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Abstract. This paper presents an important result addressing a funda-
mental question in synthesizing binary reversible logic circuits for quan-
tum computation. We show that any even-reversible-circuit of n (n > 3)
qubits can be realized using NOT gate and Toffoli gate (‘2’-Controlled-
Not gate), where the numbers of Toffoli and NOT gates required in the
realization are bounded by (n+�n

3 �)(3×22n−3−2n+2) and 4n(n+�n
3 �)2n,

respectively. A provable constructive synthesis algorithm is derived. The
time complexity of the algorithm is 10

3 n2 · 2n. Our algorithm is expo-
nentially lower than breadth-first search based synthesis algorithms with
respect to space and time complexities.

1 Introduction

Reversible logic plays an important role in quantum computing [1, 2]. It has been
shown that any computing system of irreversible logic gates leads inevitably to
energy dissipation [3, 4, 5] from reversible gates. There have been extensive works
[2, 6, 7, 8, 9, 10] on constructing reversible logic gates.

A fundamental question on reversible logic is what kind of reversible functions
can be implemented, given a library of reversible logic gates. In this paper, we
show that any even permutation with n (n > 3) qubits can be constructed
by NOT and Toffoli gates. We present a novel, concise and constructive proof
based on group theory. Our proof does not require the use of ‘1’-CNOT gates
to synthesize n (n > 3) qubit functions. A synthesis algorithm is derived based
on the constructive proof, where the numbers of Toffoli and NOT gates required
in the realization are bounded by (n + �n

3 �)(3 × 22n−3 − 2n+2) and 4n(n +
�n

3 �)2n, respectively. The provable synthesis algorithm outperforms search-based
approaches. The time complexity of our algorithm is 10

3 n2 · 2n. In contrast, a
search based synthesis algorithm may have a worst case time complexity of over
(2n)!/2.

The rest of the paper is organized as follows. In Section 2, we present the
definitions of reversibility, even and odd permutations, and some elementary
reversible logic gates. In Section 3, we prove that every even permutation can be
synthesized using the bounded number of gates. Based on this proof, we present
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a synthesis algorithm with an example of synthesizing a function into 8 NOT
gates and 48 Toffoli gates in Section 4. We analyze the time complexity of our
algorithm in Section 5 and conclude in Section 6.

2 Preliminaries

In this section, we introduce some basic concepts and results on permutation
group theory from [11] and binary reversible logic from [12, 13, 14].

Definition 1 (Binary reversible gate). Let B = {0, 1}. A binary logic circuit
f with n inputs and outputs is denoted by a binary multiple-output function
f : Bn → Bn. Let 〈B1, · · · , Bn〉 ∈ Bn and 〈P1, · · · , Pn〉 ∈ Bn be the input and
output vectors, where B1, · · · , Bn are input variables and P1, · · · , Pn are output
variables. There are 2n different assignments for the input vectors. A binary
logic circuit f is reversible if it is a one-to-one and onto function (bijection).
A binary reversible logic circuit with n inputs and n outputs is also called an
n-qubit binary reversible gate. There are a total of (2n)! different n-qubit binary
reversible circuits.

We introduce a permutation group and its relationship with reversible circuits.

Definition 2 (Permutation). Let M = {d1, d2, · · · , dk}. A bijection 1 of M
onto itself is called a permutation on M . The set of all permutations on M
forms a group under composition of mappings, called a symmetric group on M .
It is denoted by Sk [11]. A permutation group is simply a subgroup [11] of a
symmetric group.

A mapping s : M → M can be written as a product of disjoint cycles (Defini-
tion 3) as an alternative notation for a mapping [11]. For example,

(d1, d2, d3, d4, d5, d6, d7, d8, d9

d1, d4, d7, d2, d5, d8, d3, d6, d9

)
(1)

can be written as (d2, d4)(d3, d7)(d6, d8). Denote “( )” as the identity mapping
(i.e., direct wiring) and call this the unity element in a permutation group. The
inverse mapping of mapping f is denoted as f−1. Per convention, a product f ∗g
of two permutations applies mapping f before g.

A n-qubit reversible circuit is a permutation in S2n , and vice versa. Cascading
two gates is equivalent to multiplying two permutations in S2n . Thus, in what fol-
lows, we will not distinguish a n-qubit reversible circuit from a permutation in S2n .

