
Post-silicon Conformance Checking with Virtual
Prototypes

Li Lei
Dept. of Computer Science
Portland State University

leil@cs.pdx.edu

Fei Xie
Dept. of Computer Science
Portland State University

xie@cs.pdx.edu

Kai Cong
Dept. of Computer Science
Portland State University
congkai@cs.pdx.edu

ABSTRACT
Virtual prototypes are increasingly used in device/driver co-deve-
lopment and co-validation to enable early driver development and
reduce product time-to-market. However, drivers developed over
virtual prototypes often do not work readily on silicon devices,
since silicon devices often do not conform to virtual prototypes.
Therefore, it is important to detect the inconsistences between sili-
con devices and virtual prototypes.

We present an approach to post-silicon conformance checking of
a hardware device with its virtual prototype, i.e., a virtual device.
The conformance between the silicon and virtual devices is defined
over their interface states. This approach symbolically executes the
virtual device with the same driver request sequence to the silicon
device, and checks if the interface states of the silicon and virtual
devices are consistent. Inconsistencies detected indicate potential
errors in either the silicon device or the virtual device. We have
evaluated our approach on three network adapters and their virtual
devices, and found 15 inconsistencies exposing 15 real bugs in total
from the silicon and virtual devices. The results demonstrate that
our approach is useful and efficient in facilitating device/driver co-
validation at the post-silicon stage.

Categories and Subject Descriptors
B.6.2 [Logic Design]: Reliability and Testing—Error-checking

General Terms
Design, Reliability, Verification

Keywords
Post-silicon validation, conformance checking, virtual prototypes

1. INTRODUCTION
Virtual prototyping has emerged as a promising technique for

device/driver co-development. A notable example is how Intel uti-
lizes virtual devices to enable early driver development for their
new generation, 40 Gigabit Ethernet (40GbE) adapter, before the
FPGA prototype is available [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2013 May 29 - June 07 2013, Austin, TX, USA
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

The use of virtual prototypes, i.e., virtual devices, has poten-
tial to shorten device/driver development cycles. Nevertheless to
achieve this benefit, a key challenge has to be addressed. As silicon
devices often do not conform to virtual devices, drivers developed
over virtual devices often do not work readily on silicon devices
due to either silicon device bugs or driver bugs hidden on virtual
devices. Unfortunately, troubleshooting these bugs today heavily
depends on ad-hoc and time-consuming system testing/debugging
at the post-silicon stage. By detecting the inconsistencies between
the virtual and silicon devices, conformance checking provides a
systematic and efficient way to (1) expose the virtual or silicon de-
vice errors; (2) reveal the causes of driver bugs hidden on the virtual
device.

We present a novel approach to post-silicon conformance check-
ing of a hardware device with its virtual device and discovery of
their inconsistencies. The conformance of a silicon device and its
virtual device is defined between their interface states (cf. Sec-
tion 3.1). This approach symbolically executes a virtual device with
the same driver request sequence to its silicon device, and checks
if the interface states of the silicon and virtual devices are consis-
tent. There are three major steps: (1) recording the driver requests
to the silicon device; (2) symbolically executing the virtual device
by taking the recorded request sequence; (3) checking if the silicon
and virtual device interface states are consistent after executing the
virtual device on each driver request.

Post-silicon validation often suffers from the limited observabil-
ity of hardware, a critical problem that our approach needs to ad-
dress. A silicon device has internal states that are difficult to ob-
serve. Moreover, the outside environment inputs to the silicon de-
vice are hard to capture. We use symbolic execution to address this
problem. Instead of observing the internal states and environment
inputs, our approach models them using variables with symbolic
values when simulating the silicon device behaviors on the virtual
device. This way symbolic execution covers their possible values.

We implement our approach using the virtual devices from the
QEMU virtual machine [2] as virtual prototypes, and discover 15
inconsistencies behind which there are 15 real bugs in the silicon
and virtual devices. These bugs can cause severe problems, e.g.,
system crashes. Detecting these bugs can significantly facilitate
hardware/software co-validation at the post-silicon stage.

