
Achieving Faster Failure Detection in OSPF
Networks

Mukul Goyal
CIS Department

The Ohio State University
Columbus, OH, USA

mukul@cis.ohio-state.edu

K. K. Ramakrishnan
Networking Research

AT&T Labs - Research
Florham Park, NJ, USA

kkrama@research.att.com

Wu-chi Feng
Dept of Computer Science & Engg

Oregon Institute of Technology
Beaverton, OR, USA
wuchi@cse.ogi.edu

Abstract— With the current default settings of the OSPF
parameters, the network takes several tens of seconds before
recovering from a failure. The main component in this delay is
the time required to detect the failure using Hello protocol.
Failure detection time can be speeded up by reducing the value of
HelloInterval. However, too small a value of HelloInterval will
result in an increased chance of network congestion causing loss
of several consecutive Hellos, thus leading to false breakdown of
adjacency between routers. Such false alarms not only disrupt
network traffic by causing unnecessary routing changes but also
increase the processing load on the routers which may potentially
lead to routing instability. In this paper, we investigate the
following question - What is the optimal value for the
HelloInterval that will lead to fast failure detection in the network
while keeping the false alarm occurrence within acceptable
limits? We examine the impact of both network congestion and
the network topology on the optimal HelloInterval value.
Additionally, we investigate the effectiveness of faster failure
detection in achieving faster failure recovery in OSPF networks.
(Abstract)

Keywords—Failure Recovery; OSPF (key words)

I. INTRODUCTION

Link state protocols, such as OSPF [1] and IS-IS [2] using
shortest path first forwarding are the most commonly used
Interior Gateway Protocols in the Internet today. Each router
knows the topology of the network, and the associated
weights, and uses this information to determine the shortest
paths to different destinations. However, when there is a
failure in the network (link or node failure), these protocols
take some time to detect the failure and re-establish a
consistent view of the new topology. During this transient, the
data traffic forwarded towards the failed device will be
dropped. Additionally, routing loops might emerge leading to
artificial congestion in the network.

In a carrier’s network, service level assurances (SLA)
provided to customers potentially limit the number of packets
that may be lost or are delayed excessively. To ensure that
SLAs are met, a carrier network often uses lower layer
transport (or data link) layer failure detection and restoration
techniques, so that service is not excessively impacted.
Depending on just the routing layer (and hence OSPF or IS-

IS) for recovery from failures has been typically considered
unacceptable, because it takes too long to recover from
failures. However, incorporating protection against failures at
the transport layer is expensive as it requires significant
redundant capacity. This motivates us to examine how we can
optimize the time to recover from failures at the routing layer,
by examining the mechanisms used within OSPF.

OSPF has been designed to be generally applicable, and
the timers and protocols have been designed so that it can be
deployed in a network of reasonably large scale. However, we
have observed in practice that service providers generally limit
the number of routers in a single OSPF area, for a variety of
reasons. This naturally begs the question of whether we could
adapt the parameters in the OSPF protocol to achieve faster
recovery from failures, especially when we know the topology
of the network. Minimizing the failure recovery time has the
benefit of a reduced need to depend on transport/data link
layer recovery and the possibility that a more complete,
network layer failure recovery mechanism could be put in
place.

II. FAILURE DETECTION AND RECOVERY IN OSPF

In OSPF, two adjacent routers in the same area
periodically exchange Hello messages to maintain the link
adjacency. If a router does not receive a Hello message from
its neighbor within a RouterDeadInterval (typically 40
seconds or 4 HelloIntervals), it assumes the link between itself
and the neighbor to be down and generates a new Router LSA
to reflect the changed topology. All such LSAs, generated by
the routers affected by the failure, are flooded throughout the
network and cause the routers in the network to redo the
shortest path first (SPF) calculation and update the next hop
information in the forwarding table. Thus, the time required to
recover from the failure consists of: (1) the failure detection
time (2) LSA flooding time (3) the time to complete the new
SPF calculations and update the forwarding tables. With
HelloInterval value 10 seconds and RouterDeadInterval value
40 seconds, the failure detection can take anywhere between
30 to 40 seconds. The LSA flooding times consist of the
propagation delays and any pacing delays resulting from the
rate-limiting of LSUpdate packets sent down an interface.
Once a router receives a new LSA, it schedules an SPF

