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Cyber-physical systems (CPS) tightly integrate cyber and physical components and tran-
scend discrete and continuous domains. It is greatly desired that the synergy between
cyber and physical components of CPS is explored even before the complete system is
put together. Virtualization has potential to play a significant role in exploring such
synergy. In this paper, we propose a CPS virtualization approach based on the inte-
gration of virtual machine and physical component emulator. It enables real software,
virtual hardware, and virtual physical components to execute in a holistic virtual exe-
cution environment. We have implemented this approach using QEMU as the virtual
machine and Matlab/Simulink as the physical component emulator, respectively. To
achieve high-fidelity between the real system and its virtualization, we have developed
a strategy for synchronizing the virtual machine and the physical component emulator.
To evaluate our approach, we have successfully applied it to real-world control systems.
Experiments results have shown that our approach achieves high-fidelity in capturing
dynamic behaviors of the entire system. This approach is promising in enabling early
development of cyber components of CPS and early exploration of the synergy of cyber
and physical components.

Keywords: Cyber-physical systems; virtualization; virtual machine; co-simulation.

1. Introduction

Cyber-physical systems (CPS) are engineered systems that are built from and
depend upon the synergy of cyber and physical components.! CPS engineering
must account for the interacting and interdependent behaviors of both types of
components. Representative application domains of CPS include medical devices

1340005-1


http://dx.doi.org/10.1142/S1793962313400059

Y. Zhang et al.

and systems, automobiles, robotics, avionics, and other critical infrastructures. Due
to the criticality of CPS, they are often required to be high-confidence.

CPS are generally difficult to analyze, design and validate because of the fol-
lowing two main reasons:

e In contrast to the traditional embedded systems view where the focus tends to
be more on the cyber components, CPS emphasize the holistic system view over
both the cyber and physical components. CPS engineering must account for the
interacting and inter-dependent behaviors of cyber and physical components to
achieve system level functionalities;

e CPS conjoin two different semantic domains: the continuous dynamics of the
physical components (often modeled by differential equations) and the discrete
dynamics of cyber components (often modeled in discrete mathematics). These
different semantics make the integration of these components and also their
abstractions a major challenge.

The above two reasons significantly complicate analysis of CPS. For certain com-
ponents of CPS, particularly physical components, the only abstractions available
are usually simulation models, which makes complete formal analysis impractical
and simulation the key method for validating these systems. The need for effective
simulation techniques for CPS integrating cyber and physical components has been
recognized for some time. Most current techniques abstract cyber components into
state machines running in parallel with the simulation models of physical compo-
nents. The omission of programming-language level details of cyber components
make it hard to achieve holistic validation of the complete CPS and detect the
implementation-level errors of cyber components.

In order to address this drawback, simulation techniques need to model the full
closed-loop system including both the cyber components in implementation level
and physical components. It is greatly desired that the synergy of cyber and phys-
ical components is explored even before the complete system is put together, for
instance, the cyber components can be developed and evaluated even before the
physical components are manufactured. Virtualization has the potential to play a
significant role in exploring the synergy between the cyber and physical components
of CPS. Recently, virtual machine has been increasingly used in the analysis, design,
verification and deployment of computer systems, particularly embedded systems.
It enables early software development even before silicon prototypes become avail-
able. A notable example is how Intel used virtual devices to enable early driver
development for their 40 Gigabit Ethernet adapter before the device became avail-
able.?2 However, virtual machine lacks the capabilities to capture the continuous
dynamics of physical components and enable holistic CPS visualization.

In this paper, we present a CPS virtualization approach based on the integra-
tion of virtual machine and physical component emulator. Virtual machine emu-
lates the hardware components such as the processor, bus, and peripheral devices,
etc. It supports execution of a full-fledged operating system such as Linux and
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application-specific software components such as software controllers. Physical com-
ponent emulator provides the virtualization of physical components such as sensors,
actuators, and control plants. Their integration enables real software, virtual hard-
ware and virtual physical components to execute in a holistic virtual execution
environment.

Central to this integration is the synchronization between the virtual machine
and the physical component emulator, which greatly affects fidelity and efficiency
of virtualization. Although differential equations modeling physical components are
solved with approximations, the events generated in the virtual machine and the
physical component emulator are quite different. To synchronize these events, we
designed a synchronization strategy in which we unify the essential synchronization
events along a synchronization clock. With this strategy, we only synchronize the
emulators on the events that affect the system behaviors, to avoid unnecessary
overheads.

We have implemented this approach using QEMU? as the virtual machine
and Matlab/Simulink® as the physical component emulator, respectively. And we
have also implemented the synchronization strategy. To evaluate our approach, we
have successfully applied it to real-world control systems. Experiment results show
that our approach can achieve high-fidelity in capturing system dynamic behaviors
efficiently.

This paper makes the following contributions. (1) We present a CPS vir-
tualization framework, which enables real software, virtual hardware and vir-
tual physical components to execute in a holistic virtual execution environment.
(2) We have developed a synchronization strategy between the virtual machine and
physical component emulator, for tight integration of virtualized cyber and physi-
cal components. This approach is promising in enabling early development of cyber
components of CPS and exploration of the synergy between cyber and physical
components.