The rest of this paper is organized as follows. Section 2 intro-
duces related background. Section 3 presents our approach. Sec-
tion 4 shows how we implement the approach. Section 5 reports our
experiment results. Section 6 presents the related work. Section 7
concludes and discusses the future work.

2. BACKGROUND
In this section, we introduce three related concepts: QEMU vir-

tual devices which we adopt as our virtual prototypes, non-deter-
ministic interleaving which we utilize in generating execution har-
nesses for virtual devices, and symbolic execution with which we
replay driver requests on virtual devices.

2.1 QEMU and Virtual Devices
QEMU [2] is a virtual machine that can emulate different pro-

cessor architectures, such as x86, SPARC, and ARM. It also emu-
lates virtual devices for different peripheral devices, e.g., network
adapters and mass storage devices. Such virtual devices are widely
used for device driver developments.

A QEMU virtual device is a software component integrated into
QEMU. We illustrate the virtual device concept with the Intel e1000
network adapter, a PCI (Peripheral Component Interconnect) de-
vice. As shown in Figure 1, the e1000 virtual device has the fol-
lowing major components:

• PCI device state, as defined by E1000State, which keeps
track of the state of the PCI device;

• PCI device module functions, which simulate the basic func-
tionalities of the PCI device. As Figure 1 shows, function
e1000_mmio_writel simulates how the e1000 device re-
sponds to the driver write request, and e1000_receive
simulates how the e1000 device receives network packets
and notifies QEMU via interrupts.

typedef struct E1000State_st{
PCIDevice dev;
NICState *nic;
NICConf conf;
uint32_t mac_reg[0x8000];
uint16_t phy_reg[0x20];
uint16_t eeprom_data[64];
... ...

}E1000_state;

static void
e1000_mmio_writel(void *opaque,

target_phys_addr_t addr, uint32_t val)
{

... ...
if (index < NWRITEOPS && macreg_writeops[index])
{

macreg_writeops[index](s, index, val);
}
... ...

}

static ssize_t
e1000_receive(VLANClientState *nc,
const uint8_t *buf, size_t size)
{

... ...
//Fire an interrupt after receiving packets
set_ics(s, 0, n);

}

Figure 1: Excerpts from the e1000 QEMU virtual device.

2.2 Non-deterministic Interleaving

Non-deterministic interleaving [11] is a transaction-level mod-
eling technique for hardware concurrency. Hardware devices are
concurrent in nature. For example, a network adapter processes
driver requests and receives data concurrently. To model this con-
currency using non-deterministic interleaving, there are three steps:
(1) identify the concurrent modules (e.g., processing driver requests,
receiving data, etc.) of the target hardware device; (2) specify the
modules using separate C functions, which we refer to as module
functions; and (3) non-deterministically invoke these module func-
tions in a loop. When the loop is executed multiple times, these
module functions are executed in a non-deterministic sequence.
The possible effects of hardware concurrency can be captured by
the set of hardware states after non-deterministic many executions
of the loop. For example, a network adapter concurrently process-
ing a driver request and receiving a packet can be captured by either
processing a driver request followed by receiving a packet, or in-
voking these two modules in the reverse order. Since a QEMU vir-
tual device already implements the first and second steps, we only
need to complete the third step before executing it symbolically (cf.
Section 4.2).

2.3 Symbolic Execution
Symbolic execution [10] executes a program with symbolic val-

ues as inputs instead of concrete ones and represents the values
of program variables as symbolic expressions. Consequently, the
outputs computed by the program are expressed as functions of in-
put symbolic values. The symbolic state of a program includes the
symbolic values of program variables, a path condition, and a pro-
gram counter. The path condition is a Boolean expression over the
symbolic inputs; it accumulates constraints which the inputs must
satisfy for the symbolic execution to follow the particular associ-
ated path. The program counter points to the next statement to be
executed. A symbolic execution tree captures the paths explored by
the symbolic execution of a program: the nodes represent the sym-
bolic program states and the arcs represent the state transitions.

