components into hardware and software executables
and necessary configurations for co-simulators.

We have realized our approach in development of a co-
simulation utility for sensor systems based on TinyOS [6].

∗This research was supported by Semiconductor Research Corporation,
Contract RID 1356.001.

This utility supports software components written in the
nesC [4] programming language and hardware components
written in Verilog, VHDL, or SystemC. We have applied
this utility to the sensor system instances in the TinyOS
distribution. In these applications, we re-engineered the
hardware components based on our understanding of the
Motes [6] platforms. The case studies have shown that our
approach is very effective in enabling co-simulation of em-
bedded systems and reduces co-simulation complexities.

The reminder of this paper is organized as follows. In
Section 2, we provide the background of this work. In
Section 3, we introduce the unified component model. In
Section 4, we present our approach to component-based co-
simulation. In Section 5, we discuss related work. In Sec-
tion 6, we conclude this paper and present future work.

2 Background

In this section, we discuss two simulators, Giano [3] and
ModelSim [9], upon which we realize our approach.

2.1 Giano System Simulator

Giano is a full-system simulator for embedded systems. It
incorporates simulation of processors and peripherals of an
embedded system. A hardware simulator can be attached to
Giano through a Programming Language Interface (PLI) [8]
and be responsible for simulation of hardware designs writ-
ten in HDLs such as Verilog, VHDL, and SystemC. Giano
is also capable of simulating hardware designs written in C.

2.2 ModelSim Hardware Simulator

ModelSim is a hardware simulator which is capable of sim-
ulating hardware designs written in HDLs such as Verilog,
VHDL, and SystemC. It supports hardware debugging by
providing signal traces, waveform analysis, code coverage
measurement, etc. It also supports Assertion-Based Verifi-
cation (ABV) using the IEEE Property Specification Lan-

guage (PSL) [7]. In addition, it supports communication
with other software systems through PLIs.

3 Unified Component Model

A key challenge in co-design and co-simulation is the
HW/SW semantic gap. In the common co-design practice,
the HW/SW interfaces are often designed at a low abstrac-
tion level in terms of variables, function calls, and signals.
The semantic entities in the interfaces are scattered in hard-
ware and software. This compromises the component-based
structures of both hardware and software.

3.1 Unified Component Representation

We have developed a unified component model for hard-
ware and software, which raises the level of abstraction for
HW/SW interface specification via the concept of bridge
component. Bridge components inter-connect hardware and
software components and propagate events across HW/SW
boundaries. Bridge components abstract an embedded sys-
tem platform including its processor, memory, bus, and op-
erating system and provide an abstract and concise way to
specify HW/SW interfaces.

In our unified component model, a component has three
elements: executable, interface, and properties. The exe-
cutable is the implementation of the component. In the re-
alization of the component model for sensor systems, for
a software component, its executable is specified in nesC;
for a hardware component, its executable is specified in a
HDL such as Verilog and VHDL; for a bridge component,
its executable is specified in a bridge specification language
(See Section 3.2). The interface of a component defines
the semantic constructs for interacting with other compo-
nents. The interface of a software or hardware component
is determined by its corresponding design/implementation
language. For a bridge component, it has both a hardware
interface and a software interface, for interacting with hard-
ware and software. Properties are temporal assertions over
the behaviors of the component. Evaluation of temporal as-
sertions over the behaviors of an entire system requires ver-
ification (e.g., simulation) across HW/SW boundaries. (A
system is also a composite component.) Evaluation of as-
sertions is bounded by the software and hardware domains.

Figure 1 illustrates a sensor system structured following
the unified component model. The software components are
developed in nesC and their interfaces consist of commands
and events, which are essentially C functions. Figure 2 il-
lustrates the interfaces of the software components. The
hardware components are developed in Verilog and their in-
terfaces consist of signals. Figure 3 illustrates the interface
specification of the hardware components. The output of
the hardware sensor component contains a data path and an

Software
Sensor

Software
Network

Hardware
Sensor

Hardware
Network

Software Components

Hardware Components

Bridge Component
ARM 7

SchedulerInterrupt
Manager

Interrupt
Request

APB Bus

Figure 1. Sensor System Architecture

Interface StdControl{
command init(); command start(); command stop();
}
Interface DataTran{

command SendData(int data); event ACK();
}
Interface Interrupt{

event IntrSensor(); event IntrNetwork();
}

Figure 2. Example Software Interfaces

interrupt and the input is a set of control signals indirectly
from the software components via the bridge component.
(The designs/implementations of the hardware and software
components are not shown due to space limitation.)

3.2 Bridge Components

A bridge component is an intermediate component that
inter-connects hardware and software components. It has
dual interfaces, a hardware interface and a software inter-
face, for instance, the bridge component shown in Figure 1.
The hardware (or software, respectively) interface of this
component contains the same signals (or functions) from
the interfaces of the hardware (or software) components
while reversing their input and output directions.

