
Cyber/Physical Co-Verification for Developing Reliable Cyber-Physical Systems

Yu Zhang†‡∗, Fei Xie‡, Yunwei Dong†, Xingshe Zhou† and Chunyan Ma§
†School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, China
‡Department of Computer Science, Portland State University, Portland, OR 97207, USA

§School of Software & Microelectronics, Northwestern Polytechnical University, Xi’an, 710072, China
∗yuzhang.nwpu@gmail.com

Abstract—Cyber-Physical Systems (CPS) tightly integrate
cyber and physical components and transcend discrete and
continuous domains. It is greatly desired that the physical
components being controlled and the software implementation
of control algorithms can be verified together. We present
an efficient approach to reachability analysis of Hybrid Au-
tomata Pushdown System (HAPS) models for cyber/physical
co-verification of CPS. We have realized this approach and
applied it to real-world control systems. The evaluation has
shown that HAPS is an effective model for co-verification of
CPS and our approach has major potential in verifying system-
level properties of CPS, therefore improving the reliability of
CPS.

Keywords-Cyber-Physical Systems; Co-Verification; Model
Checking; Symbolic Execution

I. Introduction

Cyber-Physical Systems (CPS) [1] are physical and en-

gineered systems whose operations are integrated, moni-

tored, and controlled by embedded computational cores. CPS

tightly integrate discrete cyber components and continuous

physical components. These two types of components coop-

eratively deliver system functionalities and jointly contribute

to system-level properties. CPS engineering must account for

the interacting and interdependent behaviors of both types

of components. As a consequence, formal verification of

correctness properties is a key step in guaranteeing safety of

many important CPS such as medical devices, automobiles,

robotics, avionics and other critical infrastructures.

Recently, there has been extensive research on formal

verification of CPS, including [2], [3], [4] and many oth-

ers. The focus of these approaches has mainly been on

correctness of high-level control algorithm designs. CPS

are often modeled as hybrid automata [5], which combines

automaton transitions for capturing discrete changes with

differential equations for continuous changes. Well-known

tools for verifying such systems include iSat [6], HyTech [7]

and Uppaal [8]. However, existing tools have focused on

high-level mathematical models and largely ignored the

implementation aspects of controllers. In such a situation,

a number of simplifying assumptions have been made when

modeling controllers. There are two major issues:

Firstly, control engineers often overlook numerically un-

stable implementations. For example, Fig. 1 illustrates the

C language implementation of an algorithm [9] that first

computes the function x = (c1b2 − c2b1)/(a1b2 − a2b1)
(a1, a2, b1, b2, c1, c2 ∈ R), and returns 1 i f f x is non-

negative; otherwise return 0. For the input a1 = 37639840,

a2 = 29180479, b1 = −46099201, b2 = −35738642, c1 = 0,
and c2 = 1, the computation of x should be −46099201 by
the algorithm. However, the program computes the value

x = 0.343466 on a PC running Linux using the gcc

compiler. Since x determines the output of the function

Control Test, which may lead to a downstream choice

of a different controller being activated, such an unstable

computation may result in compromised safety of systems.

1 /***
2 *Output: return 1 if x is non-negative;
3 * otherwise 0.
4 **/
5 int Control_Test(float a1, float a2, float b1,

float b2, float c1, float c2)
6 {
7 ...
8 float x = (c1*b2-c2*b1)/(a1*b2-a2*b1);
9 if (x > 0.0) return 1;
10 else return 0;
11 }

Figure 1: An example of unstable software implementation.

Secondly, software engineers often ignore key features of

control system design goals. When designing controllers,

the control engineers explicitly consider key features of

control systems, such as robustness. The field of feedback

control is mature enough to answer many questions in

controller design based on efficient algorithms and tools.

Once a control system has been designed and verified,

software engineers implement the controller. However, it

is not clear if these design goals are maintained on the

software implementation level. It is often unknown whether

the software controller is safe or not with slight perturbations

in the inputs and outputs to the system. Input values of

the controller with slight perturbations when sampling can

execute entirely different code paths and can potentially

produce very different outputs.

In this paper, we present a cyber/physical co-verification

approach to ensure high confidence of CPS. The foundation

of this approach is a Hybrid Automata Pushdown System

2013 IEEE 37th Annual Computer Software and Applications Conference

0730-3157/13 $26.00 © 2013 IEEE
DOI 10.1109/COMPSAC.2013.88

539

as a unifying model for cyber/physical co-verification. Co-

verification, verifying software and physical components (or

plants) together, is essential to establishing the correctness of

a complete system. It takes into account both the numerical

implementations and key features of control system design.

We construct co-verification model in a C program and

verify the C program through symbolic execution. Our

reachability analysis checks whether a system is safe or not

in all the paths of the systems within a bounded step k.
One major challenge in co-verification is the integration

of software and plant representations within the same formal

model. Software and plant verification utilize different mod-

els. For verification of software implementations, one of the

most popular models is pushdown systems whose semantics

closely resemble the semantics of software programs. Plants

in CPS operate in a time continuum, typically medelled

as hybrid automata. However, for co-verification, it is not

desired to model both software and plant as pushdown

systems or hybrid automata (see section III). This paper

makes the following contributions:

• Co-verification model. We designed a formal co-

verification model, Hybrid Automata Pushdown System

(HAPS), to capture software and plant designs, as well
as their concurrent executions and interactions. The core

contribution is our process for constructing a HAPS
by synchronizing a pushdown system that abstracts

software and a hybrid automata that abstracts plant.