calculation. Since SPF calculation using Dijkstra’s algorithm
[3] constitutes significant processing load, the router waits for
some time (spfDelay - typically 5 seconds) to let other LSAs
arrive before doing an SPF calculation. Moreover, the routers
place a limit on the frequency of SPF calculations (governed
by spfHoldTime, typically 10 seconds, between successive
SPF calculations) which can introduce further delays. In Table
1, we list different standard and vendor introduced delays that
affect the OSPF operation in networks of popular commercial
routers.

In this paper, we focus on reducing the failure detection
time which is clearly the main component of the overall
failure recovery time in OSPF based networks. While the
availability of link layer notifications can help achieve fast
failure detection, such mechanisms are often not available.
Hence, the routers use the Hello protocol to detect the loss of
adjacency with a neighbor. The Hello protocol operates via
periodic exchange of Hello messages between neighbor
routers. A router declares its adjacency with a neighbor to be
down if it does not receive a Hello from the neighbor for more
than RouterDeadInterval. This can happen if the link between
the router and the neighbor is down or the neighbor router is
no longer functional. To avoid a false breakdown of adjacency
because of congestion related loss of Hello messages, the
RouterDeadInterval is usually set to be four times the
HelloInterval – the interval between successive Hello
messages sent by a router to its neighbor. The failure detection
via Hello protocol can be substantially speeded up by reducing
the HelloInterval. However, there is a limit up to which the
HelloInterval can be safely reduced. As the HelloInterval
becomes smaller, there is an increased chance that the network
congestion will lead to loss of several consecutive Hello
messages and thereby cause false breakdown of adjacency
between routers even though the routers and the link between
them are functioning perfectly well. The LSAs generated
because of a false alarm will lead to new path calculations,
avoiding the supposedly down link, by all the routers in the
network. A false alarm is soon corrected by successful Hello
exchange between the affected routers which causes new set
of LSAs to be generated and possibly new path calculations to
be done by the routers in the network. Thus, false alarms
cause unnecessary processing load on the routers and some
times lead to temporary changes in the network traffic’s path
which can have a serious impact on the QOS levels in the
network. If the false alarms are too frequent, the routers will
have to spend a lot of time doing unnecessary LSA processing
and SPF calculations which may significantly delay important
tasks such as Hello processing, thereby leading to more false
alarms. Persistent overload on router CPUs will ultimately
result in complete meltdown of routing operation in the
network.

In this paper, our objective is to make a realistic
assessment regarding how small the HelloInterval can be, to
achieve faster detection and recovery from network failures
while limiting the occurrence of false alarms. This assessment
is done via simulations on the network topologies of
commercial ISPs [4] using a detailed implementation of OSPF
protocol in NS2 simulator [5] which models all the protocol
features as well as various standard and vendor-introduced

TABLE I. VARIOUS DELAYS AFFECTING THE OPERATION OF OSPF
PROTOCOL

Standard Configurable Delays
RxmtInterval The time delay before an un-acked LSA is

retransmitted. Usually 5 seconds.
Hello Interval The time delay between successive Hello packets.

Usually 10 seconds.
Router Dead
Interval

The time delay since the last Hello before a neighbor is
declared to be down. Usually 4 times the HelloInterval.

Vendor-introduced Configurable Delays
Pacing delay The minimum delay enforced between two successive

Link State Update packets sent down an interface.
Observed to be 33ms. Not always configurable.

spfDelay The delay between the shortest path calculation and the
first topology change that triggered the calculation.
Used to avoid frequent shortest path calculations.
Usually 5 seconds.

spfHoldTime The minimum delay between successive shortest path
calculations. Usually 10 seconds.

Standard Fixed Delays
LSRefreshTime The maximum time interval before an LSA needs to be

reflooded. Set to 30 minutes.
MinLSInterval The minimum time interval before an LSA can be

reflooded. Set to 5 seconds.
MinLSArrival The minimum time interval that should elapse before a

new instance of an LSA can be accepted. Set to 1
second.