The reminder of this paper is organized as follows. Section 2 reviews related
work. Section 3 introduces the background of this paper. Sections 4 and 5 present
the design and implementation of our approach. Section 6 elaborates on case studies
we have conducted and discusses the experimental results. Section 7 concludes the
paper and discusses future work.

2. Related Work
2.1. Co-simulation

The CPS concept transcends embedded systems and hybrid systems. Embedded
systems research has been largely focused on hardware and software and, particu-
larly, their interactions. Hybrid systems research has been largely focused on the
interactions between discrete and continuous domains. CPS research takes a com-
prehensive view of the whole system and, instead of focusing on a single semantic
gap, it focuses on multiple semantic gaps simultaneously.
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In embedded systems research, closely related to CPS simulation is HW/SW
co-simulation. Co-simulation is low-cost and efficient in detecting shallow bugs.
There has been much research®® on co-simulation that has led to industrial tools
such as Seamless.!? For hybrid systems, continuous components are typically mod-
eled with tools such as LabView,!! Mathematica,'? Matlab/Simulink and Model-
ica.’® These tools are interfaced to the simulators for discrete components such as
ModelSim.

CPS co-simulation is based on HW/SW co-simulation by utilizing the above
tools. The most closely related work is presented in Ref. 15, where a methodology
and an open toolset for the virtual prototyping of CPS were proposed. The focus
was on integration of tools while the synchronization issues and fidelity evaluation
are not explicitly addressed. In Ref. 16, a comprehensive co-simulation platform
for CPS and examples showing the capabilities of the platform were presented. The
simulation platform is built on Modelica and ns-2 tools. Modelica is used to simulate
software and physical components. Software components are simulation models in
high level. This makes it difficult for developers to observe and verify system on
the implementation level. In addition, there is no guarantee about the consistency
between the simulation model and their implementation.

2.2. Virtual machine

The other research closely related is the virtual machine. A virtual machine is a
software implementation of a machine (i.e., a computer) that executes programs
like a physical machine. The virtual machine research has been largely focused
on hardware and software and, particularly, their interactions, which lacks ability
to capture the physical dynamics. In Ref. 17, an approach to constructing a vir-
tual platform by integrating hardware models in SystemC into the QEMU virtual
machine is proposed. It can be used to facilitate the co-design of hardware models
and device drivers at the early stage of electronic system level design flow. In Ref. 18,
DDT was proposed for testing closed-source binary device drivers against undesired
behaviors. DDT combines virtualization with a specialized form of symbolic execu-
tion to thoroughly exercise tested drivers. However, CPS research requires taking
a comprehensive view of the whole system of software hardware and physical.

3. Background

In this section, we introduce three related concepts: QEMU, Matlab/Simulink and
synchronous languages. We use QEMU as virtual machine in our implementation,
and Matlab/Simulink to simulate physical dynamics. Our integration of QEMU
and Matlab/Simulink is based on the synchronous language principle.

3.1. QEMU

QEMU is an open source system emulator and provides the flexibility of devel-
oping customized virtual machine environment. QEMU emulates several different
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processor architectures, such as x86, SPARC and ARM. It relies on dynamic
binary translation to achieve a reasonable speed. It also provides a set of virtual
devices, such as Industry Standard Architecture (ISA) devices, PCI devices and
USB devices. A virtual device is essentially a software implementation of a device
integrated into QEMU. The communication between the processor emulator and
the virtual device is done via registered callback functions for the corresponding
memory regions on the system bus.

We illustrate the virtual device concept with the 16550A UART (universal asyn-
chronous receiver/transmitter), an ISA device. As shown in Fig. 1, the virtual device
has the following components:

e ISA device state, as defined by 16550A UART, which keeps track of the state of
the ISA device;

e functions simulating basic behaviors of the device: functions serial mm write
and serial_mm_read simulate how 16550A UART respond when the driver
issues I/O command; function serial update_irq simulates how 16550A UART
respond when an interrupt is generated.

1 typedef struct ISASerialState {

2 ISADevice dev;

3 uint32_t index;

4 uint32_t iobase;

5 uint32_t isairq;

6 SerialState state;

7 } ISASerialState;

8

9 static void serial_mm_write(void *opaque,target_phys_addr_t addr,
uint64_t value, unsigned size)

10 {

11 .

12 serial_ioport_write(s, addr>>s->it_shift, value);

13

14 3}

15

16 static uint64_t serial_mm_read(void *opaque,target_phys_addr_t
addr, unsigned size)

17 {

18 .

19 return serial_ioport_read(s, addr >> s->it_shift);
20 }

21

22 static void serial_update_irq(SerialState *s)

23 A

24 uint8_t tmp_iir = UART_IIR_NO_INT; /* No interrupts pending */
25 .

