Advanced Topics

Block times and sizes

Block size

- Increase block sizes
 - Tension between those who treat BTC as an investment (e.g. like a stock that does not trade frequently) versus a transactional currency (e.g. like cash and credit cards)
 - At 7 transactions/second, it's being treated as the former
- Within Bitcoin: SegWit upgrade (7/21/2017) (2MB)
 - Patch to fix transaction malleability bug that effectively doubles blocksize
 - Leads to Bitcoin Cash hard fork (8/1/2017) (8MB)
 - For those who did not believe SegWit did enough
 - Then Bitcoin Cash split again
 - Bitcoin ABC (adjustable Blocksize Cap) 32MB size
 - Bitcoin SV 128MB size

- Larger block sizes
 - Increases amount of hardware needed to handle
 - Decreases transaction time
 - Decreases transaction cost
 - Increases propagation time

Block time

- Decreasing block times improves transaction throughput linearly
- But, impacts <u>consensus</u>
 - Orphan rate of chains increases
 - Amount of wasted work on PoW computation increases
 - Example
 - <u>3 miners mining and distributing blocks</u>

- Miners continually mining
- Miner successfully mines block
- Block propagated to all other miners so they can move on to mining next block

• During propagation, a miner may successfully mine a different block and propose it (e.g. there may be two valid candidates for block 2060)

 Top and bottom miners successfully mine candidate for 2060 and attempt to propagate *before* receiving each other's proposed block

Issues

- Miners working on different versions of 2060 create wasted work with no added stability to blockchain
- Shorter block times increase wasted work (since propagation time becomes larger as compared to mining time)
- Mining pools with fast network connections at an advantage
 - Waste less time on performing hashes as successfully mined blocks are being propagated
 - Can immediately go to next block
- Mining centralization becomes more of a threat
 - With pools and mining devices mostly in China

- Ethereum's GHOST (Greedy Heaviest Observed Subtree)
 - Goal: Incentivize miners to coalesce into the main chain, but prevent centralized mining pools from gaining an unfair advantage
 - Address centralization issues with short block-time by incorporating stale blocks
 - Take common sub-tree out of mined blocks being proposed
 - Reward miners who have mined blocks with the sub-tree (even if blocks contain "uncles" that are not ultimately accepted)

Block times in practice

- Bitcoin
 - ~ 10 minutes
 - But, is 10 minutes way too conservative?
 - Takes 12.6s on average to propagate block to 95% of nodes
 - Perhaps a 1-minute block-time is more <u>appropraiate</u>?
- Ethereum
 - 10-20 seconds due to GHOST

Sharding, side-chains

- Issue #1: Resources on blockchain are expensive
 - Full nodes perform the same on-chain computations
 - Full nodes store the same data
 - Gas-limit is relatively small as a result
 - Can't run an OS on blockchain
 - Can't increase gas-limit: DoS vector

Posted by Jeffrey Wilcke on ② September 22nd, 2016.

URGENT ALL MINERS: The network is under attack. The attack is a computational DDoS, ie. miners and nodes need to spend a very long time processing some blocks.

ETHEREUM • FEATURES • TECHNOLOGY

So, Ethereum's Blockchain is Still Under Attack...

Alyssa Hertig (@AlyssaHertig) | Published on October 6, 2016 at 18:05 GMT

FEATURE

- Issue #2: Single blockchain for all DApps to share
 - Implements a total order on events within a DApp and events across all DApps
 - For independent DApps, why is this necessary?

CryptoKitties craze slows down transactions on Ethereum

C 5 December 2017

f 🔗 🍠 🗹 < Share

A new craze for virtual kittens is slowing down trade in one of the largest crypto-currencies.