Definition 3 (‘j’-cycle). Let Sk be a symmetric group of symbols {d1, d2,· · ·, dk},
then (di1 , di2 , · · · , dij ) is called a ‘j’-cycle, where j ≤ k, 1 ≤ i1, i2, · · · , ij ≤ k.

Definition 4 (even and odd permutations). A permutation is even if it is
a product of an even number of 2-cycles; and odd if it is a product of an odd
number of 2-cycles.
1 Bijection: one-to-one, and onto mapping.
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Obviously, a ‘3’-cycle is an even permutation. For instance, (1, 3, 2) = (2,
3) (3, 1). The product of some even permutations is also an even permutation.
The product of an odd number of odd permutations is an odd permutation. The
product of an even number of even permutations with an odd number of odd
permutations is an odd permutation. The product of an even number of odd
permutations is an even permutation.

Lemma 1. Let Sk be a symmetric group of symbols {d1, d2, · · · , dk}. Then any
even permutation in S2n can be expressed as a product of at most 2n−1 ‘3’-cycles.

Proof. 1. Consider a ‘m’-cycle: (a1, a2, · · · , am), m ≥ 4. It is a product of a
‘3’-cycle and a ‘(m − 2)’-cycle.

(a1, a2, · · · , am) = (a1, a2, a3) ∗ (a1, a4, · · · , am). (2)

If m is an odd number, (a1, a2, · · · , am) is a product of (m−1)
2 ‘3’-cycles. If

m is an even number, (a1, a2, · · · , am) is a product of m
2 ‘3’-cycles and one

‘2’-cycle.
2. ‘m’-cycle is called even (or odd, respectively) cycle if m is even (or odd). An

even cycle is an odd permutation; and an odd cycle is an even permutation.
Even cycle must appear as a pair of even permutation, and

(a, b) ∗ (c, d) = (a, b) ∗ (b, c) ∗ (b, c) ∗ (c, d) = (a, c, b) ∗ (b, d, c), (3)

which means that a product of a pair of ‘2’-cycles is equal to a product of a
pair of ‘3’-cycles.

Therefore, any even permutation in S2n can be expressed as a product of at
most 2n−1 ‘3’-cycles. �

Remark 1. Lemma 1 is a well-known result in permutation group theory [11].
We give a proof in order to analyze the number of ‘3’-cycles which will be used
in the decomposition process of our synthesis algorithm.

Definition 5 (NOT gate). A NOT gate Nj connects an inverter to the j-th
wire, i.e.: Pj = Bj ⊕ 1; Pi = Bi, if i �= j. 1 ≤ j ≤ n.

Definition 6 (‘k’-CNOT gate). A ‘k’-Controlled-NOT (CNOT) gate
Ci1,i2,··· ,ik;j is defined as follows:

– If m �= j, then Pm = Ci1,i2,··· ,ik;j(Bm) = Bm.

– If m = j, and Bi1 = · · · = Bik
= 1, then Pj = Ci1,i2,...,ik;j(Bj) = Bj ⊕ 1,

else, Pj = Bj.

A Toffoli gate is a ‘2’-CNOT gate where two inputs control an output of another
input.
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3 Theoretical Results

Lemma 2. If n ≥ 5 and 2 ≤ k ≤ n − 3, then any ‘(k + 1)’-CNOT gate can be
constructed by (3 × 2k−1 − 2) ‘2’-CNOT (Toffoli) gates without ancilla qubit. In
particular, ‘(n − 2)’-CNOT gate can be constructed by (3 × 2n−4 − 2) ‘2’-CNOT
gates without ancilla qubit.