3. CONFORMANCE CHECKING
This section presents the basic workflow of our conformance

checking framework. As illustrated in Figure 2, the framework
has two major components: a trace recorder and a conformance
checker. The trace recorder records the driver request sequence to

OS

Figure 2: Workflow of conformance checking

the silicon device. The conformance checker replays the sequence
on the virtual device and checks the conformance. The discovered
inconsistencies are recorded. An inconsistency record contains the
inconsistent registers, the driver request causing the inconsistency,
and the virtual device execution trace under the driver request.

3.1 Preliminaries
Before discussing the details of this workflow, we first introduce

our notion of conformance, which is defined between the states of

the silicon and virtual devices. The state of the silicon device is
determined by the values of its interface and internal registers. The
interface registers of the silicon device are observable while the
internal registers are generally not observable and are sometimes
even unknown. The virtual device is a model of the silicon device.
It models interface registers of the silicon device with a set RI of
corresponding variables and defines a set RN of variables to cap-
ture device internal behaviors. However, the variables in RN often
have no correspondence with the internal registers of the silicon
device. We define a virtual device state as follows.

DEFINITION 1. A virtual device state is denoted as V={VI ,
VN} where VI is the device interface state, i.e., the assignments
to variables in RI and VN is the device internal state, i.e., the
assignments to variables in RN .

We represent the silicon device state with the same sets of vari-
ables: RI and RN . The variables in RI are assigned values ob-
served from the corresponding interface registers of the device. The
variables in RN are assigned symbolic values with no constraints
since the device internal is not observable.

DEFINITION 2. A silicon device state is denoted as S={SI ,
SN} where SI is the assignments to variables in RI and SN is the
symbolic assignments to variables in RN .

A concrete device state is a device state whose state variable
values are all concrete. A symbolic device state is a device state
some of whose state variable values are symbolic and there can
also be constraints on these symbolic values. A symbolic device
state can be viewed as a set of concrete states. In our approach,
we treat both V and S as symbolic states, which can be viewed as
two set of concrete device states, denoted as set(V) and set(S)
respectively. Based on this generalization, we give a conformance
definition between a silicon device state and a virtual device state,
as described in Definition 3.

DEFINITION 3. A silicon device state S and a virtual device
state V conform to each other if set(S) ∩ set(V) �= ∅.

To compute set(S) ∩ set(V), we denotes the device state vari-
ables as var1, var2, ..., varn and the values of the state variables
of S as V al(var1)S , V al(var2)S , ..., V al(varn)S . We con-
struct the expression of S as Expr(S): (var1 == V al(var1)S)
∧ (var2 == V al(var2)S) ∧ ... ∧ (varn == V al(varn)S).
Similarly, assume the constraints of V as Cont(V), the expres-
sion of V , Expr(V), is (var1 == V al(var1)V) ∧ (var2 ==
V al(var2)V) ∧ ... ∧ (varn == V al(varn)V)) ∧ Cont(V).
Given Expr(S) and Expr(V), set(S) ∩set(V) �=∅ if and only
if Expr(S) ∧ Expr(V) is satisfiable.

3.2 Trace Recorder
The trace recorder captures: (1) each driver request issued to

the silicon device; (2) the silicon device interface state before each
driver request is issued. A sequence of such state-request pairs
captured on the silicon device can be viewed as a device trace.
We define such a device trace as T = 〈SI0 , D0〉, 〈SI1 , D1〉, ...,
〈SIn , Dn〉, where the pair 〈SIk , Dk〉 (0 ≤ k ≤ n) represents a
driver request Dk to the current silicon device interface state SIk .