Router-specific Delays
Route install delay The delay between shortest path calculation and update

of forwarding table. Observed to be 0.2 seconds.
LSA generation
delay

The delay before the generation of an LSA after all the
conditions for the LSA generation have been met.
Observed to be around 0.5 seconds.

LSA processing
delay

The time required to process an LSA including the time
required to process the Link State Update packet before
forwarding the LSA to the OSPF pocess. Observed to
be less than 1 ms.

SPF calculation
delay

The time required to do shortest path calculation.
Observed to be 0.00000247x2 + 0.000978 seconds on
Cisco 3600 series routers; x being the number of nodes
in the topology.

delays in the functioning of the protocol (Table 1). We
examine the network wide impact of reducing the
HelloInterval in terms of number of false alarms under a
realistic model of network congestion. We quantify the
detrimental effect of these false alarms in terms of
unnecessary SPF calculations done by the routers. We
examine how the network topology influences the occurrence
of false alarms. Finally, we evaluate how much does the faster
detection of network failures help in achieving faster recovery
from these failures in the operation of OSPF networks.

III. RELATED WORK

In this section, we briefly survey the existing literature on
speeding the recovery from network failures in the operation
of OSPF and IS-IS protocols. First, we discuss the previous
work on reducing the HelloInterval and the impact of
congestion in causing false alarms. Alaettinoglu et al. [6]
proposed reducing the HelloInterval to millisecond range to
achieve sub-second recovery from network failures but did not
consider any side effects of HelloInterval reduction. Shaikh et
al. [7] used Markov Chain based analysis of a simple network
topology to obtain the expected times before high packet drop
rates cause a healthy adjacency to be declared down and then

back up again. However, this work did not study the network
wide generation of false alarms caused by congestion as the
HelloInterval is reduced. Basu and Riecke [8] have also
examined using sub-second HelloIntervals to achieve faster
recovery from network failures. This work is similar to ours in
the sense that it also considered the tradeoff between faster
failure detection and increased frequency of false alarms. It
reports 275ms to be an optimal value for HelloInterval
providing fast failure detection while not resulting in too many
false alarms. However, this work did not consider the impact
of different levels of network congestion and topology
characteristics on the optimal HelloInterval value. We believe
these factors impact the setting of the HelloInterval
substantially, as we illustrate in this paper.

False alarms can also be generated if the Hello message
gets queued behind a huge burst of LSAs and can not be
processed in time. The possibility of such an event increases
with reduction in RouterDeadInterval. Large LSA bursts can
be caused by a number of factors such as simultaneous refresh
of a large number of LSAs or several routers going
down/coming up simultaneously. Choudhury et al. [9] studied
this issue and observed that reducing the HelloInterval lowers
the threshold (in terms of number of LSAs) at which an LSA
burst will lead to generation of false alarms. However, the
probability of such events is quite low. In our experiments
with more probable events such as the failure of a single
router, the resulting LSA burst was too small to cause false
alarms. Similarly, we investigated if frequent update of Traffic
Engineering LSAs [10] leads to large enough LSA bursts to
cause false alarms. However, we did not observe any such
effect even for reasonably high update frequency of such
LSAs.

Since the loss and/or delayed processing of Hello
messages can result in false alarms, recently there have been
proposals to give such packets prioritized treatment at the
router interface as well as in the CPU processing queue
[9][11]. An additional proposal is to consider the receipt of
any OSPF packet (e.g. an LSA) from a neighbor as an
indication of the good health of the router’s adjacency with the
neighbor [11]. This provision can help avoid false loss of
adjacency in the scenarios where Hello packets get dropped
because of congestion, caused by a large LSA burst, on the
control link between two routers. Such mechanisms should
help mitigate the false alarm problem significantly. However,
it will take some time before these mechanisms are
standardized and widely deployed.