Proof. Given a ‘(k+1)’-CNOT gate Ci1,··· ,ik,ik+1;j , since n ≥ 5 and 2 ≤ k ≤ n−3,
there is h, 1 ≤ h ≤ n, where h is different from i1, · · · , ik, ik+1, j. In other
words, among these n qubits, there is a qubit Bh different from the qubits
Bi1 , · · · , Bik+1 , Bj . We will prove the following equation:

Ci1,··· ,ik,ik+1;j = (Ci1,··· ,ik;h ∗ Ch,ik+1;j)2 (4)

Consider the outputs of the left side of the equation 4, we have:

Ph = Bh ⊕ (Bi1 · · ·Bik
) ⊕ (Bi1 · · · Bik

)
Pj = Bj ⊕ Bik+1(Bh ⊕ Bi1 · · · Bik

) ⊕ Bik+1Bh

= Bj ⊕ (Bi1 · · ·Bik+1)

Therefore, equation 4 holds. �

This equation tells us that any ‘(k + 1)’-CNOT gate can be constructed by two
‘k’-CNOT gates and two ‘2’-CNOT gates. Using this equation recursively, any
‘(k + 1)’-CNOT gate can be constructed by 3 × 2k−1 − 2 number of ‘2’-CNOT
gates.

For any three different bit vectors u, s and t, the following matrix P is called
the characteristic matrix of the ‘3’-cycle permutation (u, s, t).

P =

⎡
⎣

u
s
t

⎤
⎦ =

⎡
⎣

u1, u2, . . . , un

s1, s2, . . . , sn

t1, t2, . . . , tn

⎤
⎦

In this 3-row matrix P , a column having different elements (different bits) is
called a heterogeneous column. Otherwise, it is called homogeneous column.

Definition 7 (Neighboring ‘3’-cycle). If the characteristic matrix P of a
‘3’-cycle (u, s, t) has only two heterogeneous columns, this ‘3’-cycle (u, s, t) is
called a neighboring ‘3’-cycle. In other words, only two bits are different among
these three assignment vectors u, s and t.

Lemma 3. Any neighboring ‘3’-cycle permutation (u, s, t) can be generated by
four ‘(n − 2)’-CNOT gates and at most 2n NOT gates without ancilla qubit.

Proof. Suppose in P , the ith and jth columns are heterogeneous, the other
columns are all 1’s (if some are 0’s, we can first apply at most (n−2) NOT gates to
make them become 1’s, then after applying four ‘(n−2)’-CNOT gates, we apply
these NOT gates to restore these 1’s that became 0’s). The vector values in the
ith and jth columns are three out of these four vectors: 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉.
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There are 8 cases and we will prove one of them: (u, s, t) = (〈1, 0〉, 〈1, 1〉, 〈0, 1〉).
Let k, l be two indexes different from i, j, respectively. If n > 4, we denote
x = {1, 2, · · · , n} − {i, j, k, l}, namely, the index numbers except i, j, k, l. Bx =∏

h �=i,j,k,l Bh is the product of variables Bh except Bi, Bj , Bk, Bl.

1. If (u, s, t) = (〈1, 0〉, 〈1, 1〉, 〈0, 1〉), then

1, · · · , i, · · · , j, · · · , n 1, · · · , i, · · · , j, · · · , n⎡
⎣

u
s
t

⎤
⎦=

⎡
⎣

1, · · · , 1, · · · , 0, · · · , 1
1, · · · , 1, · · · , 1, · · · , 1
1, · · · , 0, · · · , 1, · · · , 1

⎤
⎦ (u,s,t)

→

⎡
⎣

1, · · · , 1, · · · , 1, · · · , 1
1, · · · , 0, · · · , 1, · · · , 1
1, · · · , 1, · · · , 0, · · · , 1

⎤
⎦=

⎡
⎣

s
t
u

⎤
⎦ (5)

We have the following equation:

(u, s, t) = Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i (6)

After a CNOT gate, only one output qubit changes its value.
After the first CNOT gate, only the second qubit Bj changes it value. Let
the changed value be B

(1)
j :

B
(1)
j = Bj ⊕ BiBkBx.

After the second CNOT gate, only the first qubit Bi changes it value. Let
the changed value be B

(2)
i :

B
(2)
i = Bi ⊕ B

(1)
j BlBx

= Bi ⊕ BjBlBx ⊕ BiBkBlBx.

After the third CNOT gate, only the second qubit changes it value again.
Let the changed value be B

(3)
j :

B
(3)
j = B

(1)
j ⊕ B

(2)
i BkBx

= Bj ⊕ (Bi ⊕ Bj)BkBlBx.