26 if (tmp_iir != UART_IIR_NO_INT) {

27 gemu_irq_raise(s->irq);

28 } else {

29 gemu_irq_lower (s->irq);

30 }

31 ¥

Fig. 1. QEMU virtual device code structure.
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3.2. Matlab/Simulink

Physical components are often modeled using differential and integral calculus with
continuous semantics. Matlab/Simulink is a powerful numerical computing and sim-
ulation environment for multi-domain dynamic systems, which enables effectively
solving the differential and integral equations.

Simulink supports extension via well-defined S-function (system-functions)
interfaces. S-functions are written in Matlab, C, C++, or Fortran. We illustrate the
S-function simulation flow as shown in Fig. 2. An S-function block flow includes a
simulation loop. In each iteration of the simulation loop, Matlab first determines the
next sampling time, then calculates the output of the block, updates each discrete
variable, and finally calculates the differential equations with suitable approxima-
tion solvers like Runge-Kutta and updates the output simultaneously.

3.3. Synchronous languages

Synchronous languages such as Esterel'® and Lustre?® have been developed to
describe close-loop control systems. These systems interact continuously with their
environment in terms of a discrete sequence of reaction steps, at a speed imposed
by the environment.?!

Execution of programs in synchronous languages follows instants of a global
clock. The operational semantics of these languages is defined by so-called micro
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Fig. 2. S-function simulation flow.
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and macro steps, where a macro step consists of finitely many micro steps. Macro
steps correspond with reaction steps of a control system, and micro steps correspond
with atomic actions. Variables of a synchronous program are synchronously updated
between macro steps, so that the execution of the micro steps of one macro step is
done in the same variable environment of their macro step.

The synchronous language abstraction does not only lead to a convenient pro-
gramming model for control systems as well as a simplified estimation of worst-case
reaction times. It is also the key to a compositional formal semantics which is neces-
sary for simulation and verification. Hence, synchronous languages lend themselves
to the development of embedded control systems.

4. Design of CPS Virtualization

In this section, we discuss the framework for CPS virtualization. CPS include not
only software and hardware components, but also physical components. The holistic
virtual execution environment is shown in Fig. 3.

The virtual machine emulates the hardware components and provides a virtual
platform for executing the software controller. And we model physical components
with differential equations and compute them with suitable approximation solvers
in the physical component emulator. Then we integrate the virtual machine and the
physical component emulator to virtualize the entire CPS. The software controller
executes on the virtual machine and, through it, interacts with the virtualized
physical components. In what follows, we characterize the dynamic of the main
components in detail and discuss how their integration is handled.

4.1. Cyber components
Cyber components include both software and hardware components. The virtual

machine emulates hardware components such as the processor, bus, and peripheral

CPS virtual execution environment

Application

|

|

|

|

|

|

| Operating

: System

: |
| Virtual :
| Device Cyber/Physical Virtual Physical |
: | j |me"facel[: : Component Executable |
| Virtual Machine | Il_PhysicaI Component Emulator :
Y g

Fig. 3. Architecture of CPS virtualization.
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devices, etc. It supports execution of a full-fledged operating system such as Linux
and application-specific modules for a software controller. We maximize realism
by running the software controller in the complete environment: libraries, kernel,
drivers, etc. Within a real software stack, the control program can read/write files,
send /receive network packets or be preempted /blocked by the operating system. We
capture all interactions of the software controller with its surrounding system, not
just with a simplified abstraction of that system. The software controller implements
the desired sequences of actions according to the control algorithm. Figure 4 shows
an example software controller.

Software components represent sequences of causally related actions. This means
the execution of software controller follows the sequence of events, whenever these
events occur. We associate each statement in software with a temporal event. We
define the temporal event as a tuple (n,t), where n € N is a natural number, and
t € R is a real-time stamp. The tuple (n,t) identifies an ordered sequence number
n and a corresponding real-time instant ¢ when the software actions are taken. Let
i as a partial function defined on the tuple (n,t). So our time model of software
components has the form,

p:NxR—-R

We also assume a lexical ordering on the tuple (n,t): (n1,t1) < (ng,t2) < t; <
LoV (t1 = ta Anq < n2). This allows software components to have a real-time stamp
at each action. At shown in Fig. 4, when initializing the controller, the software
will set a timer to invoke the control loop periodically. After that, the controller
will wait to invoke the control loop. In the control loop, the controller first reads
sensor values from related channels (line 5, read sensor event Egtate ), then calculates
outputs according to the control algorithm, writes commands to relevant actuators
(line 15, write command event Ecomm) and updates states in the end. Although we
associate a temporal event with each statement, we still do not know exact time
t when the software actions are taken. Actually, the exact occurring time instant
w(n,t) of most software actions do not affect the whole system behavior. We focus
on the sequence of actions n instead of exact occurring time instant ¢ for these
events. For the other temporal events (such as Egtate and Eeomm ), we will associate
with exact real-time stamp ¢. We will discuss these in detail in Sec. 4.4.1.