Since SPF calculation using Dijkstra’s algorithm imposes
significant processing load on the routers, vendors have
introduced delays (spfDelay and spfHoldTime) that limit the
frequency of such operations. These delays ultimately result in
slowing down the failure recovery process. Alaettinoglu et al.
[12] propose eliminating any restrictions on SPF calculations.
They argue that the frequency of SPF calculations can be
reduced by careful filtering of status changes in the
links/routers and the processing time of an SPF calculation
can be reduced by using modern algorithms (such as
[13][14][15]) instead of Dijkstra’s algorithm. In a related
work, Thorup [16] proposes the use of data structures that will
help routers make a constant time determination of the next

hop on the shortest path to a destination avoiding a given
failed link. This will help in avoiding the routing loops while
the routers recalculate shortest paths after a link failure.

IV. EXPERIMENTATION METHODOLOGY
We implemented substantial extensions to the OSPF routing

model [17] currently available in NS2 simulator such as the
Hello protocol, LSA generation and flooding, shortest path
calculation and adjacency establishment. Our emphasis has
been to include in the simulation model various standard (i.e.,
as per the OSPF specification [1]) and vendor-implemented
delays and timers, listed in Table 1, that affect the functioning
of OSPF protocol in operational networks of commercial
routers. Some of these delays are configurable, some have a
fixed value and some depend on the architecture and
processing capability of the routers. Values for the delays that
depend on the architecture and processing capability of the
routers were obtained after extensive experimentation with
commercial routers [18][19]. In our experimentation, we used
the standard or the typical values for the different delay
parameters (except HelloInterval and RouterDeadInterval) as
listed in Table 1. This enables us to have a higher degree of
confidence in the applicability of our simulation results to real
operational networks.

Rather than using actual packet flows to create congestion,
we used realistic models to achieve the same effects. This
choice was driven by the lack of information about realistic
traffic loads as well as a desire to keep the processing and
running time of the simulations reasonable. The congestion
model used in our simulations tries to emulate the behavior of
Random Early Drop (RED) [20] and droptail buffer
management policies. In RED, the packet drop probability (p)
at a router interface increases linearly from a value 0 to max_p
as the average buffer occupancy qlen (the ratio of the average
queue length to the total buffer size) increases from min_th to
max_th. The packet drop probability remains 0 for qlen values
less than min_th and remains equal to max_p as the qlen
becomes more than max_th. If qlen exceeds 1, the packet drop
probability becomes 1, i.e., all the incoming packets are
dropped. We simulate congestion by assigning random qlen
values between 0 and max_q to the router interfaces. The
assigned qlen value determines the packet loss probability for
the OSPF packets arriving at the interface. The qlen value
assigned to an interface persists for a random duration with in
the range {min_pers, max_pers}. This is to emulate the slowly
varying average queue length, an exponential moving average,
in RED buffers. The min_th, max_th and max_p values used in
the RED simulations are 0.25, 0.75 and 0.1 respectively. The
congestion level in the simulation is controlled by parameter
max_q and range {min_pers, max_pers}. As the value of
max_q is increased, higher packet drop rates in the network
become possible. The range {min_pers, max_pers} will
determine how long high (and low) packet drop rates persist
on an interface.

A similar technique is used to emulate the behavior of
droptail buffer management. For droptail buffers, qlen
represents the instantaneous buffer occupancy. A new value is
assigned to the qlen associated with each router interface
every time a new OSPF packet arrives. The packet drop
probability remains 0 unless qlen is greater than 1 in which

case the packet drop probability is 1. Note that in the droptail
simulations, max_q value needs to be greater than 1 for packet
loss to occur and a given max_q value corresponds to the
packet drop rate of (max_q -1)/max_q.

The simulations were conducted on a number of topologies
obtained from [4]. These topologies correspond to real IP
backbones for several commercial ISPs. Table 2 lists some
characteristics of these topologies. While most of the
topologies are irregular, topology A is a pure mesh and
topology B has a star-like structure.