3.3 Conformance Checking Algorithm
The conformance checker replays T on the virtual device us-

ing symbolic execution. To compare the virtual and silicon device
states, given SIk of T , the conformance checker constructs its sili-
con device state Sk (cf. Section 3.1). In this way, the conformance

checker converts T to a new device trace T ′ = 〈S0, D0〉, 〈S1, D1〉,
..., 〈Sn, Dn〉, where Sk(0 ≤ k ≤ n) is a silicon device state de-
rived from SIk . The conformance checking algorithm works as
follows:

1. Initialize the virtual device state V0 to be S0 from T ′ and set
k = 0.

2. Take the next driver request Dk of T ′ and symbolically exe-
cute the virtual device from Vk on Dk. Symbolic execution
may produce a set G of virtual device states.

3. Check the conformance between G and Sk+1 (see below for
details). If not conforming, report an inconsistency; other-
wise continue checking.

4. Set the virtual device state Vk+1 to be the silicon device state
Sk+1; Increment k and go to step 2.

5. The conformance checker terminates when it finishes the last
driver request of T ′.

As discussed above, symbolic execution of a virtual device may
produce a set of virtual device states G = {Vi|0 ≤ i ≤ n}. The
next silicon device state under Dk is denoted as Sk+1. We define
the conformance between G and Sk+1 as follows.

DEFINITION 4. Given G and Sk+1, the virtual device and the
silicon device conform to each other at Dk if ∃Vi ∈ G where 0 ≤
i ≤ n, set(Sk+1) ∩ set(Vi) �= ∅.

3.4 Discussions
Our conformance definition is essentially the conformance be-

tween the interface states of the silicon and virtual devices since the
internal variables of S have unconstrained symbolic values. There-
fore, our algorithm may not detect internal state non-conformance.
Moreover, to reduce symbolic execution complexities, we synchro-
nize the virtual device state to the silicon device state after each
drive request (Step 4). This may miss inconsistencies that only sur-
face after several driver requests. (How to check for such inconsis-
tencies will be discussed in a future paper.) Under this conformance
definition, our approach is sound theoretically as symbolic execu-
tion explores all possible interface states of the virtual device. Nev-
ertheless in practice, for practicality and efficiency, our approach
may introduce false negatives due to optimizations of symbolic ex-
ecution (cf. Section 4).

4. IMPLEMENTATION

4.1 Selective Capturing
The trace recorder captures values of the interface registers of

the silicon device. However, it is difficult to capture all interface
registers since a device often has a large range of interface reg-
isters. For example, Intel e1000 network adapter, a PCI device,
has 128KB of interface registers. Capturing all these registers will
heavily degrade the system performance. To address this problem,
we propose a method, namely selective capturing, which captures
a smaller set of important registers rather than the complete set.

To decide which registers to capture, we statically analyze the
virtual device: symbolically execute the virtual device by using
symbolic inputs and record the registers accessed in execution. As
the registers can be accessed by using symbolic addresses, which
may lead to an unnecessarily large range of registers to record.
Therefore, we only record the registers accessed by concrete ad-
dresses. This may miss certain registers. As a supplement, we

allow the user to specify which registers they want to capture. Se-
lective capturing does not affect the soundness of our approach al-
though it may miss inconsistencies. As selective capturing has a
critical impact on conformance checking results, we will develop
a systematic method that balances overhead and effectiveness in
future work.

4.2 Harness Generation for Virtual Devices
A QEMU virtual device is not a stand-alone program, which is

executed as part of the QEMU virtual machine. Therefore, we need
an execution harness for symbolically executing the virtual device.
We generate an execution harness based on the concepts of non-
deterministic interleaving and symbolic inputs.

• Non-deterministic interleaving. As Section 2.2 illustrates, to
capture the hardware concurrency, it requires non-deterministic
many executions of a loop where the module functions are
invoked non-deterministically. We define such a loop as the
main loop of the execution harness. The condition of the
main loop is a non-deterministic choice and module func-
tions are invoked non-deterministically in the main loop.