• Model checking of HAPS . We developed a method for
checking safety properties of a HAPS . We verify these
properties of a HAPS through reachability analysis

based on symbolic execution. Safety properties are

desired correlations among software and plant events.

Events in CPS are basically boolean propositions over

cyber and physical variables.

We have implemented our approach and successfully

applied it to co-verification of real-world control systems.

Preliminary evaluation has shown that HAPS is an effective
model for cyber/physical co-verification and our approach

has major potential in improving reliability of CPS.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III introduces the back-

ground of this work. Section IV presents our co-verification

model. Section V describe how to construct a HAPS .
Section VI discuss how to conduct reachability analysis

on a HAPS . Section VII elaborates on application of our
approach to real-world systems. Section VIII concludes the

paper and discusses future work.

II. RelatedWork

The CPS concept transcends embedded systems and hy-

brid systems. Embedded systems research has been largely

focused on hardware and software and, particularly, their in-

teractions. Hybrid systems research has been largely focused

on the interactions between discrete and continuous domains

on high level. CPS research takes a comprehensive view of

the system, instead of focusing on a single semantic gap,

focuses on multiple semantic gaps simultaneously.

In embedded systems research, various formal languages

have been proposed for specifying embedded systems, e.g.,

Co-design Finite State Machines (CFSMs) [10], and petri-

net based languages such as PRES [11]. However, they do

not consider physical dynamics. In [12], a static analysis tool

FLUCTUAT was presented, which applied affine arithmetic

to reason about the precision of floating point C code. It has

successfully been used on small, but numerically important,

parts of embedded controllers and has been able to identify

numerically unstable computations. However, this work only

focused on discrete computing without considering physical

dynamics in verification.

Hybrid systems are modeled as hybrid automata, which

combines automaton transitions for capturing discrete

changes with differential equations for continuous changes.

Well-known tools for verifying hybrid systems include

HyTech [7] and Uppaal [8]. For analysis of hybrid systems,

it is often useful to abstract a system in a way that preserves

the properties being analyzed while hiding the irrelevant

details. There has been much research on abstracting hybrid

systems, largely categorized into equivalent abstractions

and sufficient abstractions. Equivalent abstractions (surveyed

in [13]) such as language-preserving or bi-simulation ab-

stractions of timed automata, rectangular automata, and o-

minimal hybrid automata have enabled the basic algorithms

of tools such as HyTech and Uppaal.

There is an emerging trend in verification of hybrid

systems to utilize abstractions based on Satisfiability Modulo

Theories (SMT) [14]. In [6], they used an interval-based

solver for ordinary differential equations (ODEs) under an

SMT framework. In [15], a framework for verifying hybrid

systems is developed, under which it is proven that the

decision problem for bounded logic formulas over the real

numbers with general nonlinear functions are decidable. This

approach has a key drawback: The focus has been on control

logic design on high level with simplifying assumptions.

III. Background

This section introduces the background of our research.

First, we analyze timing parameters of control tasks. Then,

we review the fundamentals of Pushdown System and Hy-

brid Automata. Finally, we introduce our case studies.

A. Timing Parameters of Control Task

The basic timing parameters of a control task [16] are

shown in Fig. 2. It is assumed that the control task is

released periodically at times given by tk = T ∗ k, where
T is the fixed sampling interval of the controller and k is
the number of controller iterations. Let ti and to represent
the A/D and D/A conversion periodical instants, respectively.

Due to preemption and blocking from other tasks in the OS,

540

the actual start of the task may be delayed for some time

Ls. This is called the sampling latency of the controller. A
dynamic scheduling policy will introduce variations in this

interval. The sampling jitter is defined by the range between

the minimum and maximum sampling latencies in all task

instances, Js ∈ [min Ls,max Ls].

Figure 2: Timing analysis of control task.

After some computation time and possible further pre-

emption from other tasks, the controller will actuate the

control signal. The delay of the actuation is called the input-

output latency, denoted Lio. Varying execution times or task
scheduling will introduce variations in this interval. The

input-output jitter is defined by Jio ∈ [min Lio,max Lio].
We also assume that ti′ and to′ represent the A/D and D/A

the worst-case conversion instants respectively. The actual

A/D and D/A conversion instant are ti = ti′ − Js and to =
to′ − Jio, respectively.
B. Pushdown System as Software Models

A Pushdown System PDS [17] is a tuple

(G, Γ,Δ, 〈g0, ω0〉), where G is a finite set of global

states, Γ is a finite stack alphabet, Δ � (G × Γ) × (G × Γ∗)
is a finite set of transition rules, and 〈g0, ω0〉 is the initial
configuration. A configuration of PDS is a pair 〈g, ω〉
representing a software state, where g ∈ G is a global

state and ω ∈ Γ∗ is a stack content. An PDS rule is

written as 〈g, ω〉 ↪→ 〈g′, ω〉, where ((g, γ), (g′, ω)) ∈ Δ, and
(g, γ) is referred to as the head of this rule. The set of all
configurations is denoted as Con f (P).