The executable of a bridge component is specified in a
bridge specification language (BSL). BSL provides an ab-
stract way for designers to specify hardware and software
interactions through defining the mappings between hard-
ware and software events. These mappings are automat-
ically compiled or synthesized into software or hardware
implementation for the final system implementation and
used to configure the co-simulator automatically. BSL is
platform-specific in that how the mappings are specified de-
pends on the hardware and software design/implementation
languages for an embedded system platform and the imple-
mentation of the mappings depends on the processor model,
the bus model, the OS, etc. For a widely used platform, it

Sensor P1(Network P2(
.PCLK(PCLK), .PCLK(PCLK),
.PSEL(PSEL1), .PSEL(PSEL2),
.PENABLE(PENABLE), .PENABLE(PENABLE),
.PRESETn(PRESETn), .PRESETn(PRESETn),
.PADDR(PADDR), .PADDR(PADDR),
.PWRITE(PWRITE), .PWRITE(PWRITE),
.PWDATA(PWDATA), .PWDATA(PWDATA),
.PRDATA(PRDATA), .PRDATA(PRDATA),
.INTR(INTR1) .INTR(INTR2),

););

Figure 3. Example Hardware Interfaces

is justified to develop a BSL and its supporting compiler, in
order to simplify system design and verification.

We have developed a BSL for the sensor system plat-
form and its supporting compiler. Figure 4 shows example
hardware/software event mappings specified in this BSL.
The left operands are software functions where the right

Mapping{
SensorM.SensorData()⇐ Sensor.PRDATA;
NetworkM.Network()⇒ Network.PWDATA;
SensorM.IntrSensor()← Sensor.INTR1;
}

Figure 4. Example Mappings

operands are the hardware signals. The operator ⇐ maps
hardware signal Sensor.PRDATA to the software function
SensorM.SensorData(). This operator assigns the data value
from the right operand (HW) to the left operand (SW). The
right operand PRDATA is an output of a 32-bit bitvector in
the hardware Sensor module where the left operand Sensor-
Data() is an input function in the software SensorM com-
ponent whose return value is a unsigned 32-bit integer. The
function SensorData() will return the value of PRDATA to
its caller in the software domain. The operator ⇒ maps
software function NetworkM.Network() to the hardware sig-
nal Network.PWDATA. The parameter of the function Net-
work() will be written to the signal PWDATA. The ← op-
erator is used to map a hardware interrupt to a software in-
terrupt function. For instance, the hardware interrupt sig-
nal Sensor.INTR1 is mapped to the interrupt function Sen-
sorM.IntrSensor() in Figure 4. The BSL compiler processes
these mappings and generates configurations for Giano and
ModelSim to configure the PLI for HW/SW interactions.

4 Component-Based Co-Simulation

Our approach to component-based co-simulation has three
major features: (1) platform-oriented co-simulator configu-
ration; (2) simulator synchronization based on bridge com-
ponents; (3) temporal assertion evaluation in co-simulation.
We will elaborate on these features and illustrate them with
a co-simulator for component-based sensor systems.

4.1 Platform-Oriented Co-Simulator Configuration

For different embedded system platforms, the ways how
the co-simulators are configured differ. However, given a
platform, there is much commonality in configuring the co-
simulator for different systems based on this platform. The
bridge components specified in BSL abstract the core plat-
form components of an embedded system, such as its pro-
cessor, bus, scheduler, and interrupt manager. Therefore,
these components are invisible but configurable via BSL.
This abstraction is only possible with compiler support, in
particular, the platform-specific BSL compiler.

Figure 5 illustrates the architecture of a co-simulator for
the sensor systems introduced in Section 3. The keys of

Bridge Component

Software
Application
Components

Software
Platform

Components

Hardware
Application
Components

Hardware
Platform

Components

C Source Code

Software
Executable

Giano
PLI

BSL
Compiler

NesC Compiler

C Compiler

HDL Compiler

NesC Source Code HDL Source Code

Hardware
Executable

ModelSim

Figure 5. Co-Simulation Architecture

this architecture are the compilers for hardware, software,
and bridge components. The BSL compiler generates the
hardware platform components in Verilog such as the bus
and the interrupt queue and the software platform compo-
nents in nesC such as the interrupt manager, the scheduler,
the main loop of the program, etc. Furthermore, the BSL
compiler configures Giano and ModelSim with the plat-
form components of an embedded system such as the pro-
cessor. It is also responsible for establishing mappings be-
tween hardware signals and software functions/variables by
generating hardware code in Verilog and software code in
nesC. The HW/SW event mappings are also used to con-
figure the PLI between Giano and ModelSim, which is
used for HW/SW communication and synchronization. The
software (or hardware, respectively) components including
those generated by the BSL compiler are compiled into ex-
ecutables by the software (or hardware) compiler.