• Symbolic inputs. As outside environment inputs are not cap-
tured from the silicon device, we assign symbolic values to
these input variables so that symbolic execution can cover
the possible inputs from the outside environment.

Example. We illustrate harness generation using the e1000 net-
work adapter. Figure 3 shows an excerpt from the harness we gen-
erate for the e1000 virtual device. There are two module functions:
(1) Access_Register; (2) e1000_receive. The function
Access_Register models how the device responds to a driver
request, e.g., writing to or reading from a register. The function
e1000_receive models how the device receives packets from
the network, which takes several input parameters. We call the
function dcc_make_symbolic to assign symbolic values to the
input variables. The function choice() implements a non-deter-
ministic choice which returns a symbolic value. In the main loop,
the two module functions are invoked non-deterministically.

... ...

dcc_make_symbolic(buff, BUFF_SIZE, "buff");
dcc_make_symbolic(size, sizeof(uint32_t), "size");

//Non-deterministic many executions
while(choice()){

//Non-deterministic Interleaving
switch (choice()) {

// Respond to write/read registers
case 0: Access_Register(); break;

//Receive packets
case 1: e1000_receive(nc, buff, size); break;

// Do nothing
default: break;

}
... ...

Figure 3: Excerpts of execution harness of e1000 virtual device

4.3 Termination of Symbolic Execution
Symbolic execution might not terminate when it encounters a

loop without a statically known number of iterations, e.g., the main
loop in the execution harness. We refer to such a loop as an un-
bounded loop. To address this issue, we set constant bounds for all
such loops in the virtual device. We leverage runtime behaviors of
the virtual device in the QEMU virtual machine to decide the loop
bound for each unbounded loop. The method contains three steps:

1. Statically analyze the virtual device: symbolically executing
the virtual device using symbolic inputs, to identify the un-
bounded loops.

2. When the virtual device is running within the QEMU virtual
machine, for each unbounded loop identified by static anal-
ysis, we record the largest number of iterations that the loop
has been executed. If we encounter an unbounded loop while
replaying the silicon device trace, we use its recorded maxi-
mum number of iterations as its bound.

3. As a supplement, we allow the user to adjust the loop bound
for a specific loop. For example, if using a large bound in-
duces high time and memory costs or even path explosions,
the user may lower the bound.

Remarks. Loop bounding may lead to false negatives since it
potentially reduces the virtual device behaviors. However, we ar-
gue that the false negative ratio is low due to two reasons. First,
static analysis shows that for most unbounded loops, increasing the
numbers of loop iterations does not affect the virtual device inter-
face state. Therefore, the conformance checking result will not be
affected most of the time. Second, the loop bounds cover most vir-
tual device behaviors if the runtime test cases for identifying loop
bounds have a high coverage of the virtual device (herein we use
the code coverage metrics such as statement coverage). Moreover,
a discovered false negative may be eliminated thereafter by the user
incrementing the loop bounds. However, since setting the bounds
too large may lead to high time and memory costs and even path
explosions, sometimes false negatives cannot be completely elimi-
nated. Therefore, the user may need to search for a “sweet spot” to
achieve minimum false negatives with reasonable symbolic execu-
tion costs. Our evaluation results give more details (cf. Section 5).

4.4 Implementation Details
We implement our approach on Linux. The trace recorder is

implemented as a Linux kernel library. A standard Linux device
driver always calls Linux kernel functions to access its device. For
instance, a driver calls function writel to write a long integer
to a device register. We hook these kernel functions. As a result,
the trace recorder is invoked to record the driver requests when the
driver calls these functions to issue requests.

We construct our conformance checker using the symbolic exe-
cution engine KLEE [4]. We modify KLEE in two aspects. First,
we set the loop bounds during symbolic execution. Second, we
realize our own module for conformance checking.