C. Hybrid Automata as Plant Models

A Hybrid Automata HA [4] is syntactically a tuple

(x̃, x̃0,V, v0, inv, di f , E, act, lab, syn), consisting of the fol-

lowing components:

• x̃ is a vector of n real-valued variables x̃ =

(x1, x2, ..., xn) ∈ Rn. A specific evaluation of x̃, denoted
as s̃ = (s1, s2, ..., sn) ∈ Rn is called a data state of HA;

• x̃0 is the initial data state;
• V is a set of locations, where different control laws

apply. A state of hybrid automaton HA is denoted as

(v, s̃), where v ∈ V and s̃ ∈ Rn is a data state;
• v0 is the initial location;
• inv is the location invariants, a labeling function that
assigns each location v ∈ V a set of inequalities over x̃;

• di f is the continuous activities, a function that assigns
each location v ∈ V a set of inequalities over ˜̇x and x̃;

• E is the set of events: edges between locations. For-

mally, E � V × V;
• act is the discrete actions, a labeling function assigns
to each event e = (v, v′) ∈ E a set of inequalities over

x̃ and x̃′, where x̃′ =
(
x′1, x

′
2, ..., x

′
n

)
refers to the new

value of x̃ after event e. The event e = (v, v′) is enabled
only when the value of x̃ in v satisfies act(e);

• lab is a set of synchronization labels. The set lab is
called the alphabet of HA;

• syn is the labeling function that assigns to each event
e ∈ E a set of synchronization labels from lab.

D. TableSat

TableSat, as shown in Fig. 3, is an interactive platform

from the University of Michigan, which emulates in 1-

degree-of-freedom the dynamics, sensing, and actuation ca-

pabilities required for satellite attitude control.

Figure 3: TableSat.

TableSat is driven by two computer fans and experiences

extremely low friction on its central pivot point. It contains

a high-precision rate gyro to measure angular velocity. An

onboard Diamond Systems Prometheus PC/104 computer

communicates to a ground station via a wireless 802.11b

interface. The computer interfaces to sensors through 16-

bit analog-to-digital converters and to actuators through

amplified 16-bit digital-to-analog channels. The equations

of TableSat motion are:

Iω̇ = 2lKω f v − fTS (ω) (1)

v̇ = −αv + Kvω̇(V − f f an(v)) (2)

where I is the TableSat moment of inertia, ω is the TableSat
angular velocity, v is the speed of the fan, l is the fan moment
arm, fTS is the TableSat friction and is a function of ω, Kω f
is the fan speed to force constant, V is the voltage applied

to the fan, α is the fan time constant, Kvω̇ is the fan voltage
to change in speed constant, and f f an is the friction in the
fans and is function of v.
The controller manipulates the voltage applied to the fan

to enforce a target angular velocity of TableSat. Here we

set two voltage (0V and 12V) options for the controller to

choose. The motion law of TableSat is denoted by the two

541

different voltages: one is 12V voltage applied to the fans (see

Eq. 3), the other is 0V voltage applied to the fans (see Eq. 4).

Fig. 4 shows the motion of TableSat by hybrid automata. The

model consists of 6 discrete locations corresponding to each

node, 3-dimensional continuous states x̃ = (ω, v, t) ∈ R3,
and 8 discrete state transitions corresponding to the edges.

Let t represents the internal timer. According to analysis in

section III-A, each motion law is divided into three stages in

a loop: sampling, input-output and rest (represent by (tk, ti],
(ti, to] and (to, tk+1], respectively). So TableSat has 6 discrete
locations (12V dynamic: On AD, On DA and On Rest; 0V

dynamic: Off AD, Off DA and Off Rest). Each discrete

transition is enabled by its guard condition. For example, a

discrete transition d from On DA to On Rest has a guard

condition t > to∩ On (e =(On DA, On Rest), x̃
 act(e) =
t > to, On ∈ lab). When the controller sends command to
the fan (i.e., when boolean variable, On or Off, is set to

true), the motion of TableSat switches to the corresponding

motion law. An edge entering On AD represents the initial

constraint. The set of initial state is (On AD, 0, 0, 0).

v̇ = −αv + Kvω̇(12 − f f an(v)) (3)

v̇ = −αv + Kvω̇(0 − f f an(v)) (4)

Figure 4: Plant model of TableSat.

IV. VerificationModel for Cyber-Physical System

Since software and physical plant are designed in different

approaches, they are commonly represented by different

formal models. Having separate formal models for software

and physical plant is cumbersome for co-verification. A uni-

fying model that combines the merits of Pushdown System

and Hybrid Automata is desired so that software, physical

plant and their interactions can be analyzed together as an

integrated system.

We synthesize a HAPS by synchronizing a Pushdown

System and a Hybrid Automata. HAPS captures both the

synchronous transitions and asynchronous transitions on the

system level. While PDS is a suitable model for programs,
it is not designed to accept any inputs. In co-verification,

physical plant behaviors also affect software executions, e.g.,

through sampling; therefore, the PDS software model should
be extended to accept inputs from the HA model.
Definition 1. A Labeled Pushdown System (LPDS) is a
tuple (I,G, Γ,Δ, 〈g0, ω0〉), where I is a finite input alphabet,
G is a finite set of global states, Γ is a finite stack alphabet,

Δ � (G × Γ) × I × (G × Γ∗) is a finite set of transition rules,
and 〈g0, ω0〉) is the initial configuration. An LPDA rule is

written as 〈g,Υ〉 τ−→ 〈g′, ω〉 ∈ Δ.
For co-verification, we define: (1) the input alphabet of

LPDS , I, as the power set of the set of atomic propositions
that may hold on a state of HA; (2) the alphabet of HA,
lab, as the power set of the set of atomic propositions that
may hold on a state of LPDS ; and (3) two synchronization
labeling functions as follows:

• LP2H: (G × Γ) → lab, which associates the head of an
LPDA configuration with the set of propositions that

hold on it;

• LH2P: V → I, which associates a state of HA with the
set of propositions that hold on it.