4.2 Synchronization Based on Bridge Components

The synchronization between hardware and software com-
ponents is done through the PLI between Giano and Model-

Sim. The PLI is masked by bridge components. Hardware
and software components interact via bridge components
whose semantics dictate the synchronization scheme. This
scheme is realized in the co-simulation through the BSL
compiler. In our networked sensor system example, a sim-
ple synchronization scheme is supported. The scheme in-
cludes a prioritized hardware request queue and a software
scheduler. When the hardware requests attention from the
software. It triggers a hardware interrupt and pushes it into
the hardware request queue. When the software picks up
the interrupt request, it carries out the pre-defined task in
response to the interrupt. Once the transaction completes,
the next event on the hardware queue is executed. When the
queue is empty, other software tasks can be scheduled by
the scheduler. In essence, the HW/SW synchronization is
event-driven and a transactional semantics is enforced.

4.3 Assertion Evaluation in Simulation

We have extended PSL into an assertion language over
both hardware and software, namely xPSL [12], and devel-
oped an xPSL assertion evaluation utility for co-simulation,
shown in Figure 6. The utility includes a software event

Software Executable

Giano Simulator

SW Event Monitor

xPSL Assertion
Evaluation Engine

PLI
Hardware Executable

ModelSim Simulator

HW Event Monitor

Figure 6. Assertion Evaluation Utility

monitor, a hardware event monitor, and an assertion evalua-
tion engine. The software event monitor (or hardware event
monitor, respectively) observes the occurrences of software
events (or hardware events) and notifies the xPSL assertion
evaluation engine. The xPSL assertion engine processes the
events and determines whether any assertion is violated.

4.4 Preliminary Experiments

We have applied our approach to the sensor system in-
stances included the TinyOS distribution. For each system,
we utilized their software components with minor modifi-
cations to the lowest level components, we re-engineered
their hardware components following the unified compo-
nent model, and we also introduced the bridge compo-
nents. In addition, we also introduced xPSL assertions over
the HW/SW interactions and evaluated the assertions using
component-based co-simulation. The case studies show that
our approach reduces co-simulation complexities through
the abstraction based on bridge components and is very ef-
fective in evaluating assertions across HW/SW boundaries.

5 Related Work

There has been much research [1, 5, 11, 2] on co-simulation
that led to industrial tools such as Mentor Graphics Seam-
less [10] and Microsoft Giano [3]. In [1], a co-simulation
environment was developed based on the Verilog PLI.
In [5], the co-simulation and co-synthesis of hardware and
software components were explored. In [11], embedded
systems were co-simulated and co-verified as pure software
specified in C/C++. In [2], modeling, simulation, and de-
sign of concurrent real-time embedded systems was stud-
ied, with a focus on assembly of concurrent components.
Our work builds on these previous work, provides efficient
co-simulation support to component-based embedded sys-
tems and simplifies configuration of co-simulators.

6 Conclusions and Future Work

In this paper, we have presented a component-based ap-
proach to HW/SW co-simulation, which allows hardware
and software to be simulated in a unified environment while
maintaining modularity of hardware and software compo-
nents. Case studies on sensor systems have shown that our
approach is readily applicable to real-world embedded sys-
tems and reduces co-simulation complexities. Our future
work will be focused on integration of co-simulation and
formal co-verification based the unified component model.

References

[1] D. Becker, R. K. Singh, and S. G. Tell. An engineering
environment for hardware/software co-simulation. In DAC,
1992.

[2] Berkeley. Ptolemy project.
http://ptolemy.eecs.berkeley.edu/index.htm.

[3] A. Forin, B. Neekzad, and N. L. Lynch. Giano: The two-
headed system simulator. Technical Report MSR-TR-2006-
130, Microsoft Research, 2006.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to net-
worked embedded systems,. In Proc. of PLDI, 2003.

[5] R. Gupta, C. Coelho, and G. D. Micheli. Synthesis and sim-
ulation of digital systems containing interacting hardware
and software components. In DAC, pages 225–230.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In Proc. of ASPLOS, 2000.

[7] IEEE. IEEE Standard for Property Specification Language
(PSL) (IEEE Std 1850-2005). IEEE, 2005.

[8] IEEE. IEEE Standard for Verilog (IEEE Std 1364-2005).
IEEE, 2005.

[9] Mentor Graphics. ModelSim. http://www.mentor.com.
[10] Mentor Graphics. Seamless. http://www.mentor.com.
[11] L. Séméria and A. Ghosh. Methodology for hard-

ware/software co-verification in c/c++. In ASP-DAC, 2000.
[12] F. Xie and H. Liu. Unified property specification for hard-

ware/software co-verification. In Proc. of COMPSAC, 2007.