5. EVALUATION
This section evaluates our approach from two aspects: useful-

ness and efficiency. Regarding usefulness, we present the inconsis-
tencies and real bugs we discovered in three network adapters and
their QEMU virtual devices. Furthermore, we evaluate our frame-
work in terms of time usages and memory usages, demonstrating
that our approach is efficient.

5.1 Experiment Setup
All experiments were conducted on a workstation with a dual-

core Intel Pentium D Processor at 3.20 GHz and 4GB of RAM,
running Linux with kernel version 2.6.35. The devices evaluated
are three types of widely used network adapters. Information of
these devices and their virtual devices are summarized in Table 1.
It also shows the size of the registers we selectively capture in each
network adapter. The virtual device size is measured in Lines of
Code (LOC). Intel e1000 and Intel eepro100 virtual devices are in-
cluded in QEMU 0.15.1 source code. Broadcom bcm 5751 virtual
device is newly created following the QEMU 0.15.1 interface.

Table 1: Summary of Devices for Case Studies
Devices Virtual Device

Size (LOC)
Selective Captured

Size (Bytes)
Intel e1000 Gigabit NIC 2099 1224

Broadcom bcm5751 Gigabit NIC 4519 412

Intel eepro100 Megabit NIC 2178 74

5.2 Inconsistencies and Bugs
We discovered 15 inconsistencies between the three network ada-

pters and their virtual devices under test: 7 in e1000, 6 in bcm5751,
and 2 in eepro100. By analyzing the inconsistency records gener-
ated by the conformance checker, we also discovered 13 bugs from
the virtual devices, and 2 bugs from the silicon devices. As the re-
sult shows, most of these inconsistencies are caused by the bugs of
the virtual devices. This is because on one hand the silicon devices
are stable products which have gone through extensive testing and
bug-fixing procedures; on the other hand, their virtual devices are
not heavily tested through any rigorous testing procedures. How-
ever, these virtual device bugs are still possible to appear in silicon
prototypes at the early stage of hardware development, since these
bugs are common violations of hardware designs. We believe that
if this approach is conducted at the post-silicon testing stage be-
fore devices are released, it can also discover many inconsistencies
caused by the bugs of silicon devices/prototypes.

5.2.1 Types of device bugs
We summarized the bugs which cause the inconsistencies. As

shown in Table 2, there are 7 types of device bugs we discovered by
analyzing the inconsistencies. VD indicates the virtual device bugs
while SD indicates the silicon device bugs. Most of these bugs
are very common violations of hardware designs. For example,
firing interrupts too many times and failing to fire interrupts are
both common defects in hardware devices. We discuss the silicon
device bugs and the virtual device bugs respectively.

• Silicon device bugs. The bugs of the first type are silicon
device bugs. The device updates the register specified as re-
served in the device specification. This bug can be serious
since it may cause unnecessary device behaviors, expose ad-
ditional device information, and consume extra power.

• Virtual device bugs. The bugs of second to fourth types are
all related to interrupts. The bugs of the fifth type and sixth
type can cause the driver to read incorrect values. These bugs
often cause serious driver and system errors or even crashes,
and similar silicon device errors have been reported [9].

5.2.2 Consequences of inconsistencies
These inconsistencies can have serious consequences. Here we

use an inconsistency found in Intel e1000 as an example. In this

Table 2: Types of Bugs in Virtual Devices and Silicon Devices
No. Bug Type Num. Devices
1 Update reserved register bits which not allowed 2 SD

2 Generate unnecessary interrupts 2 VD

3 Fail to generate necessary interrupts 1 VD

4 Fail to clear the interrupt when the driver requests 1 VD

5 Fail to update registers when necessary 4 VD

6 Write incorrect values to registers 4 VD

7 Incorrect data types used for modeling device states 1 VD

scenario, the device driver writes certain values to register MDIC to
transfer data into the internal module of the device. After the data
transfer finishes, according to the value of a specific bit in register
MDIC, the device determines whether to fire an interrupt.