Since the state transitions of both the LPDS and HA are
labeled by the symbols, the two models are synchronized. It

is further desired that a unifying model is built to combine

them; thus, their behaviors can be analyzed together as an

integrated system.

Enabledness. An LPDS rule r = 〈g,Υ〉 τ−→ 〈g′, ω〉 ∈ Δ is
enabled by a HA location v ∈ V i f f τ ⊆ LH2P(v); otherwise,
r is disabled by v. On the other hand, the HA discrete

transition d = (v, x̃)
α−→ (v′, x̃′) is enabled by the LPDS

configuration 〈g,Υ〉 i f f α ⊆ LP2H(〈g,Υ〉); otherwise, d is
disabled by 〈g,Υ〉.
Indistinguishability. Given a HA discrete transition d =
(v, x̃)

α−→ (v′, x̃′) (e = (v, v′), x̃
 act(e)), an LPDS
rule r = 〈g,Υ〉 τ−→ 〈g′, ω〉 ∈ Δ is indistinguishable to d
i f f α ⊆ LP2H(〈g,Υ〉)⋂ LP2H(〈g′, ω〉). On the other hand,
d is indistinguishable to r i f f τ ⊆ LH2P(v)⋂ LH2P(v′).
Independence. Given a HA discrete transition d and an

LPDS rule r, if they are indistinguishable to each other, d
and r are said to be independent; otherwise if either d or r is
not indistinguishable to the other but they still enable each

other, d and r are said to be dependent. The independence
relation is symmetric.

Definition 2. A Hybrid Automata Pushdown System

(HAPS) is a tuple (G′, Γ,Δ′, inv, di f , 〈(v0, g0), x̃0, ω0〉),
where

• G′, as V ×G × x̃, is the set of global states;
• Γ is the stack content from LPDA;
• Δ′ is a set of transition rules which are constructed by
Algorithm 1;

• inv is the location invariants from HA;
• di f is the continuous activities from HA;

542

• 〈(v0, g0), x̃0, ω0〉) is initial state of HAPS .
The input alphabets I and lab are used to synchronize the

LPDS rules and HA transitions. Once HAPS is constructed,
these input alphabets are no longer useful. We will construct

the whole system discrete transition by Algorithm 1. E and
act are used to capture discrete transition of HA. Therefore,
they are not in the definition of HAPS .
The cartesian product between LPDS and HA are actually

done through code instrumentation. Algorithm 1 creates a

cartesian product of the transition rules from LPDS and HA
respectively. Given a LPDS rule r = 〈g,Υ〉 τ−→ 〈g′, ω〉 ∈ Δ
and a HA discrete transition d = (v, x̃)

α−→ (v′, x̃′) (e =
(v, v′), x̃
 act(e)), the algorithm constructs HAPS rules

from r and d only if they enable each other. When r and d are
dependent, LPDS and HA must transition together, which is
modeled by the HAPS rule 〈(g, v),Υ〉 −→ 〈(g′, v′), ω〉. In such
situation, the HAPS rule represents synchronous transitions
of LPDS and HA. When r and d are independent, LPDS
and HA can transition asynchronously. One can run while

the other one self-loops. There are two types of HAPS
rules: LPDS transitions and HA self-loops as modeled by

〈(g, q),Υ〉 −→ 〈(g′, q), ω〉 while HA transitions and LPDS
self-loops as modeled by 〈(g, q),Υ〉 −→ 〈(g, q′),Υ〉.

Algorithm 1: GENERATE HAPS RULES

1 Δsync ← φ, Δhori ← φ, Δvert ← φ;
2 forall the r = 〈g,Υ〉 τ−→ 〈g′, ω〉 ∈ Δ do
3 forall the d = (v, x̃)

α−→ (v′, x̃′), e = (v, v′), x̃
 act(e)
and α ⊆ LP2H(〈g,Υ〉) and τ ⊆ LH2P(v) do

4 if r and d are dependent then
5 {LPDS and HA must transition together}

Δsync ← Δsync⋃{〈(g, q),Υ〉 −→ 〈(g′, q′), ω〉}
6 else
7 {LPDS transition and HA self-loops}

Δvert ← Δvert⋃{〈(g, q),Υ〉 −→ 〈(g′, q), ω〉}
8 {HA transition and LPDS self-loops}

Δhori ← Δhori⋃{〈(g, q),Υ〉 −→ 〈(g, q′),Υ〉}
9 ΔP ← Δsync⋃Δhori⋃Δvert
10 return ΔP;

V. Constructing HAPS for Cyber-Physical System

In this section, we discuss how to construct a HAPS
model. As illustrated in Fig. 5, our formal framework has:

software model, plant model and cyber/physical interface.

There are three steps to construct a HAPS model from

the software and plant model: (1) define the cyber/physical

interface; (2) instrumenting the software model based on the

cyber/physical interface; (3) instrumenting the plant model

based on the cyber/physical interface. In order to facilitate

the understanding of our approach, we illustrate it with the

TableSat example.

Cyber/Physical Interface
Control Software Plant

Figure 5: Formal framework for co-verification.

A. Cyber/Physical Interface

CPS contains both the physical components being con-

trolled and the software implementation of control algo-

rithms. The software controller and its control plant are

mostly asynchronous and only transition synchronously

when they interact through their interface. The cyber/physi-

cal concurrency describes such situations:

• Mostly, software and plant transition asynchronously,
where their states do not affect each other;

• When software and plant interact with each other, their
synchronous transition will be decided by the states of

both software and plant.

The cyber/physical interface describes how software con-

troller and its controlled plant should transition synchronous-

ly when they interact with each other. A cyber/physical

interface has two parts: interface states and interface events.