V. SIMULATION RESULTS

The first set of simulation results examines how reducing
the HelloInterval causes more false alarms to take place and
how increase in network congestion exacerbates the problem.
Figure 1 shows the total number of false alarms observed on
topology C during 1 hour of failure-free operation for different
HelloInterval values. These numbers were obtained from RED
simulations assuming that average buffer occupancy persists
for 100ms to 500ms. Different curves in the figure correspond
to different congestion levels (modeled by parameter maxQ_).
As expected, false alarms become more frequent with
decrease in the HelloInterval value and increase in network
congestion levels. Further, the impact of increased congestion
levels seems to be more severe for lower HelloInterval values.
Clearly, the optimal value of HelloInterval depends on the
expected congestion levels in the network and an
understanding of what constitutes an acceptable limit on false
alarm frequency. Assuming that no more than 20 false alarms
in an hour can be tolerated and if the average buffer
occupancy in the router interfaces will rarely rise above 0.5,
the HelloInterval for topology C can be set to be 250ms.
However, if the buffer overflows are not uncommon, it will be
prudent not to reduce HelloInterval below 1.5 seconds. As
shown in figure 2, if the congestion persists for longer
durations (200ms to 2s, rather than 100ms to 500ms as in
figure 1), the number of false alarms observed for a given
HelloInterval increase further. Again, the increase in false
alarms is more severe for lower HelloIntervals; hence there is
a need to be conservative while setting HelloInterval value.
The results for droptail simulations are shown in figure 3. The
different curves in figure 3 show results for maxQ_ values
1.02, 1.05 and 1.1 which correspond to packet drop rates of
1.96%, 4.76% and 9.09% respectively. Note that with around
10% overload on the system, any HelloInterval value less than
10s leads to unacceptable number of false alarms.

False alarms disrupt traffic in the network and cause
unnecessary processing load on the routers. The LSAs
generated as the result of a false alarm will be flooded
throughout the network and lead to new SPF calculation by
each router in the network. As the frequency of false alarms
increases, routers spend more and more time doing
unnecessary SPF calculations; generally one SPF calculation
for each false alarm. Some times, for large HelloInterval
values, a false alarm causes two SPF calculations to be done in
each router; first one in response to adjacency breakdown and
second one in response to re-establishment of adjacency
following successful exchange of Hello messages between the
routers affected by the false alarm. For smaller HelloInterval

TABLE II. NETWORK TOPOLOGIES USED IN SIMULATIONS

Topology Nodes Links Topology Nodes Links
A 9 72 D 37 88
B 27 58 E 51 176
C 27 116 F 116 476

values, a broken adjacency is generally re-established soon
enough so that only one SPF calculation (scheduled 5 seconds,
the spfDelay, after receiving the false alarm) is required to
take care of both changes. Thus, for smaller HelloIntervals,
since false alarms are corrected soon enough, they may not
always lead to changes in routing tables and hence re-routing
of network traffic. Nevertheless, smaller HelloInterval values
do result in frequent false alarms and thus the processing load
on the routers because of SPF calculations can become
significant. Persistent overload on router CPUs can potentially
lead to total meltdown of routing operation in the network.
When the frequency of false alarms in the network becomes
very high, spfDelay and spfHoldTime limit the frequency of
SPF calculations. This and other previously mentioned effects
can be seen in figure 4 which shows the average number of
SPF calculations done by a router in topology C in response to
false alarms in the simulations whose results regarding false
alarms were previously shown in figure 1. The LSAs
generated because of false alarms also impose unnecessary
processing load on every router since each router may have to
send and receive an LSA on each one of its interfaces as part
of flooding of such LSAs.

Next, we examine the impact of topology characteristics
on the optimal value of HelloInterval for a network. The
probability of a false alarm occurring in the network increases
with the number of links in the network. This trend is clear
from figures 5 and 6 which show the false alarm occurrence
during 1 hour for different topologies for congestion levels
created by maxQ_ values 0.75 and 1 respectively. In figure 7,
we plot the optimal HelloInterval value for different
topologies assuming that no more than 20 false alarms per
hour can be tolerated. It can be seen that the optimal
HelloInterval value increases with the number of links in the
topology. Further, as observed earlier, expected congestion
level in the network plays a significant part in determining the
optimal value.

