
Advanced Topics

Block times and sizes

Block size

 Increase block sizes
 Tension between those who treat BTC as an investment (e.g. like a stock

that does not trade frequently) versus a transactional currency (e.g. like

cash and credit cards)
 At 7 transactions/second, it's being treated as the former

 Within Bitcoin: SegWit upgrade (7/21/2017) (2MB)
 Patch to fix transaction malleability bug that effectively doubles block-

size

 Leads to Bitcoin Cash hard fork (8/1/2017) (8MB)
 For those who did not believe SegWit did enough

 Then Bitcoin Cash split again
 Bitcoin ABC (adjustable Blocksize Cap) 32MB size

 Bitcoin SV 128MB size

Portland State University CS 410/510 Blockchain Development & Security

 Larger block sizes
 Increases amount of hardware needed to handle

 Decreases transaction time

 Decreases transaction cost

 Increases propagation time

Portland State University CS 410/510 Blockchain Development & Security

Block time

 Decreasing block times improves transaction throughput linearly

 But, impacts consensus
 Orphan rate of chains increases

 Amount of wasted work on PoW computation increases

 Example
 3 miners mining and distributing blocks

Portland State University CS 410/510 Blockchain Development & Security

https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a

 Miners continually mining

 Miner successfully mines block

 Block propagated to all other miners so they can move on to

mining next block

 During propagation, a miner may successfully mine a different

block and propose it (e.g. there may be two valid candidates for

block 2060)

Portland State University CS 410/510 Blockchain Development & Security

 Top and bottom miners successfully mine candidate for 2060 and attempt

to propagate *before* receiving each other's proposed block

 Issues
 Miners working on different versions of 2060 create wasted work with no

added stability to blockchain

 Shorter block times increase wasted work (since propagation time becomes

larger as compared to mining time)

 Mining pools with fast network connections at an advantage
 Waste less time on performing hashes as successfully mined blocks are being

propagated

 Can immediately go to next block

 Mining centralization becomes more of a threat
 With pools and mining devices mostly in China

Portland State University CS 410/510 Blockchain Development & Security

 Ethereum's GHOST (Greedy Heaviest Observed Subtree)
 Goal: Incentivize miners to coalesce into the main chain, but prevent

centralized mining pools from gaining an unfair advantage

 Address centralization issues with short block-time by incorporating

stale blocks
 Take common sub-tree out of mined blocks being proposed

 Reward miners who have mined blocks with the sub-tree (even if blocks contain

"uncles" that are not ultimately accepted)

Portland State University CS 410/510 Blockchain Development & Security

Block times in practice

 Bitcoin
 ~10 minutes

 But, is 10 minutes way too conservative?
 Takes 12.6s on average to propagate block to 95% of nodes

 Perhaps a 1-minute block-time is more appropraiate?

 Ethereum
 10-20 seconds due to GHOST

Portland State University CS 410/510 Blockchain Development & Security

http://www.tik.ee.ethz.ch/file/49318d3f56c1d525aabf7fda78b23fc0/P2P2013_041.pdf

Sharding, side-chains

 Issue #1: Resources on blockchain are expensive
 Full nodes perform the same on-chain computations

 Full nodes store the same data

 Gas-limit is relatively small as a result
 Can’t run an OS on blockchain

 Can’t increase gas-limit: DoS vector

Portland State University CS 410/510 Blockchain Development & Security

 Issue #2: Single blockchain for all DApps to share
 Implements a total order on events within a DApp and events across all

DApps

 For independent DApps, why is this necessary?

Portland State University CS 410/510 Blockchain Development & Security

Solution 1: Sharding

 Divide the network into sub-networks
 Each stores and manages a fraction of the

blockchain (a shard)

 Allow scaling up as the network grows

 Hierarchical block-chains

Portland State University CS 410/510 Blockchain Development & Security

Shard 1 Shard 2 Shard 3

Solution 2: State Channel, Layer-2 solutions

 Similar to payment channel (e.g. lightning network) but for states

 Scaling by using off-chain transactions

 Can update the state multiple times off-chain

 Only settlement transactions are on-chain

Portland State University CS 410/510 Blockchain Development & Security

Blockchain

TX1
TX2

X’s Initial

State

X’s Final

State

TX3
TX4

Many states i

Alice Bob

Contract X

Formal verification

Tools to prove correctness

 Formal methods to ensure correctness of EVM itself via Isabelle

 Formal methods to verify smart contracts
 Why3 programming language (4/2019)

 Language for writing formal and verified smart contracts via deductive

verification

 Integrate contract testing into IDE
 Truffle development environment

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/pirapira/eth-isabelle
https://arxiv.org/abs/1904.11281
https://github.com/trufflesuite/truffle