Interface states are state variables provided either by soft-

ware or plant and accessible by both. Interface events have

two types: software or plant. When software updates the

plant interface states, a software interface event occurs, and

vice versa. For example, when software writes command

to the plant, the cyber/physical interface will set the related

actuator accordingly. In general, the cyber/physical interface

describes the synchronous transitions of software and plant

when an interface event occurs.

Consider the example of TableSat (see Fig. 5). Inter-

face states are system mode and physical data, which

represent motion of fan (Eq. 3 or Eq. 4) and senor read

value respectively. A plant discrete transition is a set of HA
transitions labeled by the symbol from lab; and an atomic
software statement is a set of LPDS rules labeled by the

same input symbol from I. The input alphabet of software
model is {ad} and {no event}; the lab of plant model is
{da} and {no evt}. The labeling function LH2P (resp. LP2H)
maps plant (resp. software) states to input symbols in I (resp.
lab). For HA, there are symbols such as {da}, {no evt} ∈ lab,
where the propositional variable {da} represents the software
interface events when software writes the command to set

the related actuator; and the propositional variable {no evt}
represents that there is no software interface event. On the

other direction, for LPDS , there are input symbols such as

543

{ad}, {no event} ∈ I, where the propositional variable {ad}
represents the plant interface event, i.e., A/D conversion; and

the propositional variable {no event} represents that there is
no plant interface event.

Fig. 6 illustrates an example of a software interface

event function in response to a software read sensor value

operation. The function ad convertion is labeled by

the symbol, {ad} ∈ I. Conceptually, the software interface
event happens, i.e., {ad} is evaluated true, when entry stack
symbol of ad convertion is reached. When software

writes command, plant should be switched in response to

a software write actuator operation. Fig. 7 simulates this

process. The function da convertion are labeled by {da}
∈ lab. Therefore, the plant discrete transition is enabled

when software writes command.

1 //software function labeled by the symbol {ad}
2 int ad_convertion(float sensor_data)
3 {
4 ...
5 //AD conversion
6 switch(system_mode){
7 case (system_mode == On):{
8 physical_data = physical_dynamic1(t_i-js);
9 break;}
10 case(system_mode == Off):{
11 physical_data = physical_dynamic2(t_i-js);
12 break;}
13 ...
14 }
15 ...
16 }

Figure 6: An implementation of a software interface event.

1 //plant function labeled by the symbol {da}
2 int da_convertion(int voltage)
3 {
4 ...
5 //if command voltage=12, switch to 12V mode
6 if (voltage==12) system_mode = On;
7 //Otherwise , switch to 0V mode
8 else system_mode = Off;
9 ...
10 }

Figure 7: An implementation of a plant interface event.

B. Instrumenting HA

The physical plant model describes the behaviors of

physical dynamic when it transitions asynchronously with

software, i.e., when there is no D/A conversion. There are

two steps to construct a HA model: first, we instrumenting
the plant model based on the cyber/physical interface, which

adds the synchronization label imposed by HAPS . Second,
we convert hybrid automata into an equivalent C program.

We utilize SMT to abstract the physical plant and serve as

the semantic foundation for abstraction.

In the following, we describe the encoding of a HA
with disjoint sets of continuous variables. The HA =

(x̃, x̃0,V, v0, inv, di f , E, act, syn, lab) , where
• x̃ is encoded as global variables.
• V is encoded with a set of module functions.

• Initial state is given by the initialization function;
• inv is encoded with a set of inequalities over data

variables in a module function;

• The continuous variables evolve according to di f ,
which is defined within a module function.

• E is encoded with the function call. Eentry and Eexit
are the function entry and function exit, respectively.

Eentry determines when HA performs a continuous

evolution, while Eexit determines when HA stutters (i.e.
no transition). The Eentry is chosen when the value of
data variables satisfies act(e), e ∈ E;

• act is encoded with a set of inequalities over data

variables;

• Synchronization constraint, lab, is encoded with a set
of boolean variables;

• syn is encoded with a set of equalities over boolean
variables.

Take TableSat as a example. We convert its plant model

(Fig. 4) into a C program (Fig. 8). The code in Fig. 8 works

as follows:

Lines 1: Defines three float variables physical, nu and

t, which represent three continuous states (ω, v, t).
Line 3: Realizes Eq. 1 and Eq. 3 during the time interval

TimeInterval. Here we use Euler method to solve ordinary

differential equations with a given initial value.

Line 5-29: Models the state transitions for TableSat when

the plant executes asynchronously with the controller. Dur-

ing each execution of the transaction function, the motion

of TableSat is selected by the controller through interface

state system mode (Line 7 and 25). So only one module

executes and its related state variables will be update.

Line 8, 16, 20: Checks whether the value of time variable

t satisfies act(e).
line 11, 17, 21: Executes plant dynamic by calling func-

tion physcial dynamic1 or physcial dynamic2.

C. Instrumenting Software

The software model describes the behaviors of the con-

troller when it transitions asynchronously with the physical

plant, i.e., when there is no sampling. It describes the desired

operation sequences for the controller to control the plant.