Finally, we examine the impact of lower HelloInterval
values on the failure detection and recovery times. For this
purpose, we caused a particular router in topology C to fail
and observed the failure detection time i.e. the time by when
all the neighbors of the failed router have detected the failure
and the failure recovery time i.e. the time by when all the
routers in the network have finished SPF calculation and
forwarding table update in response to the failure. The
simulations used RED packet drop model with maxQ_ value 1
and average buffer persistency in the range 0.2s to 2s. The
simulations were conducted for several different seed values
for the random number generation. In Table 3, we report some
typical and interesting cases. As expected, the failure detection
time is within the range 3 to 4 times the HelloInterval. Once a
neighbor detects the router failure, it generates a new LSA
about 0.5 seconds after the failure detection. The new LSA is
flooded throughout the network and will lead to scheduling of

SPF calculation 5 seconds (spfDelay) after the LSA receipt.
This is done to allow one SPF calculation to take care of
several new LSAs. Once the SPF calculation is done, the
router takes about 200ms more to update the forwarding table.
After including the LSA propagation and pacing delays, we
can expect the failure recovery to take place about 6 seconds
after the ‘earliest’ failure detection by a neighbor router.

Notice that many entries in Table 3 show the recovery to
take place much sooner than 6 seconds. This is mainly
because the reported failure detection times are the ‘latest’
ones rather than the ‘earliest’. In one interesting case (seed 2,
HelloInterval 0.75s), the failure recovery takes place about 2
seconds after the ‘latest’ failure detection. This happens
because the SPF calculation scheduled by an earlier false
alarm takes care of the LSAs generated because of router
failure. Many times, the failure recovery can be noticed to take
place much later than 6 seconds after the failure detection
(notice entries for HelloInterval 0.25s, seeds 1 and 3). Failure
recovery can be delayed because of several factors. The SPF
calculation frequency of the routers is limited by spfHoldTime
(typically 10s) which can delay the new SPF calculation in
response to the router failure. The delay caused by spfDelay
has already been explained. Finally, the routers with low
connectivity may not get the LSAs in the first try because of
loss due to congestion. Such routers may have to wait for 5
seconds (RxmtInterval) for the LSAs to be retransmitted.

The results in Table 3 indicate that a smaller value of
HelloInterval speeds up the failure detection but is not
effective in reducing the failure recovery times beyond a limit
because of other delays like spfDelay, spfHoldTime and
RxmtInterval. While it may be possible to further speed up the
failure recovery by reducing the values of these delays,
eliminating such delays altogether may not be prudent.
Eliminating spfDelay and spfHoldTime will result in several
SPF calculations to take place in a router in response to a
single failure (or false alarm) as different LSAs generated
because of the failure arrive one by one at the router. The
resulting overload on the router CPUs may have serious
consequences for routing stability especially when there are
several simultaneous changes in the network topology.
Analyzing how to achieve still faster failure recovery, without
compromising on routing stability, when failure detection is
no longer an issue constitutes the logical next step to the work
presented in this paper.

VI. CONCLUSION

 With the current default settings of the OSPF parameters,
the network takes several tens of seconds before recovering
from a failure. The main component in this delay is the time
required to detect the failure using Hello protocol. Failure
detection time can be speeded up by reducing the value of
HelloInterval. However, too small a value of HelloInterval
will lead to too many false alarms in the network which cause
unnecessary routing changes and may even lead to routing
instability. In this paper, we explored the optimal value for the
HelloInterval that will lead to fast failure detection in the
network while keeping the false alarm occurrence within
acceptable limits. Our simulation results indicate that the
optimal value for HelloInterval for a network is strongly

influenced by the expected congestion levels and the number
of links in the topology. While the HelloInterval can be much
lower than current default value of 10s, it is not advisable to
reduce it to millisecond range as it will lead to too many false
alarms. Further, it is difficult to prescribe a single
HelloInterval value that will perform optimally in all cases.
The network operator should set the HelloInterval
conservatively taking in account both the expected congestion
levels as well as the number of links in the network topology.

