
Google Cloud Platform Intro

Why GCP?

 Student-friendly
 Credits without credit-cards

 Ability to use pdx.edu accounts for credits

 Per-second billing

 Supports open-source APIs and tools to avoid vendor

lock-in
 Go

 Kubernetes

 TensorFlow*

 Carbon-neutral since 2007

 Abstractions the same across cloud providers

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Why GCP?

 Generous free-tier
 App Engine
 28 instance-hours per day

 Cloud Datastore
 1GB storage, 50k reads, 20k writes, 20k deletes

 VisionAPI
 1k units/month

 Unit == feature (e.g. facial detection)

 BigQuery
 Arbitrary loading, copying, exporting

 First TB of processed data in queries free

 But, $0.02 per GB per month storage

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Projects

 Many companies with multiple sites

 Each site needs its own
 Security/access control policies, permissions, and

credentials

 Billing account with separate credit-card/bank accounts

 Resource and quota tracking

 Set of enabled services and APIs (most are default OFF

and turn on once first used)

 Project abstraction encapsulates this collection
 Google has 100,000+ projects on GCP to run its sites

 Contains all resources associated with site and the ability

to set permissions on them

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Regions and zones in GCP

 Regions: geographic areas where data centers reside
 us-west, us-east, us-central

 Consist of collections of zones

 Zones: isolated location within region
 https://cloud.google.com/compute/docs/regions-zones/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/compute/docs/regions-zones/
https://cloud.google.com/compute/docs/regions-zones/
https://cloud.google.com/compute/docs/regions-zones/

Access to resources

 Also programmatic access in many languages

(JavaScript, Python, Go, Java, Ruby)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Command-line GCP

 Install SDK on your local VM (google-cloud-sdk)

to get commands
 https://cloud.google.com/sdk/docs/quickstart-debian-

ubuntu
 gcloud

 gsutil (Cloud Storage)

 bq (Big Query)

 Docker image
 docker pull google/cloud-sdk

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu
https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu
https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu
https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu
https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu

Command-line GCP

 Google Cloud Shell
 Command-line access to cloud resources via web browser
 Containerized version of Linux with the latest gcloud SDK

running on a ComputeEngine instance
 Has nano, vim, emacs, python2/3, virtualenv, etc.

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Google Cloud Storage

Google file system (GFS) 2003

 Google search engine
 Retrieving, storing, and querying of web pages at massive

scale
 Performance requirements
 Management costs

 File system designed to support Google Search
 Massive data sets
 High-throughput, low-latency querying
 Durability and availability
 Very little management overhead
 Dead disks simply replaced and system seamlessly adapts

 https://research.google.com/archive/gfs-sosp2003.pdf
 But, initially proprietary
 Yahoo! later reverse-engineered GFS
 Released as Hadoop Distributed File System (HDFS).
 Open-sourced and distributed by Apache
 More later…

 Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/gfs-sosp2003.pdf

Google Cloud Storage (gcs)

 Commercial iteration of GFS
 AWS equivalent is S3
 Storage done via "buckets"

 Fully-managed, no-ops storage service
 No administration or capacity management
 Backed up and versioned automatically

 Replicated and cached over multiple zones/regions
 Can be fixed to a region based on location of computation
 Can set multi-region if serving multimedia files to a global population
 Replicas automatically adapt to load and access patterns to achieve

high availability and throughput
 Low latency: 10s of ms on first use, then faster via migration
 Data encrypted at rest when not being used and in flight

 Key sharding with parts of keys in multiple jurisdictions
 But, unencrypted when being used

 Massive scale
 Autism Speaks: 1300 genomes and > 100 TB of data
 Projected to 10,000 genomes > 1 PB of data

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Applications

 Good for large unstructured data that does not need to

be queried
 Images, Video, Zip files

 Structured data that needs to be queried should use DBs

 Used to feed and store data and logs from all cloud

services
 BigQuery, App Engine, Cloud SQL, ComputeEngine,

Dataflow/Dataproc, Etc..