4.2. Physical components

We describe physical components evolving on a continuous-time basis, typically as
a mathematical model. The mathematical model can be represented by a set of
first-order differential equations on a vector-valued state. The most general state-
space representation of a linear system with inputs, outputs and state variables is
written in the following form:

(1)
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1 int ReadSensors(SensorReadings_t *sensors)

2 A

3 A

4 /*associate with read sensor event FEsiate*/

5 if ((result = dscADScan(dscb, &dscadscan, samples))!= DE_NONE){

6 free(samples) ;

7 }

8

9

10

11 void commandMotor (double *v)

12 {

13 A

14 /*associate with write command event FEcomm*/

15 if ((result = dscDAConvert(dscb, pos_channel, pos_counts)) !=
DE_NONE) {

16 dscGetLastError (¥errorParams) ;

17 }

18

19 }

20

21 int main(int argc, char **argv, char **envp){

22 A

23 initial () ;

24 A

25 while (TSrunning) {

26 .

27 waitClock () ;

28 /* Read the raw sensor wvalues */

29 if (!'readSensors(&SensorReadings)) {

30 printf ("A/Dyerror,in ReadSensors --yaborting\n");

31 return;

32 }

33 R

34 calculateOutput ();

35 Ce

36 /* Actually fire off the motors */

37 commandMotor (Actuator.FanVoltage);

38 -

39 updateState () ;

40 }

41

42 )

Fig. 4. Control software example.

where z(t) € R™, y(t) € R™, u(t) € RP and ¢t € R are state, output, input vectors
and real time. The function, g : R® x R? xR — R"” and f: R" x RP x R — R™ are
state functions and output functions, respectively. The differential equations must
be approximated by a solver. Take classical fourth-order Runge-Kutta method as
an example. The fourth-order Runge-Kutta method is one member of the family
of Runge-Kutta methods which are iterative methods for the approximation of
solutions of ordinary differential equations. For a step-size h > 0,

1
Ty = Tp—1 + 6h(K1—|—2K2+2K3+K4), (2)
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where x,, is the approximation of x(¢,), and the value z,, is determined by the
value x,_1 plus the weighted average of four increments, where each increment
is the product of the size of the interval, h, and an estimated slope specified by
function g on the right-hand side of the differential equation,

Ky =g(xn_1,tn-1);

1 1 1
Ky =g (xn—l + §hK1,U (tn—l + §h)7tn—1 + §h>§

1 1 1
Kz=g (xn—1 + §hK2,U (tn—l + §h)7tn—1 + §h>§

K4 - g(xn—l + hKSau(tn—l + h)atn—l + h)

The solver provides samples of the continuous dynamics, and typically, to main-
tain adequate accuracy, must control the time steps between such samples. For
example, in order to complete one step h, the solver will evaluate the function g at
the intermediate time ¢,,_1 + %h

4.3. Cyber/physical interface

Cyber components and physical components are mostly asynchronous and only
transition synchronously when they interact through the cyber/physical interface.
The interface is determined by the cyber and physical components that it con-
nects. This enables more flexible composition of cyber and physical components
and creation of composite components including both cyber and physical subcom-
ponents. A cyber/physical interface has two parts: interface states and interface
events. Interface states, (I, 1), are state variables provided either by cyber or
physical and accessible by both. Interface events have two types: cyber or phys-
ical. When cyber updates the physical interface states, a cyber interface event
occurs (such as when entry stack symbol of dscDAConvert is reached), and vice
versa.

We illustrate the concept of cyber/physical interface with an example as shown
in Fig. 5. The interface is derived from the interfaces of software controller and
physical components. The specification of the interface defines:

e What variables in cyber components are mapped to input vectors in physical
components, for instance, the pos_counts variable is mapped to the input vectors
u(t) at time ¢; + d in physical components (line 7);

e What output vectors in physical components are mapped to variables in cyber
components, for instance, the output vectors, y(t) at time ¢;, is mapped to the
variable dscadscan.sample values (line 10);

e What is sensor noise characterization in control system, such as mean and vari-
ance of the sensor signal (line 13).
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1 Interface:

2 Ip = {var = {u(ti+d), y(t;)}}

3

4 Ic = {var = {dscadscan.sample_values, pos_counts}}

5

6 /*cyber variable to physical input vectors mappingx*/
7 (pos_counts, u(t;+d))

8

9 /*physical output vectors to cyber variable mapping*/
10 (y(ti), dscadscan.sample_values)

11

12 /*sensor noise characterizationx*/

13 Noise = {Mean, Variancel}

Fig. 5. A cyber/physical interface example.

4.4. Synchronization of cyber and physical component emulators

As already mentioned, physical components in CPS operate in a time continuum,
whereas cyber components are composed of discrete, step-by-step actions. Their
interaction has to be faithfully modeled to achieve high-fidelity virtualization.

4.4.1. Timing parameters of a control task

According to the analysis in Secs. 4.1 and 4.2, we can see that the approxima-
tion solver for physical components operates similarly to the virtual machine for
cyber components. While the virtual machine uses an event queue to determine
the advancement of time for software controller, the physical emulator consults an
approximation solver for physical components. It is critical to place discrete con-
troller and continuous physical behavior on a unified temporal semantic basis where
it can be proven that the results of simulation are mutually consistent.