After the forth CNOT gate, only the first qubit changes it value. Let the
changed value be B

(4)
i :

B
(4)
i = B

(2)
i ⊕ B

(3)
j BlBx

= Bi ⊕ BjBkBlBx.

These exactly consist with the truth table 5 of the reversible circuit (u, s, t).
Therefore, equation 6 holds.
Similarly, we have the following equations:

2. If (u, s, t) = (〈1, 0〉, 〈1, 1〉, 〈0, 1〉), then

(u, s, t) = Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j (7)

3. If (u, s, t) = (〈0, 0〉, 〈1, 0〉, 〈1, 1〉), then

(u, s, t) = Nj ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Nj (8)
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4. If (u, s, t) = (〈0, 0〉, 〈1, 1〉, 〈1, 0〉), then

(u, s, t) = Nj ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Nj (9)

5. If (u, s, t) = (〈0, 0〉, 〈0, 1〉, 〈1, 1〉), then

(u, s, t) = Ni ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Ni (10)

6. If (u, s, t) = (〈0, 0〉, 〈1, 1〉, 〈0, 1〉), then

(u, s, t) = Ni ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ni (11)

7. If (u, s, t) = (〈0, 0〉, 〈0, 1〉, 〈1, 0〉), then

(u, s, t) = Ni ∗ Nj ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Nj ∗ Ni (12)

8. If (u, s, t) = (〈0, 0〉, 〈1, 0〉, 〈0, 1〉), then

(u, s, t) = Ni ∗ Nj ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Nj ∗ Ni (13)

Therefore, Lemma 3 holds. �

Lemma 4. If the characteristic matrix of a ‘3’-cycle (u, s, t) has k heteroge-
neous columns, then there is an ordered set M = {a1, a2, · · · , am} with m vector
assignments, such that u, s, t ∈ M and a1, am ∈ {u, s, t}. For any r, 1 ≤ r < m,
there are only r bits different among ai, · · · , ai+r, and m ≤ k + �k

3 � + 1.

Proof. Let k1 be the number of same bits and k2 be the number of different bits
between u and s, respectively. Let ki1 and ki2 be the number of same and different
bits between s and t in ki bits, respectively, i = 1, 2. Then, k11 + k12 + k21 = k,
and k11 + k12 + k21 + k22 = n.

1. According to the order u, s, t, we set a1 = u, ai = s, am1 = t, such that
i = 1 + k11 + k12, m1 = i + k12 + k21 = k + k12 + 1. We add i − 1 vectors
a2, · · · , ai−1 without changing the same bits between u and s. Each time we
change only one bit in the different bits between u and s. We apply the same
method to vectors ai+1, · · · , am1−1.
Then we get a ordered set M1 with m1 vectors such that there are only r
bits different among r neighboring vectors, and m1 = k + k12 + 1.

2. Similarly, according to the order u, t, s, we can get an ordered set M2 with
m2 vectors such that there are only r bits different among r neighboring
vectors, and m2 = k + k21 + 1.

3. According to the order s, u, t, we can get an ordered set M3 with m3 vectors
such that there are only r bits different among r neighboring vectors, and
m3 = k + k11 + 1.

We choose a minimal set M from these three sets M1, M2, M3. Let M =
{a1, a2, · · · , am} be an ordered set with m vector assignments such that there
are only r bits different among r neighboring vectors for any r ≥ 2, and m ≤
k + �k

3 � + 1. �
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Theorem 1. All n-qubit even binary reversible circuits can be constructed by
NOT and ‘2’-CNOT gates without ancilla qubit.

Proof. For any even reversible circuit, its permutation on assignments of inputs
can be expressed by the product of some ‘3’-cycles (Lemma 1).