Solution 1: Sharding

- Divide the network into sub-networks
 - Each stores and manages a fraction of the blockchain (a shard)
 - Allow scaling up as the network grows
- Hierarchical block-chains

Solution 2: State Channel, Layer-2 solutions

- Similar to payment channel (e.g. lightning network) but for states
 - Scaling by using off-chain transactions
 - Can update the state multiple times off-chain
 - Only settlement transactions are on-chain

Formal verification

Tools to prove correctness

- Formal methods to ensure correctness of EVM itself via <u>Isabelle</u>
- Formal methods to verify smart contracts
 - <u>Why3 programming language</u> (4/2019)
 - Language for writing formal and verified smart contracts via deductive verification
- Integrate contract testing into IDE
 - <u>Truffle development environment</u>

Decoupling state machine and consensus

Tendermint

- Ethereum VM and Solidity conjoin both the state in a contract with the replication of it across nodes
- Why can't the state machine be managed by any programming language and then use the blockchain only as a replication service?
 - e.g. write DApp in Java and then have blockchain replicate JVM underneath
- Tendermint approach
 - Separate state management (e.g. PL and its VM) from the replication and consensus of it

Thwarting miner centralization

Issue

- 80-90% of all mining hardware in Bitcoin from a single factory in Shenzhen China (Bitmain)
 - Highly parallelizable hashing algorithm eventually done by ASICs
- Alternatives
 - Memory bound puzzles (Ethhash)
 - Use a scheme in which miner must store data in high-speed memory that is randomly accessed to compute puzzle solution
 - Use a size that fits in L3 cache (too big for ASICs and some GPUs)
 - Puzzle algorithms that continually change
 - Update algorithm for mining to invalidate ASICs and force a redevelopment of hardware
 - ProgPoW in Ethereum
 - Both techniques used in CryptoNote/Monero

Privacy

- Blockchain supports consensus, correctness, authenticity, and availability, but not privacy for smart contracts or transactions
- All Bitcoin transactions public (transactions of wallets public)
 - Tracing Bitcoin transactions per wallet simple (and effective)
 - <u>Analysing transaction graph</u> [IMC'13]
 - Good for law enforcement
- All Ethereum smart contract executions (data & code) public
 - Cannot execute on private data
 - e.g. Can not have a death will that remains secret until the owner dies

Proposed solutions

- Crowds
 - Clearinghouse account for mixing coin transactions to support "kanonymity"

• Should this be legal?

- Depends on how you market your service
 - Bestmixer.io laundering pool taken down

SUBSCRIBE	cyber <mark>scoop</mark>	$\bigcirc \equiv$
European p	olice seize Bes	stMixer,
saying it he	elped launder S	\$200
million wor	th of cryptocu	rrency

- "Mixing bitcoins that are obtained legally is not a crime but, other than the mathematical exercise, there is no real benefit to it"
- "The legality changes when a mixing service advertises itself as a success method to avoid various anti-money laundering policies via anonymity."

Ring signatures (a.k.a. group signatures)

- Implementation of a mixer
- Example
 - Five users send their public keys in alongside a deposit of 0.1 ETH
 - Withdraw 0.1 ETH specifying the address with a linkable ring signature
 - Simultaneously guaranteeing that
 - Everyone who deposited 0.1 ETH will be able to withdraw 0.1 ETH exactly once
 - It's impossible to tell which withdrawal corresponds to which deposit.
 - On Ethereum <u>(description</u> | <u>mixing contract</u>)

- Size of ring based on user's desired ambiguity degree
- Senders verify each other using group of public keys in ring

Unlinkable payments via one-time keys

- Add a level of indirection similar to Tor
- Private key of sender creates
 - SendKey private/public key pair
 - ViewKey private/public key pair
 - Address
- Sender uses private SendKey to initiate payment and gives recipient ViewKey
 - Passes through ring signature to hide sender address
 - Transaction sent to a one-time Stealth wallet address
- Receiver uses private ViewKey to check wallet address for available funds

• Done over an anonymizing network (Kovri)

Portland State University CS 410/510 Blockchain Development & Security

Example: ZeroCoin

- Proposed extension to Bitcoin
 - Unlink transactions to their origins
 - Payment destination and amounts still linked and traceable
 - Done via a de-centralized mixer where coins can be periodically washed of their transaction history
 - Fixed denomination coins initially
 - Extra steps required to perform transaction
 - Not quite anonymous

Example: Zcash

- Fully anonymous and decentralized protocol
- Done via zero-knowledge proofs (ZKPs)
 - See extra slides
- ZeroCash over Ethereum

	Bitcoin	ZeroCoin	ZeroCash
origin addr	VISIBLE	HIDDEN	HIDDEN
dest addr	VISIBLE	VISIBLE	HIDDEN
txn value	VISIBLE	VISIBLE	HIDDEN
user wallets	VISIBLE	VISIBLE	HIDDEN