We assume the system must react to a stimuli from the environment within hard
time bounds. That is, we associate with a fixed constant time between synchroniza-
tion events. Building on the synchronous language principles, the execution of such
a system is a discrete sequence of reaction steps following a unified temporal seman-
tic basis. In each macro step, new inputs are read and corresponding outputs and
next states of the system are computed. At each micro step, interface states must be
synchronously updated when interface events occur. Otherwise, cyber components
and its controlled physical components execute asynchronously in corresponding
emulators. The basic timing parameters of a control task are shown in Fig. 6.

Assume that the control task is executed periodically at times given by ¢, =
T xk, where T is the fixed sampling interval of the controller and k is the num-
ber of controller iterations. Also assume time bound d for the fixed interval from
A /D conversion to D/A conversion. There are two types of synchronization tem-
poral events: read sensor event Fgiate and write command event Feomm. We define
these temporal events Fgiate and Feomm as (n1,te;) and (ne, te + d), respectively.
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Fig. 6. Timing analysis of control task.

The time u(nq,tq) is earlier than p(na,te; + d). The A/D conversion is started by
the controller when the entry stack symbol of dscADScan is reached (see Fig. 4,
line 5) at t.; (triggering Estate). Meanwhile, the states of physical components at
tpi are sampled by the controller. The controller gets the state data and executes
the control logic. When the entry stack symbol of dscDAConvert is reached (see
Fig. 4, line 15), the control task will send the control command at t.; +d (triggering
Ecomm). Simultaneously, the physical components are controlled at Ltpi+d- Accord-
ing to the causal dependencies in the control loop, we abstract the essential instants
{tei,tei + d,teit1} on the computing clock and {tp;, tpi + d, tpi+1} on the physical
clock. According to the way how the control task is executed, the time stamps
{tei,tei +d, teivn} and {tp;, tpi +d, tpig1 } occur pairwise simultaneously. Therefore,
we unify these instants on a synchronization clock and identify them as synchro-
nization instants {¢;,¢; + d,t;+1} (shown in the bottom horizontal axis of Fig. 6).
Synchronization events are then triggered in the emulators on these instants.

4.4.2. Synchronization protocol

The holistic simulation is based on the interaction of the virtual machine and the
physical component emulator. A single control iteration in the simulation begins at
the point the physical component’s state is sensed and ends after the plant evolves
for a sampling period based on the controller’s actions. As shown in Fig. 7, we
design the synchronization protocol as follows:

(i) Start the virtual machine and physical component emulator at to;

(ii) the scheduler of physical component emulator triggers the earliest future event
at time ¢; (1 =0,1,2,3,...). The physical component state at ¢; is sent to the
virtual machine;

(iii) the physical component emulator and the virtual machine will then run asyn-
chronously until ¢; + d:

(a) The physical component emulator executes with the latest command until
t; + d. Then it pauses at t; + d, waiting for the new command;
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Fig. 7. Synchronization protocol between cyber and physical.

(b) meanwhile, the virtual machine receives the state data at the time ¢;,
executes the control algorithm, and pauses at the time t; + d, where it
sends the new command to the physical component emulator.

(iv) Then the physical component emulator and the virtual machine will run asyn-

chronously during the time interval (¢; + d, t;11]:

(a) The physical component emulator will process differential equations from
t; + d to t;y; with the new command;

(b) meanwhile, the virtual machine will execute the control algorithm to time
t;+1 and pause there waiting for receiving the physical component state

at ti+1 .

(v) Repeat steps (ii), (iii) and (iv) until the end of simulation.

The strategy will not miss any essential synchronization event between the vir-
tual machine and physical component emulator. So our virtualization has the poten-
tial to achieve high fidelity efficiently.

5. Implementation of CPS Virtualization

We chose QEMU 1.0 as the virtual machine and Matlab 7.13 as the physical compo-
nent emulator. Inputs of our virtualization include the source code of the controller,
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Fig. 8. Implementation of virtual execution environment.

the cyber/physical interface design, and the mathematical models of the physical.
Then we instrument the source code and the physical mathematical model based on
the cyber/physical interface. Once model instrumentation is done, we can run the
software controller and the physical model in our virtual execution environment.
Figure 8 shows the implementation of the CPS Virtualization.

We instrument the source code based on the cyber /physical interface and rewrite
dscADScan and dscDAConvert functions. We compile the source code of the soft-
ware controller to execute in QEMU. QEMU and Matlab/Simulink communicate
through a socket. QEMU run as a client to communicate with a server that employs
Matlab as a computation engine. The Matlab engine provides a library of functions
that allows the server to start and end a Matlab process and send commands to be
processed in Matlab. The physical components are modeled in Simulink and set up
by the Matlab engine. The communication block in Simulink is represented by an
S-function. The S-function, which we generate based on the cyber/physical inter-
face, sends physical state data to or receives cyber commands from the server via
shared memory. Matlab/Simulink executes all blocks in the Simulink model at each
sampling step. During each step, the S-function block is executed to communicate

with QEMU.