By lemma 4, for any ‘3’-cycle (u, s, t), there are m vector assignments
a1, a2, . . . , am, where a1, am ∈ {u, s, t}, such that there is only one bit different be-
tween ai and ai+1. We can decompose the ‘3’-cycle (u, s, t) = (a1, a1+r1 , a1+r1+r2),
or (u, s, t) = (a1, a1+r1+r2 , a1+r1), where 1 + r1 + r2 = m, applying the following
equations:

(a1, a1+r1 , a1+r1+r2) = (a1+r1 , a1+r1+r2 , a1+r1+1) ∗ (a1, a1+r1 , a1+r1+1) (14)

(a1, a1+r1+r2 , a1+r1) = (a1, a1+r1+1, a1+r1) ∗ (a1+r1 , a1+r1+1, a1+r1+r2) (15)

(a1, a1+r1 , a1+r1+1) = (ar1 , a1+r1 , a1+r1+1) ∗ (a1, a1+r1 , ar1) (16)

(a1, a1+r1+1, a1+r1) = (a1, ar1 , a1+r1) ∗ (ar1 , a1+r1+1, a1+r1) (17)

By recursively applying equation 14 or 15 (if r2 > 1) and equation 16 or 16
(if r1 > 1), we can decompose (u, s, t) into neighboring ‘3’-cycles.

By Lemma 3, any neighboring ‘3’-cycle can be constructed by NOT and ‘(n−
2)’-CNOT gates. Applying equation 4 recursively, it can be constructed by NOT
and ‘2’-CNOT gates.

Therefore, all n-qubit even binary reversible circuits can be constructed by
NOT, ‘2’-CNOT gates without ancilla qubit. �

Next, we establish the upper bounds on the number of ‘2’-CNOT gates and the
number of NOT gates used in our construction.

Theorem 2. The number of ‘2’-CNOT gates used in the above construction is
no more than (n+�n

3 �)(3×22n−3−2n+2). The number of NOT gates is no more
than 4n(n + �n

3 �)2n.

Proof. Let g(r1, r1 + r2) be the number of ‘(n − 2)’-CNOT gates. We need to
synthesize a ‘3’-cycle (aj , aj+r1 , aj+r1+r2) or (aj , aj+r1+r2 , aj+r1), r1 ≥ 1, r2 ≥ 1.

According to Lemma 3, g(1, 2) = 4.
Using equation 14 or 15, we get g(r1, r1 + r2) ≤ g(1, r2) + g(r1, r1 + 1).
Using equation 16 or 17, we get g(r1, r1 + 1) ≤ g(1, 2) + g(r1 − 1, r1). Recur-

sively, we get g(r1, r1 + 1) ≤ (r1 − 1)g(1, 2). Similarly, g(1, r2) ≤ (r2 − 1)g(1, 2).
Therefore,

g(r1, r1 + r2) ≤ (r1 + r2 − 1)g(1, 2) = 4(r1 + r2 − 1) = 4(m − 2). (18)

From equation 18 and Lemma 4, we have

g(r1, r1 + r2) ≤ 4(k + �k

3
� − 1) < 4(n + �n

3
�). (19)
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Based on Lemmas 1, 2, 4, and equation 19, the upper bound of the number
of ‘2’-cycles that are needed to synthesize any given even reversible circuit is:

2n−1 × 4(n + �n

3
�) × (3 × 2n−4 − 2)

= (n + �n

3
�)(3 × 22n−3 − 2n+2).

In terms of Lemmas 1, 3, and equation 19, the upper bound on the number
of NOT gates is:

2n−1 × 4(n + �n
3 �) × 2n = 4n(n + �n

3 �)2n. �

Remark 2. The upper bound for NOT gates can be reduced by removing pair of
the adjacent same NOT gates. (There is commutativity in the product of NOT
gates). This is illustrated by the example in the next section.

4 Algorithm and Synthesis Example

Based on the above analysis, we present the following constructive algorithm for
synthesizing any even binary reversible circuit without using ancilla qubits.

Algorithm
Step 1. Rewrite f as the product of ‘3’-cycles by using equations 2 and 3.
Step 2. For every ‘3’-cycle (u, s, t), find an ordered set M = {a1, · · · , ak}

according to Lemma 4. Based on equations 14, 15, 16, and 17, rewrite this
‘3’-cycle (u, s, t) as a product of some neighboring ‘3’-cycles (ai, ai+1, ai+2) or
(ai, ai+2, ai+1).

Step 3. Synthesize all neighboring ‘3’-cycles by NOT and ‘(n − 2)’-CNOT
gates by Lemma 3 and remove pair of the adjacent same NOT gates.

Step 4. Decompose each ‘(n− 2)’-CNOT gates into (3× 2n−4 − 2) ‘2’-CNOT
gates by using equation 4.