REFERENCES
[1] J. Moy, “OSPF version 2,” IETF Request for Comments 2328, April

1998.

[2] D. Oran, “OSI IS-IS intra-domain routing protocol,” IETF Request for
Comments 1142, February 1990.

[3] E. Dijkstra, “A note on two problems in connection with graphs,”
Numerische mathematik, 1:269-271, 1959.

[4] Mapnet: Macroscopic Internet Visualization and Measurement Tool,
http://www.caida.org/tools/visualization/mapnet/

[5] The Network Simulator – ns-2 , http://www.isi.edu/nsnam/ns/.

[6] C. Alaettinoglu, V. Jacobson, and H. Yu, “Toward millisecond IGP
convergence,” NANOG 20, October 2000.

[7] A. Shaikh, L. Kalampoukas, R. Dube, and A. Varma, “Routing Stability
in Congested Networks: Experimentation and Analysis,”
Proc. ACM SIGCOMM, August 2000.

[8] A. Basu, and J. Riecke, “Stability issues in OSPF routing,” Proc. ACM
SIGCOMM, August 2001.

[9] G. Choudhury, V. Sapozhnikova, A. Maunder, V. Manral, “Explicit
marking and proritized treatment of specific IGP packets for faster IGP
convergence and improved network scalability and stability,” IETF
Internet Draft draft-ietf-ospf-scalability-01.txt, Work in progress, April
2002.

[10] D. Katz, D. Yeung, and K. Kompella, “Traffic engineering extensions to
OSPF,” IETF Internet Draft draft-katz-yeung-ospf-traffic-06.txt, Work
in progress, October 2001.

[11] J. Ash, G. Choudhury, V. Sapozhnikova, M. Sherif, V. Manral, and A.
Maunder, “Congestion avoidance and control for OSPF networks,”
IETF Internet Draft draft-ash-manral-ospf-congestion-control-00.txt,
Work in progress, April 2002.

[12] C. Alaettinoglu, and S. Casner, “Detailed analysis of IS-IS routing
protocol on the Qwest backbone,” NANOG 24, February 2002.

[13] P. Fraciosa, D. Frigioni, and M. Giaccio, “Semi-dynamic shortest paths
and breadth-first search in digraphs,” Proc. 14th Symp. Theoratical
Aspects of Computer Science, 113-124, 1997.

[14] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasqualone, “Experimental
analysis of dynamic algorithms for the single-source shortest path
problem,” ACM Journal of Experimental Algorithmics, 3:5, 1998.

[15] G. Ramalingam, and T. Reps, “An incremental algorithm for a
generalization of the shortest-path problem,” Journal of Algorithms,
21(2):267-305, 1996.

[16] M. Thorup, “Fortifying OSPF/IS-IS against link-failure,” Unpublished.

[17] http://networks.ecse.rpi.edu/~sunmin/rtProtoLS/

[18] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, and K. K. Ramakrishnan,
“An OSPF topology server: design and evaluation,”
IEEE Journal on Selected Areas in Communications (JSAC), Vol. 20, no
4, May 2002.

[19] A. Shaikh, and A. Greenberg, “Experience in black-box OSPF
measurement,” Proc. ACM SIGCOMM Internet Measurement Workshop
(IMW), November 2001.

[20] S. Floyd, and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, Vol.
1, no 4, August 1993.

Figure 1 False Alarm Occurence in Topology C For Different HelloInterval
Values and Congestion Levels.

Figure 2 Change in False Alarm Frequency As High Drop Rates Persist for
Longer Durations.

Figure 3 False Alarm Occurrence in Topology C in Droptail Simulations

Figure 4 Average Number of SPF Calculations on a Router in Topology C
Due to False Alarms Shown in Figure 1.

Figure 5 False Alarm Occurrence in Different Topologies For Different
HelloInterval Values; RED Simulations with maxQ_=0.75.

Figure 6 False Alarm Occurrence in Different Topologies For Different
HelloInterval Values; RED Simulations with maxQ_= 1.