6. Evaluation

In this section, we report two experiments applying our approach to real-world
control systems: TableSat??23 and Automatic Transmission Controller. Through
the first experiment, we show how the virtualization can be used as a platform
to develop controllers by comparing results from the real and virtual TableSat.
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The second experiment is from an automotive application in Simulink. Through
the second experiment, we show how our approach can achieve higher fidelity than
Simulink/Stateflow. All experiments were performed on a machine with 2.93 GHz
Intel(R) Xeon and 8G memory.

6.1. TableSat

TableSat (shown in Fig. 9) is an interactive platform from the University of Michi-
gan, which emulates in one degree-of-freedom the dynamics, sensing, and actuation
capabilities required for satellite attitude control. We have obtained the TableSat
via collaboration and rebuilt it to suit our needs.

TableSat is driven by two computer fans and spin down by the friction. It
contains a high-precision rate gyro, Silicon Ring Gyro CRS03, to measure angu-
lar velocity. An onboard Diamond Systems Athena II SBC computer running the
Debian operating system communicates to a ground station via a wireless 802.11b
interface. The computer interfaces to sensors through 16-bit analog-to-digital con-
verters and to actuators through amplified 12-bit digital-to-analog channels. The
cyber component gathers the angular velocity from the gyroscope sensor. Then
based on the gyro data, the control algorithm calculates suitable voltage which is
applied to the fan to change the motion of TableSat. The controller relies only on
the gyroscope sensor to stabilize the TableSat motion.

6.1.1. TableSat virtualization

We have developed a virtual execution environment for TableSat, which is illus-
trated in Fig. 10. We utilize the X86 processor model to emulate the Athena II SBC

Fig. 9. TableSat.
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Fig. 10. TableSat virtualization.

in QEMU. The software controller is implemented in the C language. The physical
components include TableSat dynamics, friction, fans and sensor. They are modeled
mathematically according to respective physical characteristics in Matlab/Simulink.
The equations of TableSat motion are:

I = 1K, f(v1 +v2) — frs(w), (3)
U1 = —avy + Koo (Vi = fran1(v1)), (4)
v = —aws + Kuo (Vo — fran2(v2)), (5)

where [ is the TableSat moment of inertia, w is the TableSat angular velocity, vy is
the speed of the fanl, vy is the speed of the fan2, [ is the fan moment arm, frg is
the TableSat friction and is a function of w, K is the fan speed to force constant,
V4 is the voltage applied to the fanl, V5 is the voltage applied to the fan2, « is the
fan time constant, K, is the fan voltage to change in speed constant, and ffan1
and fano are the frictions in the fans and are functions of v; and wve, respectively.

We simulate the physical dynamics in Matlab/Simulink as shown in Fig. 11.
There are three blocks: Communication, TableSat and Gyro Noise. Matlab com-
municates with the external environment through an S-function named Communi-
cation: sends the angular velocity to the external environment and receives voltage
commands. The S-function named TableSat computes the Tablesat rotary (Table-
Sat motion, Rate Gyro and Motors), as described in Egs. (3)—(5). The random
block named Gyro Noise models the sensor noise characterization. The noise char-
acterization of gyro signal is that: Mean = 0.0025, Variance = 0.1936. The two
blocks work together to generate the final angular velocity data.
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Fig. 11. Physical model in Simulink.

6.1.2. Ezperiment result

In this experiment, the angular velocity of the TableSat is controlled by manipu-
lating voltage applied to the fan. The overall design requirements are:

e Rise time: the time required for the response to rise from 10% to 90% of its final
value under 10s;

e Peak overshoot ratio: the ratio of the first highest peak value reached by the
response to the desired value below 0.4;

e Steady-state error: the difference between the desired final output and the actual
one when the system reaches a steady state below 5°/s;

e Settling time: the time required for the response curve to reach and stay within
a steady-state error band under 15s.

We have developed a Proportional Integral Derivative (PID) controller and
tested it in the holistic virtual execution environment. The final discretization of
the PID algorithm is an incremental form:

Au(t) = u(t) —u(t —1)
= Ky(14+Ts/T; + Ta/Ts)e(t) + Kp(—1 — 2Ty /Ts)e(t — 1) + K, Tq/Tse(t — 2)
= Ae(t) + Be(t — 1) + Ce(t — 2), (6)

where u is the control inputs, e is the error between the measured value and desired
value, K, is the proportional gain, T; is the integral time, T} is the derivative time,
T is the sampling time, ¢ is the instantaneous time, A = K,(1 + T/T; + Ty/Ts),
B = K,(—1—-2T4/Ts), C = K,Tq/Ts.

To evaluate the PID controller, we conducted tests for a series of step input
of expected angular velocity. In the virtual TableSat, we set the fixed sampling
interval T = 0.2s and the fixed interval from A/D conversion to D/A conversion
d = 0.1s. As shown in Fig. 12, we run the controller eight times. Input of expected
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Fig. 12. TableSat test results gathered in virtual environment.

angular velocity from 10°/s to 80°/s (Run 10: 10°/s, Run 20: 20°/s, Run 30: 30°/s,
Run 40: 40°/s, Run 50: 50°/s, Run 60: 60°/s, Run 70: 70°/s, Run 80: 80°/s). The
curves of angular velocity, given the expected angular velocities, show that with
increasing voltage there is an initial step rise to a maximum value followed by a
fall to a first minimum value and then stabilization on the expected value. All the
angular velocity response of TableSat shows that its control properties meet the
design requirement.