Example: Given an even binary reversible circuit f which has a truth table
as shown in Table 1.

Table 1. An even binary reversible function f

input output
B1 B2 B3 B4 B5 encoding P1 P2 P3 P4 P5 encoding
0 1 0 1 0 b1 1 1 1 1 0 b5

0 1 1 1 0 b2 1 0 1 1 0 b4

1 0 0 1 0 b3 0 1 0 1 0 b1

1 0 1 1 0 b4 1 0 0 1 0 b3

1 1 1 1 0 b5 0 1 1 1 0 b2

Therefore, f = (b1, b5, b2, b4, b3).
Step 1. Decompose f into ‘3’-cycles by equation 2. f = (b1, b5, b2)(b1, b4, b3).
Step 2. Decompose each ‘3’-cycle into the product of neighboring ‘3’-cycles.
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– For ‘3’-cycle (b1, b5, b2). This is a neighboring ‘3’-cycle.
– For ‘3’-cycle (b1, b4, b3). Using Lemma 4, we get an ordered set M =

{a1, a2, a3, a4}, where a1 = b1, a2 = 〈0, 0, 0, 1, 0〉 (a new vector), a3 =
b3, a4 = b4. Using equation 17, we get

(b1, b4, b3) = (a1, a4, a3) = (a1, a2, a3)(a2, a4, a3).

Step 3. By applying NOT gates and equation 11, we have:

(b1, b5, b2) = N5 ∗ N1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ N1 ∗ N5.

By applying NOT gates and equation 13, we have:

(a1, a2, a3) = N5∗N3∗N2∗N1∗C2,3,5;1∗C1,4,5;2∗C2,3,5;1∗C1,4,5;2∗N1∗N2∗N3∗N5.

By applying NOT gates and equation 9, we have:

(a2, a4, a3) = N5 ∗ N3 ∗ N2 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ N2 ∗ N3 ∗ N5.

By removing pair of the adjacent same NOT, f is decomposed into the product
of 8 NOT gates (without removing NOT gates, there are 18 NOT gates) and 12
‘3’-CNOT gates.

f = N5 ∗ N1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1
∗N3 ∗ N2 ∗ C2,3,5;1 ∗ C1,4,5;2 ∗ C2,3,5;1 ∗ C1,4,5;2 ∗ N1
∗C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ N2 ∗ N3 ∗ N5.

Step 4. Using equation 4, decompose each ‘3’-CNOT gate into 4 ‘2’-CNOT
gates.

The synthesis process is finished, and f is decomposed into the product of 8
NOT gates and 48 ‘2’-CNOT gates.

5 Complexity Analysis

Theorem 3. The time complexity of the synthesis algorithm is no more than
10
3 n2 · 2n.

Proof. Calculate the time complexity of each step, then add them up.

Remark 3. Our method is constructive, since for each step, we are simply trans-
forming the formula to obtain the synthesized gates. We do not need to search
other reversible circuits that do not appear in our method. The computational
complexity of our synthesis algorithm is exponentially lower than the complexity
of breadth-first search based synthesis algorithm. The space complexity of any
breadth-first search based synthesis algorithm for n qubits even reversible cir-
cuit is more than (2n)!/2, since in the worst case, it at least needs to remember
all (2n)!/2 even reversible circuits. This is impossible even when n = 4 since
(24)!/2 ≈ 1.0 × 1013. The time complexity is also greater than (2n)!/2, because
in the worst case, it at least needs to compute all even reversible circuits. In
fact, it also has to do a lot of comparisons of equality to determine whether
the calculated circuit is the given circuit or not, so the time complexity of any
breadth-first search based synthesis algorithm is much more than (2n)!/2.
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6 Conclusions

In this paper, we present a constructive proof that any even reversible circuit
can be implemented by NOT and Toffoli gates. Our proof is essentially a con-
struction of the reversible circuit and we also give the upper bounds for the
number of NOT gates and Toffoli gates in such circuit. We present a construc-
tive synthesis algorithm based on this proof and give a synthesis example based
on this algorithm, which shows that even by hand, synthesizing any 5-qubit even
reversible circuit is not difficult. The computational complexity of our synthe-
sis algorithm is exponentially lower than the complexity of breadth-first search
based synthesis algorithm.
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