static void
set_mdic(E1000State *s, int index, uint32_t val) {

... ...
s−>mac_reg[MDIC] = val | E1000_MDIC_READY;
set_ics(s, 0, E1000_ICR_MDAC);

}

Figure 4: Excerpt of e1000 virtual device

However, Figure 4 shows how the virtual device responds un-
der such the scenario by invoking the function set_MDIC. In this
function, no matter what is the value of register MDIC, the virtual
device always generates an interrupt by invoking the interrupt func-
tion set_ics. Due to this feature, the driver developed on the
virtual device may always expect an interrupt after the device fin-
ishes transferring data. However, the silicon device does not always
generate an interrupt to notify the driver when the data transfer is
completed. Therefore, if the driver is not well written, it will treat
no interrupt as an incorrect data transfer in the silicon device, and
report an exception by mistake. The driver’s normal work flow will
be disrupted on the silicon device. By detecting such an inconsis-
tency, our tool helps users easily figure out why the driver does not
work properly with the silicon device. This case illustrates how our
approach can help post-silicon device/driver co-debugging.

5.3 Efficiency
We evaluate the efficiency of our approach, in terms of time us-

ages, memory usages, and false negative ratios. We issue four kinds
of test cases to the network adapters to collect device traces. These
test cases are all common usages of network adapters as shown in
Table 3. “NIC test-suite” contains a family of typical test cases
on network interface controllers (NIC), which manipulate a NIC in
different ways, e.g., sending UDP packets and setting MTU size.

Table 3: Summary of Test Cases
Test Cases Description

Reset Network Interface Bring down and then bring up the network interface

Ping Ping another network interface

Transfer files Copy large files with total size 3.2 GB

NIC test-suite A set of typical test cases on NIC

5.3.1 Time and memory usages
We evaluate the time and memory usages of conformance check-

ing. Table 4 shows the results. The “Time Usage” column shows

the average time usages for the conformance checker processing
each driver request of the device trace collected under the test cases.
We also recorded the maximum values of memory usages. Con-
sider that our approach is an offline checking approach, the time
usage is acceptable and the memory usage is low.

Table 4: Time/Memory Usages and False Negatives

Devices Test Cases Time
Usage (sec)

Memory
Usage (MB)

Inconsistency
(Discovered

/Verified)
Reset NIC 0.24 212.60 8/8

e1000 Ping 2.92 300.00 8/8
Transfer files 3.11 308.14 12/9
NIC test-suite 3.06 288.23 11/11

Reset NIC 0.19 166.51 9/9
bcm5751 Ping 2.88 255.16 8/8

Transfer files 2.87 251.02 8/6
NIC test-suite 2.33 218.65 7/7

Reset NIC 0.26 207.73 4/4
eepro100 Ping 2.10 220.15 2/2

Transfer files 2.45 236.77 2/2
NIC test-suite 2.31 226.84 4/4

5.3.2 False negative ratios
To assess the number of false negatives introduced by our op-

timizations, we verified all the inconsistencies discovered. In the
“Inconsistency" column of Table 4, we show the numbers of dis-
covered inconsistencies and verified inconsistencies.

Most of the inconsistencies are verified. We encountered false
negatives in the traces of transferring files on e1000 and bcm5751
(marked as bold). Both virtual devices have only one unbounded
loop whose number of iterations affects the virtual device interface
state. The number of iterations of the loop depends on the total
size of packets received by the silicon device between two consec-
utive driver requests. In the virtual device, one iteration of the loop
would receive a fixed number of packets. Therefore, one iteration
of the loop captures the silicon device behaviors when the network
traffic is modest. Occasionally when the network traffic is heavy, it
requires executing the loop more than once. Therefore, our setting
the bound to one produces false negatives. Nevertheless, as we ad-
just the bound by incrementing it to two, all previously encountered
false negatives are eliminated while the time and memory costs re-
main modest. This demonstrates that (1) our approach has a low
false negative ratio; (2) The supplementary loop bounding method
is effective in eliminating false negatives.