The designed controller is then tested on the real TableSat system. In the real
TableSat, we use a timer (0.2s) to wake up the software periodically. Figure 13
shows results gathered from the real TableSat. Comparing Fig. 12 with Fig. 13, we
can see the characters of angular velocity curves are closely matched.

Before quantifying the divergence between the real TableSat and its virtualiza-
tion, we first define an evaluation metric, absolute divergence, which is the differ-
ence between the actual velocity and expected ideal velocity. We can calculate this
divergence by measuring the difference between the actual velocity and the ideal
velocity. Table 1 shows statistics of absolute divergence over eight runs. Each row
in the table shows statistics of a system run. We recorded the angular velocity at
every 0.5s. The average absolute divergence over all time instant is relatively low
and below 2.4°/s. All the maximum absolute divergence values occur in the first
two 2. The main reason is precision of TableSat static friction measurement. The
static friction in TableSat is represented by the voltage magnitude, applied to the
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Fig. 13. TableSat test results gathered in real environment.

Table 1. Summary of absolute divergence.

Max Min Mean Std

(°/s) (°/s) (°/s) (°/s)
Run 10 3.637 —10.84 -1 2.069
Run 20 3.788 —13.88 —1.115 2.424
Run 30 2.702 —16.38 —1.429 2.514
Run 40 4.219 —12.22 —1.177 2.376
Run 50 2.738 —8.529 —1.105 2.132
Run 60 4.792 —19.44 —1.528 3.478
Run 70 3.847 —19.39 —1.818 3.864
Run 80 2.352 —27.44 —2.356 5.004

fans, below which TableSat will not move. The power supply may change frequently
due to physical or mechanical causes such as battery level. The precision of static
friction will influence initial motion of TableSat.

We evaluate the time usages of the simulation (shown in Fig. 14). We set the
fixed interval T' = 2s and d = 1s. Comparing the virtualized time with the simu-
lation time used, the results show a nonlinear relationship between the virtualized
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Fig. 14. Summary of time utilizations.

time and simulation time used. It spends most time on starting Matlab engine and
initializing the Simulink model. After the initialization, the growth of simulation
time tends to slow as the virtualized time increases. Therefore, our approach is
reasonably fast and efficient.

The experiment shows that our virtual environment can simulate the real sys-
tem with reasonable accuracy. This can enable development of software on the
virtualization before the real physical environment becomes available.

6.2. Automatic transmission controller

The second experiment is on an automatic transmission model given as a sample
in the Simulink package. The automatic transmission adjusts gear ratios as the
vehicle moves. The gear shift controller performs the function of gear selection
in the automatic transmission. The model describes the control of a four-speed
automatic transmission. Figure 15 illustrates the physical model of the automatic
transmission.

In the automatic transmission model, Engine block, Transmission block and
Vehicle block model the engine, four-speed automatic transmission, and vehicle,
respectively. The communication block in this model enables physical components
to communicate with QEMU. Engine block interpolates engine torque (Impreller-
Torque), versus throttle (Throttle) and engine speed (EngineRPM). The Torque-
Converter and the Transmission Ratio subsystems make up the Transmission block.
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Fig. 15. Automatic transmission physical model in Simulink.

The transmission model first calculates the turbine speed based on the engine speed,
and then outputs torque (OutputTorque) to the vehicle via the static gear ratio.
The Vehicle block uses the torque (OutputTorque) to compute the acceleration and
integrates it to compute the vehicle speed (VehicleSpeed). User inputs to the model
are in the form of throttle and brake torque. There are four maneuvers: passing
maneuver, gradual acceleration, hard braking and coasting. Each maneuver has
different throttle and brake torque schedule.

We carry out a series of controller tests on both virtualization and
Simulink/Stateflow simulation. In the original model, the Stateflow block labeled
Shift Logic implements gear selection for the transmission. The model takes throttle
and vehicle speed as the inputs and the desired gear number as the output. The
controller selects a gear based on the input throttle values and computes based on
table lookups. The selected gear is used to look up a Boolean value for each of
the output clutch pressure. The overall Stateflow block is executed as a discrete-
time system, sampled every 40 ms. In our virtualization, controller source code was
generated from the Stateflow block automatically by Simulink Coder.* Then we
port the control software into QEMU. We set the fixed interval 7' = 0.04s and
d=0.02s.

We summarize the statistics of error between the output from the virtualiza-
tion and that from the Simulink/Stateflow simulation (see Table 2). We use abso-
lute divergence, the deviation of the Simulink/Stateflow simulation value from the
virtualization value, to define the error. Each column in the sub-table Maneuver
shows error statistics of a system simulation run for a maneuver. For instance,
the last column shows the error statistics of Throttle, EngineRPM, VehicleSpeed,

1340005-21



Y. Zhang et al.

Table 2. Summary of error statistics.