 Access via many methods
 gcloud SDK, Web interface, REST API

 Client libraries in Python, Java, PHP, Go

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Security, IAM

Cloud security

 In this context, enterprise security
 Security of the infrastructure running the applications

 Developers, operations, accounting access to cloud

resources

 Securing the applications
 See CS 495/595: Web Security

 Some things shared

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Traditional enterprise security

 Castle-moat model where trusted access only from

within internal networks
 Firewalls filter external traffic entering enterprise network

 VPNs for accessing internal services from an external

device

 Implicit trust for machines within internal network

 Issues
 Enterprise laptops infected on home networks and then

moved inside enterprise (WannaCry)

 Rogue insider with full-access to network and intranet

(Edward Snowden)

 Rogue scripts accessing internal network (DNS

rebinding)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Cloud security

 Deperimiterization of network
 Valid access to cloud resources can come from anywhere

 Network boundaries that separate “internal” and

“external” no longer applicable

 Crux of "zero-trust networks" and Google’s

BeyondCorp approach https://www.beyondcorp.com/
 Building applications on top of networks you can not trust

 Reaction against Aurora operation 2009

 Trust built not from where you connect from (e.g. internal

network or VPN), but on strong authentication of user and

integrity of the device

 Restrict kinds of access based on your overall security

posture

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://www.beyondcorp.com/

IAM (Identity and Access Management)

 AWS and GCP approach for implementing cloud

security policies
 Largely similar (i.e. copied)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Identity (Authentication)

 Validating users and applications

 For users, done via
 What you know (password)

 What you have (YubiKey/phone, WebAuthn)

 Who you are (fingerprint sensor, FaceID)

 Where you are (network, geographic location)

 For applications (e.g. external web application, internal

web application, database)
 Done via API keys, service-account keys (which must be

kept safe!)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Access Management (Authorization)

 Policy to set which users are allowed which actions on

which objects
 Users given roles that grant them specific privileges for

access

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Types of access management policies

 Discretionary Access Control (object owner decides)
 Object owner decides

 Linux model of owner setting coarse permissions on user,

group, other

 Mandatory Access Control (system/administrator

decides)
 System or administrator decides

 Mandated in high-security environments (e.g.

government)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Types of access management policies

 Role-Based Access Control (system decides based on

user role)
 Role determines privileges afforded

 Examples
 IT admin

 Software developer

 Billing administrator

 Third-party integrator

 Partner users

 End-users

 Partner applications

 Principle of least privilege
 Ensure the minimal level of access that a task or user needs

 Must apply regardless of the type of policy

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Access management via IAM

 Based on Role-based Access control

 Policy determines who can do what action to which

resource
 Action permissions assigned by role

 Primitive pre-defined roles with permissions
 Curated roles so you do not need to roll your own

 Owner (create, destroy, assign access, read, write, deploy)

 Editor (read, write, deploy)

 Reader (read-only)

 Billing administrator (manage billing)

 On specified resources that include
 Virtual machines, network, database instances

 Cloud storage buckets (gs://…)

 BigQuery stores

 Projects

Portland State University CS 410/510 Internet, Web, and Cloud Systems

GCP example

https://cloud.google.com/compute/docs/access/iam
https://cloud.google.com/compute/docs/access/iam-permissions

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/compute/docs/access/iam
https://cloud.google.com/compute/docs/access/iam-permissions
https://cloud.google.com/compute/docs/access/iam-permissions
https://cloud.google.com/compute/docs/access/iam-permissions

Example

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Who?

What actions? What resources?

Service accounts

 Provides identity for software/applications
 Allows authenticated access based on a shared secret key
 e.g. A Slack bot authenticating itself to Slack

 Service account identified via e-mail address that includes
Project number or ID

 Example

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Service accounts

 Google manages keys for certain services

automatically (AppEngine, ComputeEngine)

 Must restrict permissions per-key
 Prevent service account compromise from compromising

entire project (least privilege)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

IAM policies

 Massive number of resources

 Each resource must have highly granular control over

access to properly secure resources (e.g. many

permissions)

 Primitive roles (owner, editor, reader) with fixed

permissions not enough

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Examples

 e-Commerce site with a crashing bug
 Developer wants to access logs is given reader access to

instance

 Can read logs to do job

 But can also access all personally identifiable information

of the site’s users!