The left side of Fig. 9 shows the skeleton of the con-

trol software for TableSat. When initializing the controller,

the software will set a timer to invoke the control loop

periodically. After that, the controller will wait to invoke

the main control loop. In the control loop, the controller

first reads senor values from the channels, then calculates

544

1 float physical , nu, t;
2 //plant function labeled by the symbol no_evt
3 float physcial_dynamic12(float TimeInterval);
4 //plant function labeled by the symbol no_evt
5 void physical_run(void){
6 switch(system_mode){
7 case (system_mode == On):{
8 if((0 < t) && (t <= t_i)){
9 ...
10 //physical dynamic in system mode 1
11 physical = physical_dynamic1(t);
12 //get senor value
13 ad_convertion();
14 ...
15 }
16 else if((t_i < t) && (t <= t_o)){
17 physical = physical_dynamic1(t);
18 ...
19 }
20 else if((t_o < t) && (t <= T)){
21 physical = physical_dynamic1(t);
22 ...
23 }break;
24 }
25 case(system_mode == Off):{
26 ...
27 }
28 }
29 }

Figure 8: C program for TableSat plant.

outputs according to the control logic, writes commands to

related actuator and update state in the end. The initial,

wait clock, calculate output, command motor and

update state function are labeled by {no event} ∈ I, and
the function read sensors is labeled by {ad} ∈ I.

Figure 9: Left side: C program of control software; right

side: execution of plant interleaved with software statements.

Given the cyber/physical interface, plant model, and soft-

ware, we combine them into a C program. After soft-

ware functions (wait clock, calculate output and

command motor), we invoke the plant transaction function,

physical run, to let the asynchronous plant model exe-

cute.

VI. Verification Algorithm for Cyber-Physical System

A. Bounded Model Checking of Safety Properties of HAPS

In order to verify CPS, it is necessary to specify prop-

erties to be be checked, i.e., whether the implementation

of CPS design may exhibit behaviors that satisfy certain

conditions, specifying some desired or undesired interactions

among the components. Events in CPS are basically boolean

propositions over physical variables. Assertions are desired

correlations among physical plant and software events.

In our co-verification framework, the formal model is a

HAPS and the property φ are specified using assertions.
When a safety property is specified, we check properties of

the form AG φ through reachability analysis. Fig. 10 shows
the co-verification flow as supported by our approach.

Figure 10: Cyber/Physical co-verification flow.

We convert a HAPS into a C program, which we refer

to as the verification model, so that model checkers for C

can be readily utilized. The backend engine, CBMC [18],

checks the safety properties on the C program. The CBMC

can directly reason about floating point arithmetic by bit-

blasting, following the IEEE 754 standard.

B. Symbolic Execution

Bounded Model Checking (BMC) is a technique that finds

a violation of a property φ in a transition system. Thus, BMC
finds a violation state for φ if there is a path which witnesses
the violation in at most k steps. xi (i ∈ [0, k]) represents the
configuration of HAPS in step k. In this paper, we express
that violation state will be reached within k-step execution
as

[HAPS]k = init(x0)∧ΔP′(x0, x1)∧· · ·∧ΔP′(xk−1, xk)∧φ. (5)
As we discussed in section III-A, temporal determinism

is very important for system design. Designers normally

assume equidistant sampling and negligible or constant

latency. However, this situation can rarely be achieved in

practice. To circumvent the theoretically difficult temporal

determinism problem, we defined the latency as a symbolic

variable: instead of asking whether a system is safe or not by

a precise latency, a symbolic variable asks whether a system

545

is safe or not within a loose bound. The symbolic variable

is a bounded interval [m, n] = {r ∈ R | m ≤ r ≤ n} (m, n ∈ R),
which is a set of real numbers.
Proposition 1 For a Hybrid Automata Pushdown Sys-

tem (HAPS), suppose [HAPS]k is a satisfiability formula
encoded for k steps as described above. If [HAPS]k is
unsatisfiable, then HAPS is safe for k-step execution.

VII. Evaluation

To evaluate our proposed approach, especially the effec-

tiveness of CPS verification, we conduct two case studies

to evaluate its applicability to real-world control systems. In

our case studies, we want to check whether the controller

is safe or not with slight perturbations in the inputs and

outputs to the system. All experiments were performed on

a machine with 2.93GHz Intel(R) Xeon and 8G memory.

A. TableSat
We started by implementing the controller in C. Then,

we synchronized the software and physical plant model and

convert it into a C program. Fig. 11 shows a simulation run

of TableSat.

0

5

10

15

-5000

0

5000

10000

15000

0 5 10 15 20 25 30
-20

0

20

40

60

Figure 11: Simulation result (Input 30deg/s; from top to

bottom the charts show the voltage, fan speed, angular

velocity over the simulated time).

We formulated the properties of the system and its compo-

nents, and conducted bounded model checking. Assertions

are desired correlations among discrete computation and

continuous control plant events. In summary, the behaviors

of TableSat must comply with the following safety rules:
Safety Rule 1: The controller never accelerates the TableSat
over the rotary velocity limit VelocityUpBound. Formally,
(Rotary.Velocity ≤ VelocityUpBound).
Safety Rule 2: When running more than a threshold

TimeBound, the controller will always accelerate the Ta-
bleSat over the rotary velocity limit VelocityDownBound.