6. RELATED WORK
Recently formal methods have been increasingly used for facili-

tating post-silicon validation. Some of these work focus on improv-
ing observability and traceability of hardware at the post-silicon
stage. A notable work is “backspace" [6], it uses SAT-solving tech-
niques to provide an execution trace to a crashed post-silicon state,
thus facilitating off-line debugging. Several approaches [3, 8, 12]
integrate formal specifications into post-silicon checking of hard-
ware by observing its execution trace. In [14], hardware monitors
are introduced to ameliorate observability requirements on silicon.
It uses pre-silicon RTL models to construct hardware monitors.

Symbolic execution is widely used for software testing. SAGE
[7], KLEE [4], and S2E[5] use symbolic execution to test software
systems that intensively interact with environments. Other tools
[16, 15, 1] also employ symbolic execution to generate test cases
for testing software programs.

7. CONCLUSIONS AND FUTURE WORK
We have presented an approach to conformance checking of a

hardware device with its virtual prototype. Preliminary evaluation
shows that our approach is useful and efficient. In three network
adapters, we discover 15 inconsistencies caused by 15 bugs in the
silicon and virtual devices while incurring low memory and time
usages. This demonstrates our approach’s major potential in facili-
tating hardware/software co-validation at the post-silicon stage. In
future work, we plan to use virtual prototypes to estimate silicon
hardware functional coverage and to validate hardware at runtime.

8. ACKNOWLEDGMENT
This research received financial support from National Science

Foundation (Grant #: 0916968). A pending patent filed on this
research by Portland State University has been licensed to Virtual
Device Technologies (VDTech) where Fei Xie is a partner.

9. REFERENCES
[1] M. Baluda, P. Braione, G. Denaro, and M. Pezzè. Structural

coverage of feasible code. In Proc. of AST, 2010.

[2] F. Bellard. QEMU, a fast and portable dynamic translator. In
Proc. of ATEC, 2005.

[3] M. Boule, J. Chenard, and Z. Zilic. Adding Debug
Enhancements to Assertion Checkers for Hardware
Emulation and Silicon Debug. In Proc. of ICCD, 2006.

[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In Proc. of OSDI, 2010.

[5] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a platform
for in-vivo multi-path analysis of software systems. In Proc.
of ASPLOS, 2011.

[6] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang.
BackSpace: Formal Analysis for Post-Silicon Debug.

[7] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE:
Whitebox Fuzzing for Security Testing. ACM Queue, 10(1),
2012.

[8] A. J. Hu, J. Casas, and J. Yang. Efficient Generation of
Monitor Circuits for GSTE Assertion Graphs. In Proc. of
ICCAD, 2003.

[9] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
hardware device failures in software. In Proc. of SOSP, 2009.

[10] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19:385–394, July 1976.

[11] J. Li, F. Xie, T. Ball, V. Levin, and C. McGarvey.
Formalizing hardware/software interface specifications. In
Proc. of ASE, 2011.

[12] J. A. M. Nacif, F. M. de Paula, H. Foster, C. J. N. C. Jr., and
A. O. Fernandes. The chip is ready. am i done? on-chip
verification using assertion processors. In VLSI-SOC, 2003.

[13] S. Nelson and P. Waskiewicz. Virtualization: Writing (and
testing) device drivers without hardware. In Proc. of Linux
Plumbers Conference, 2011.

[14] S. Ray and W. A. Hunt, Jr. Connecting Pre-silicon and
Post-silicon Verification. In A. Biere and C. Pixley, editors,
Proc. of FMCAD, 2009.

[15] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In Proc. of ESEC/FSE, 2005.

[16] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input
generation with java pathfinder. In Proc. of ISSTA, 2004.