Type Maneuver

Passing maneuver Gradual acceleration Hard braking Coasting

Throttle (degree)

max 0 0 0 0
min 0 0 0 0
mean 0 0 0 0
std 0 0 0 0
EngineRPM (RPM)
max 480.9 0.7287 1.561 351.4
min —989.1 —106.7 —251.2 —689.1
mean —3.333 —0.4703 —1.388 6.425
std 49.83 5.746 12.44 48.45
VehicleSpeed (mph)
max 0.3192 0.05764 0.2032 0.5237
min —0.1662 0 —0.04715 —0.3215
mean —0.01688 0.006017 —0.03145 0.07979
std 0.03248 0.007769 0.01972 0.04198
Gear
max 1 1 1 1
min -1 -1 -1 -1
mean 0 0 —0.002663  0.003995
std 0.07303 0.05164 0.07298 0.08155
ImprellerTorque (ft/1b)
max 445.8 24.21 185.8 578.6
min —503.3 —25.2 —81.59 —323.7
mean —0.5863 —0.09836 —0.1297 0.4167
std 30.72 1.507 7.949 31.13
OutputTorque (ft/lb)
max 519.5 111.4 356.4 1135
min —544.3 —41.98 —219 —825.5
mean —0.7031 0.08794 —0.1985 0.3177
std 35.21 4.853 16.84 56.24

Note: Gears: 1, 2, 3, or 4.

Gear, ImprellerTorque, OutputTorque in the coasting maneuver. We record these
errors between the output produced with our tool and that produced using the
Simulink/Stateflow not only for the response engine speed and vehicle speed but
also for the other values (Throttle, Gear, ImprellerTorque and OutputTorque). We
carry out tests in four different maneuvers and find errors in all recorded variables
except for Throttle. After analysis, we find these errors are all caused by gear selec-
tion. Here we choose the test generated in coasting maneuver to discuss these errors
in detail. We recorded these variables at every 0.04s.

The curves shown in Fig. 16 are composed of the gear selections gathered from
the virtualization and the Simulink /Stateflow simulation, for controlling the throttle
and brake torque in the coasting maneuver. There are three times of gear upshift in
this maneuver. We indeed found the errors that occur only for few points during gear
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Fig. 16. Gear selection error between virtualization and Simulink/Stateflow simulation.

Table 3. Time of gear selection in the virtualization and the Simulink/Stateflow.

2.28s 2.32s 2.36s 4.88s 4.92s 4.96s 5.00s 5.04s 5.08s

Gear selection 1 1 2 2 2 3 3 4 4 4
Gear selection 2 1 1 2 2 2 3 3 3 4

Note: Gear selection 1 and gear selection 2 are gathered in the virtualization and
Simulink/Stateflow, respectively. Gears: 1, 2, 3, or 4.

upshift. Table 3 shows different times of gear upshift. We can find the controller in
virtualization performs gear selection with an earlier trigger time, when the vehicle
transmission needs gear upshift. For example, the gear upshift from gear 1 to gear 2
occurs at 2.32s in virtualization, whereas in Simulink/Stateflow the time is 2.36s.
In the virtualization environment, the physical components will be controlled by
the current command until the D/A conversion finished ([t.;,t.; + d)) and then
evolves with new command in the rest of reactive interval ([te; + d,tci4+1)). But in
the Simulink/Stateflow environment, it will be controlled by the current command
until next reactive interval ([tci, tei+1)). Therefore, the error occurs during the time
([tei + d,teiv1)). In addition, the initial value of gear in Simulink/Stateflow is 1,
where the initial value is 0 in the source code. These will ultimately cause deviation
of vehicle speed (see Fig. 17). The curve shown in Fig. 17 represents the absolute
divergence of vehicle speed. The error of vehicle speed has always existed even it
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Fig. 17. Vehicle speed error between virtualization and Simulink/Stateflow Simulation.

is quite small. And the error increases sharply during gear upshift. Therefore, we
conclude that our virtual environment can achieve higher fidelity than Simulink/
Stateflow.

7. Conclusions

This paper proposes a high-fidelity approach to CPS virtualization. Our approach
extends virtual machines and incorporates the ability to emulate physical com-
ponents. We have developed a synchronization strategy to integrate two different
domains: cyber and physical. We have evaluated our approach on the real-world
control systems. The experiments and evaluations demonstrate that our approach
is effective: the comprehensive virtualization environment can capture the dynamic
behaviors of the system in high-fidelity, and efficient: the costs of simulation are
low. Our approach is promising in enabling early development of cyber components
and early exploration of the synergy of cyber and physical components of CPS.
Formal co-verification has the potential for exhaustive state space coverage of a
whole system. Thus, it is desired to integrate formal verification and virtualization,
so that high-confidence achieved by formal verification and practicality supported
by virtualization can be properly leveraged for system validation. The virtualiza-
tion technique presented in this paper is a preliminary step towards this direction.
We will extend the CPS virtualization environment and further investigate the
integration of virtualization and formal verification under this common framework.
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