Formally, (Time ≥ TimeBound) ⇒ (Rotary.Velocity ≥
VelocityDownBound).
Safety Rule 3: When the rotary velocity exceeds 1.5 times
of its expected value TargetVelocity, the controller will
set the fans to 0 volt. Formally, (Rotary.Velocity > 1.5 ∗
TargetVelocity)⇒ (Actuator.FanVoltage ≡ 0).
Safety Rule 4: When the rotary velocity below 0.4 times

of its expected value TargetVelocity, the controller will
set the fans to 12 volt. Formally, (Rotary.Velocity < 0.4 ∗
TargetVelocity)⇒ (Actuator.FanVoltage ≡ 12).
Safety Rule 5: When running more than a thresh-

old TimeBound, the rotary velocity must be stable at

TargetVelocity within the error S teadyS tateError. For-
mally, (Time ≥ TimeBound) ⇒ (|Rotary.Velocity −
TargetVelocity| ≤ S teadyS tateError).
We use the following initial set of parameters: the fixed

sampling interval (T = 2s), the A/D conversion instant

(ti = 0.4s), and the D/A conversion instant (to = 1.6s).
We specified a target rotary velocity (TargetVelocity =
30deg/s) as TableSat input. We set the initial value of

angular velocity ([0, 40]) as a symbolic variable. Bounded
model checking revealed a simple bug of the controller that:

If the initial value of angular velocity is 39.960621deg/s,
then the rotary velocity reaches (63.649414deg/s) above a
threshold (VelocityUpBound = 60deg/s) at 2.324336s. The
verification run took 7260.86s.

We used the same initial set and target rotary velocity to

conduct another verification run. The initial value of angular

velocity was 0deg/s. We set sampling jitter (js ∈ [0, 0.2])
and input-output jitter (jio ∈ [0, 0.1]) as symbolic variables.
The verification result shows that the controller satisfies the

specification within 6s. The verification run took 10415s.
The running time largely depends on the backend solver.

B. Cruise Control System

The second experiment is cruise control system (see

Fig. 12). Cruise control is an example of a feedback control

system found in many modern vehicles. The purpose of the

cruise control system is to automatically controls the speed

of an vehicle. The driver sets the speed and the system takes

over the throttle of the car to maintain the speed according to

a control law. We obtain the car model from the benchmark

of iSAT [19].

The top-level diagram of the model shown in Fig. 12

is composed of a module which represents the vehicle

dynamic, with an additional cruise control block to control

the vehicle speed. The dynamics of the car consists of: the

continuous speed variable v = ẋ (m · s−1), the continuous
inputs that are the engine torque ut (Nm) and the braking
force ub (N), plus six binary inputs g1, g2, g3, g4 and g5
∈ {0, 1} corresponding to the selected gear.
1) Car Model: The car model in the benchmark is the

model of Renault Clio 1.9 dTi RXE. The dynamic motion

546

Figure 12: Cruise control system.

equation of the car is as follows:

mẍ = Fe − Fb − FΥ (6)

where ẍ is the vehicle accelerated speed, m is the vehicle

mass, Fe is the traction force, Fb = ub is the braking force,
FΥ is the friction force. FΥ = βv, where β is a constant that
takes into account all the frictions.

The traction force Fe and engine speed ω can be written as
Fe = Fe1+Fe2+Fe3+Fe4+Fe5 and ω = ω1+ω2+ω3+ω4+ω5,
where

Fei =

⎧⎪⎪⎨⎪⎪⎩
Rg(i)
kloss

ut, if gi = 1
0, otherwise.

(7)

ωi =

⎧⎪⎪⎨⎪⎪⎩
Rg(i)
kloss

ẋ, if gi = 1
0, otherwise.

(8)

where Rg(i) is the gear ratio corresponding to the ith gear,
ut (Nm) is the engine torque, and kloss is the drive train
efficiency level.

The main parameters of the car are: Rg(1) = 3.7271,
Rg(2) = 2.048, Rg(3) = 1.321, Rg(4) = 0.971, Rg(5) = 0.756,
Kloss = 0.925, β = 25(kg · m · s−1), m = 1020kg.
2) Cruise Controller: The controller commands throttle

position, braking force and selected gear, based on the

desired vehicle speed and measurements of the actual car

speed and engine speed. It consists of three controllers: gear

shift controller, torque PI controller and braking force PI

controller.

The gear shift controller performs the function of gear

selection in the automatic transmission. The automatic trans-

mission adjusts gear ratios as the vehicle moves. Each

gear is followed by different dynamic law (traction force

and engine/vehicle speed). The model describes controls

for a 5-speed transmission system. Fig. 13 illustrates the

functionality.

The gear shift controller defines the input as the actual

vehicle speed and the output as the desired gear number.

Shifting is only possible between adjacent gears and is

triggered when engine speed leaves a certain interval. If

Figure 13: Diagram of gear shift logic.

the engine speed is faster than up th (3500 RPM) then

the gear is shifted up. Similarly, if the speed is lower than

down th (1500 RPM), the gear is shifted down.

The throttle and the brakes are operated by the PI con-

troller, which is characterized by:

ut(k) =

⎧⎪⎪⎨⎪⎪⎩
ktΔv(k) + ite(k), i f v(k) ≤ vr(k) + 1
0, otherwise.

(9)

ub(k) =

⎧⎪⎪⎨⎪⎪⎩
kbΔv(k), i f v(k) ≤ vr(k) + 1
0, otherwise.

(10)

where e(k) is integral error and Δv(k) is the difference

between desired speed and actual vehicle speed.
3) Co-Verification of Cruise Control System: We applied

our co-verification approach to the transmission shift control

system with the same process as TableSat. We synchronized

the software and physical plant model and converted it into

a C program, formulated the properties of the system and its

components, and then conducted bounded model checking.