Topology C, RED Simulations,
{min_pers, max_pers} = {0.1s, 0.5s}

0

20

40

60

80

100

120

0.1 1 10
Hello Interval in seconds

A
ve

ra
g

e
S

P
F

C

al
cu

la
ti

o
n

s
P

er

R
o

u
te

r
in

 1
 H

o
u

r maxQ_= 0.5
maxQ_ = 0.75
maxQ_ = 1

RED Simulations, maxQ_ = 0.75,
{min_pers, max_pers} = {0.1s, 0.5s}

0

20

40

60

80

100

0.1 1 10
Hello Interval in seconds

T
ot

al
 F

al
se

 A
la

rm
s

in

1
H

ou
r

B (27 nodes, 58 links)
A (9 nodes, 72 links)
D (37 nodes, 88 links)
C (27 nodes, 116 links)
E (51 nodes, 176 links)
F (116 nodes, 476 links)

RED Simulations, maxQ_ = 1,
{min_pers, max_pers} = {0.1s, 0.5s}

0

50

100

150

200

250

300

0.1 1 10
Hello Interval in seconds

T
ot

al
 F

al
se

 A
la

rm
s

in
 1

 H
ou

r

B (27 nodes, 58 links)
A (9 nodes, 72 links)
D (37 nodes, 88 links)
C (27 nodes, 116 links)
E (51 nodes, 176 links)
F (116 nodes, 476 links)

Topology C, RED Simulations,
{min_pers, max_pers} = {0.1s,0.5s}

0
20
40
60
80

100
120
140
160
180

0.1 1 10
Hello Interval in seconds

T
o

ta
l F

al
se

 A
la

rm
s

in
 1

h

o
u

r

maxQ_ = 0.5

maxQ_ = 0.75

maxQ_ = 1

Topology C, RED Simulations

0

50

100

150

200

250

300

0.1 1 10
Hello Interval in seconds

To
ta

l F
al

se
 A

la
rm

s
d

ur
in

g
1

H
o

ur

maxQ=0.75, {0.1, 0.5}

maxQ=1, {0.1,0.5}

maxQ=0.75, {0.2, 2}

maxQ=1, {0.2,2}

Topology C, Droptail Simulations

0

100

200

300

400

500

600

700

0.1 1 10

Hello Interval in Seconds

T
o

ta
l F

al
se

 A
la

rm
s

in
 1

H

o
u

r

maxQ_ = 1.02
maxQ_ = 1.05
maxQ_ = 1.10

Figure 7 Optimal HelloInterval Values for Different Topologies for Different
Congestion Levels.

TABLE III. FAILURE DETECTION TIME (FDT) AND FAILURE
RECOVERY TIME (FRT) FOR A ROUTER FAILURE ON TOPOLOGY C WITH

DIFFERENT HELLOINTERVAL VALUES. (RED SIMULATIONS WITH MAXQ_=1
AND {MIN_PERS, MAX_PERS} = {0.2S, 2S})

Seed 1 Seed 2 Seed 3 Hello
Intvl

FDT FRT FDT FRT FDT FRT

10s 32.08s 36.60s 39.84s 46.37s 33.02s 38.07s

2s 7.82s 11.68s 7.63s 12.18s 7.79s 12.02s

1s 3.81s 9.02s 3.80s 8.31s 3.84s 10.11s

0.75s 2.63s 7.84s 2.97s 5.08s 2.81s 7.82s

0.5s 1.88s 6.98s 1.82s 6.89s 1.79s 6.85s

0.25s 0.95s 10.24s 0.84s 6.08s 0.99s 13.41s

RED Simulations,
{min_pers, max_pers} = {0.1s, 0.5s}

0.1

1

10

maxQ_ = 0.75 maxQ_ = 1

H
el

lo
 In

te
rv

al
 T

o
 K

ee
p

 F
al

se

A
la

rm
s

L
es

s
T

h
an

 2
0

in
 1

 H
o

u
r

B (27 nodes, 58 links)
A (9 nodes, 72 links)
D (37 nodes, 88 links)
C (27 nodes, 116 links)
E (51 nodes, 176 links)
F (116 nodes, 476 links)