Decoupling state machine and

consensus

Tendermint

 Ethereum VM and Solidity conjoin both the state in a contract with

the replication of it across nodes

 Why can't the state machine be managed by any programming

language and then use the blockchain only as a replication service?
 e.g. write DApp in Java and then have blockchain replicate JVM

underneath

 Tendermint approach
 Separate state management (e.g. PL and its VM) from the replication and

consensus of it

Portland State University CS 410/510 Blockchain Development & Security

Thwarting miner centralization

Issue

 80-90% of all mining hardware in Bitcoin from a single factory in

Shenzhen China (Bitmain)
 Highly parallelizable hashing algorithm eventually done by ASICs

 Alternatives
 Memory bound puzzles (Ethhash)

 Use a scheme in which miner must store data in high-speed memory that is

randomly accessed to compute puzzle solution

 Use a size that fits in L3 cache (too big for ASICs and some GPUs)

 Puzzle algorithms that continually change
 Update algorithm for mining to invalidate ASICs and force a redevelopment of

hardware

 ProgPoW in Ethereum

 Both techniques used in CryptoNote/Monero

Portland State University CS 410/510 Blockchain Development & Security

Privacy

 Blockchain supports consensus, correctness, authenticity, and

availability, but not privacy for smart contracts or transactions

 All Bitcoin transactions public (transactions of wallets public)
 Tracing Bitcoin transactions per wallet simple (and effective)

 Analysing transaction graph [IMC’13]

 Good for law enforcement

 All Ethereum smart contract executions (data & code) public
 Cannot execute on private data

 e.g. Can not have a death will that remains secret until the owner dies

Portland State University CS 410/510 Blockchain Development & Security

https://cseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf

Proposed solutions

 Crowds
 Clearinghouse account for mixing coin transactions to support "k-

anonymity"

Portland State University CS 410/510 Blockchain Development & Security

E

E

E
E

E E

 Should this be legal?

Portland State University CS 410/510 Blockchain Development & Security

https://www.cyberscoop.com/bestmixer-bitcoin-laundering-mcafee-europol/

 Depends on how you market your service
 Bestmixer.io laundering pool taken down

 “Mixing bitcoins that are obtained legally is not a crime but, other than

the mathematical exercise, there is no real benefit to it”

 “The legality changes when a mixing service advertises itself as a success

method to avoid various anti-money laundering policies via anonymity.”

Portland State University CS 410/510 Blockchain Development & Security

https://www.cyberscoop.com/bestmixer-bitcoin-laundering-mcafee-europol/

Ring signatures (a.k.a. group signatures)

 Implementation of a mixer

 Example
 Five users send their public keys in alongside a deposit of 0.1 ETH

 Withdraw 0.1 ETH specifying the address with a linkable ring signature

 Simultaneously guaranteeing that
 Everyone who deposited 0.1 ETH will be able to withdraw 0.1 ETH exactly once

 It's impossible to tell which withdrawal corresponds to which deposit.

 On Ethereum (description | mixing contract)

Portland State University CS 410/510 Blockchain Development & Security

https://blog.ethereum.org/2016/03/05/serenity-poc2/
https://github.com/ethereum/pyethereum/blob/serenity/ethereum/ringsig.se.py

 Size of ring based on user's desired ambiguity degree

 Senders verify each other using group of public keys in ring

Portland State University CS 410/510 Blockchain Development & Security

Unlinkable payments via one-time keys

 Add a level of indirection similar to Tor
 Private key of sender creates

 SendKey private/public key pair
 ViewKey private/public key pair
 Address

 Sender uses private SendKey to initiate payment and gives recipient
ViewKey
 Passes through ring signature to hide sender address
 Transaction sent to a one-time Stealth wallet address

 Receiver uses private ViewKey to check wallet address for available funds
 Done over an anonymizing network (Kovri)

Portland State University CS 410/510 Blockchain Development & Security

Example: ZeroCoin

 Proposed extension to Bitcoin
 Unlink transactions to their origins

 Payment destination and amounts still linked and traceable

 Done via a de-centralized mixer where coins can be periodically washed

of their transaction history

 Fixed denomination coins initially

 Extra steps required to perform transaction

 Not quite anonymous

Portland State University CS 410/510 Blockchain Development & Security

Example: Zcash

 Fully anonymous and decentralized protocol

 Done via zero-knowledge proofs (ZKPs)
 See extra slides

 ZeroCash over Ethereum

Portland State University CS 410/510 Blockchain Development & Security

https://z.cash/blog/zksnarks-in-ethereum.html