 Continuous integration tool used in DevOps is given

editor access to deploy updates
 Can update code, but also modify storage buckets,

compute instances, and network configuration!

Portland State University CS 410/510 Internet, Web, and Cloud Systems

IAM complexity

 Granular access control leads to hundreds of

thousands of permissions and complex policies

 Organized as a hierarchy to ease management burden
 Set permissions across all projects at once

 Set permissions of resources (i.e. 1000s of VMs/buckets

in project) at once

 Command-line scripting, configuration management via

commercial tools

 Implement inheritance of permissions where higher-level

permissions trump lower ones

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Hierarchical management

Portland State University CS 410/510 Internet, Web, and Cloud Systems

IAM complexity

 But,
 AWS => 3000+ types of permissions/resources available

 Motivates approaches like RepoKid from Netflix to

automatically revoke unused permissions via ML

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Labs

Cloud Storage Lab #1

 Interact with Cloud Storage (USGS data)
 Data processing with Python, Matlab+Basemap

 In Cloud Shell

 ingest.sh

 Perform a head on earthquakes.csv to ensure it has

been pulled down properly

git clone https://github.com/GoogleCloudPlatform/training-data-analyst

cd training-data-analyst/CPB100/lab2b

#!/bin/bash

remove older copy of file, if it exists

rm -f earthquakes.csv

download latest data from USGS

wget

http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_week.cs

v -O earthquakes.csv

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 install_missing.sh gets basemap, numpy,

matlab packages for Python

 Processing script transform.py to generate plots of

earthquakes
 Import packages

sudo apt-get update

sudo apt-get --fix-missing install python-mpltoolkits.basemap

python-numpy python-matplotlib

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Earthquake class definition
 Each line of CSV is an earthquake instance ingested and parsed

into a list that the class creates instances out of

 Ingest data via URL (can also use local file:///)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Create Basemap, setup markers based on earthquake

magnitude

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Plot quakes onto map m
 Grab x,y coordinates on plot based on longitude and latitude

 Get color and size

 Add marker to plot

 Emit image

 Create storage bucket (see Database Lab #2 or via

console web UI) and copy output files to it

 Then make files in bucket public (to create links)

gsutil cp earthquakes.* gs://<YOUR-BUCKET>/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Cloud Storage Lab #1

 https://codelabs.developers.google.com/codelabs/cpb1

00-cloud-storage (15 min)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://codelabs.developers.google.com/codelabs/cpb100-cloud-storage
https://codelabs.developers.google.com/codelabs/cpb100-cloud-storage
https://codelabs.developers.google.com/codelabs/cpb100-cloud-storage
https://codelabs.developers.google.com/codelabs/cpb100-cloud-storage
https://codelabs.developers.google.com/codelabs/cpb100-cloud-storage
https://codelabs.developers.google.com/codelabs/cpb100-cloud-storage

IAM Lab #1

 Create a Google group at https://groups.google.com

called cs410-OdinID

 Add yourself, me (wuchang@pdx.edu), and your

partner (if working in a group)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://groups.google.com/
mailto:wuchang@pdx.edu

 In IAM, add the group to project permissions

(Project=>Viewer)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Portland State University CS 410/510 Internet, Web, and Cloud Systems

IAM Lab #1

 Test with your partner or with me (if you do not have a

partner)

 For help only
 https://cloud.google.com/iam/docs/quickstart

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/iam/docs/quickstart

Extra

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Google Cloud Storage Lab #2

 Hosting a static web-site using gcs
 https://cloud.google.com/storage/docs/hosting-static-

website

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/storage/docs/hosting-static-website
https://cloud.google.com/storage/docs/hosting-static-website
https://cloud.google.com/storage/docs/hosting-static-website
https://cloud.google.com/storage/docs/hosting-static-website
https://cloud.google.com/storage/docs/hosting-static-website

Managing credentials

 GCP credentials and keys should be protected at all

times
 Audit Github, Bitbucket, Dockerhub, web
 Crawlers continuously looking for credentials on public repositories

 Immediately regenerate keys if exposed

 Instagram AWS credentials on snapshot

 Canary API tokens

Portland State University CS 410/510 Internet, Web, and Cloud Systems