We checked a safety property: the cruise controller will

never accelerate the car over the speed limit. We used the

following initial set {T = 3s, ti = 1.5s, to = 2.1s} and
specified a target speed 13.89m/s. We set sampling jitter
(js ∈ [0, 0.1]) and input-output jitter (jio ∈ [0, 0.2]) as
symbolic variables. Bounded model checking thus revealed

a simple bug of the controller that was, however, subtle

enough not to be detected when designing the model: when

the car speed near the speed limit (14.5m/s), instead of

applying the maximum braking force, the controller still

sets engine torque to 112.220001Nm, allowing the car to
accelerate and exceed the speed limit. This happens since

the controller re-computes the cruise control setting only

every 3s with sampling jitter of 0.091578s and input-output
jitter of 0.132955s. The error trace is shown in Table I. Each
row in the table shows a system state at a time instant. For

instance, the last row shows that the car speed has exceeded

its speed limit at 7.5s with the set of parameters: selected

gear = 1, engine torque = 112.220001Nm, and braking force
= 0N. The verification run took 7242.26s.

VIII. Conclutions

This paper proposes an automata-theoretic approach to

cyber/physical co-verification. The core of this approach is

a formal model for co-verification, Hybrid Automata Push-

down System (HAPS). We have demonstrated the process

547

Table I: Error Trace.

Time Gear No. Engine Torque Braking Force Car Speed

(s) (Nm) (N) (m/s)

0.000000 1 0 0 0

0.248437 1 0 0 0

1.500122 1 112.220001 0 0

2.115534 1 112.220001 0 0

3.000000 1 112.220001 0 0

4.562532 1 112.220001 0 0.313083

5.917902 1 112.220001 0 6.386552

7.500000 1 112.220001 0 14.687162

of constructing a HAPS from the software, plant, and the

interface between cyber/physical through the synchroniza-

tion of a PDS and a HA and converting it into a C program.

So reachability analysis of C program algorithms can be

readily utilized to analyze HAPS . We have implemented this
approach in our co-verification tool and successfully applied

it to co-verify real-world control systems. The evaluation has

shown that HAPS is an effective model for co-verification

and our approach has major potential in verifying CPS.

Our work is an ongoing project. On one hand, we are

continuously improving our algorithms to reduce verification

complexity. On the other hand, we are currently extending

the integration of numerical solving of ODEs in order

to directly handle ODEs in the solver without numerical

approximation.

acknowledgment

This research received financial support from the National

Science Foundation of the United States (Grant #: 0720546

and Grant #: 0916968), the National High-Tech Research

and Development Plan of China (Grant #: 2011AA010105

and Grant #: 2011AA010102), and the National Infrastruc-

ture Software Plan of China (Grant #: 2012ZX01041-002-

003).

References

[1] E. A. Lee, “Cps foundations,” in Proc. of the 47th Design
Automation Conference (DAC). ACM, June 2010, pp. 737–
742.

[2] R. Thacker, K. Jones, C. Myers, and H. Zheng, “Automatic
abstraction for verification of cyber-physical systems,” in
Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems. ACM, 2010, pp. 12–21.

[3] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy,
K. Lampka, and L. Thiele, “A hybrid approach to cyber-
physical systems verification,” in Design Automation Con-
ference (DAC), 2012 49th ACM/EDAC/IEEE, june 2012, pp.
688 –696.

[4] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao,
and X. Li, “Toward online hybrid systems model checking
of cyberphysical systems time-bounded short-run behavior,”
ICCPS11 Work-in-Progress Session, 2011.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The
algorithmic analysis of hybrid systems,” Theoretical computer
science, vol. 138, no. 1, pp. 3–34, 1995.

[6] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle,
“Improving sat modulo ode for hybrid systems analysis by
combining different enclosure methods,” Software Engineer-
ing and Formal Methods, pp. 172–187, 2011.

[7] T. Henzinger, P. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems,” International Journal on Soft-
ware Tools for Technology Transfer (STTT), vol. 1, no. 1, pp.
110–122, 1997.

[8] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshel-
l,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 1, no. 1, pp. 134–152, 1997.

[9] E. Goubault, “Static analyses of the precision of floating-
point operations,” in Proceedings of the 8th International
Symposium on Static Analysis, ser. SAS ’01. London, UK,
UK: Springer-Verlag, 2001, pp. 234–259.

[10] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Formal verification of embedded
systems based on cfsm networks,” in Design Automation
Conference Proceedings 1996, 33rd. IEEE, 1996, pp. 568–
571.

[11] L. Cortes, P. Eles, and Z. Peng, “Formal coverification of
embedded systems using model checking,” in Euromicro
Conference, 2000. Proceedings of the 26th, vol. 1. IEEE,
2000, pp. 106–113.

[12] E. Goubault, S. Putot, P. Baufreton, and J. Gassino, “Static
analysis of the accuracy in control systems: Principles and
experiments,” Formal methods for industrial critical systems,
pp. 3–20, 2008.

[13] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Dis-
crete abstractions of hybrid systems,” Proceedings of the
IEEE, vol. 88, no. 7, pp. 971–984, 2000.

[14] A. Cimatti, S. Mover, and S. Tonetta, “Smt-based verification
of hybrid systems,” in Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[15] S. Gao, J. Avigad, and E. M. Clarke, “Delta-decidability over
the reals,” CoRR, vol. abs/1204.6671, 2012.

[16] K. Årzén, A. Cervin, and D. Henriksson, “Implementation-
aware embedded control systems,” Handbook of networked
and embedded control systems, pp. 377–394, 2005.

[17] S. Schwoon, “Model-checking pushdown systems,”
Ph.D. dissertation, Technische Universität München,
Universitätsbibliothek, 2002.

[18] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking
ansi-c programs,” in In Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 2004, pp. 168–
176.

[19] iSAT benchmark, “Automatic verification and analysis of
complex systems,” http://isat.gforge.avacs.org/benchmarks.

548

