
Vyper

Blockchain Programming

Languages

Turing complete vs. non-Turing complete

 Not to be confused with the "Turing" test for whether you are

human!

 Article on whether "Turing-completeness" is necessary for smart

contracts

Portland State University CS 410/510 Blockchain Development & Security

https://hackernoon.com/should-smart-contracts-be-non-turing-complete-fe304203a49e

But first… a Turing machine

 Machine with an infinite amount of RAM that can run a finite

program that controls the reading and writing of that RAM

 Program also dictates when to terminate itself

Portland State University CS 410/510 Blockchain Development & Security

Turing completeness

 Computability on a Turing machine
 Has the ability to implement any computable function

 Has the ability to have a function that won't terminate by itself (e.g.

infinite loop)

 Has the ability to use an infinite amount of memory

 Q: Sound like something a smart contract needs?

 Q: Then, why do we have Solidity?

Portland State University CS 410/510 Blockchain Development & Security

Non-Turing completeness

 Does not support
 Loops

 Recursion

 Goto constructs which are not guaranteed to terminate

 Constructs that prevent analysis (for security issues)

 Has finite computational and memory resources

Portland State University CS 410/510 Blockchain Development & Security

Analysis of Ethereum contracts

 Study in 3/2019

 6.9% use while loops

 3.6% use recursion

 24.8% use for loops
 But not all are unbounded

Portland State University CS 410/510 Blockchain Development & Security

“Turing-incompleteness is not even that big a limitation; out of all the contract

examples we have conceived internally, so far only one required a loop"

Vitalik Buterin

https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete
https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete

Vyper

Overview

 Non-turing complete Pythonic programming language
 Language and compiler much simpler

 Limits functionality to remove common avenues for vulnerabilities
 Allows one to build secure contracts more easily

 Simplified programming model to make programs
 Maximally human-readable

 Maximally difficult to have misleading code

 Easy to analyze and audit

 Compiles to EVM bytecode

 Links
 On-line interpreter

 Project page

 Example contracts

Portland State University CS 410/510 Blockchain Development & Security

https://vyper.online/
https://vyper.readthedocs.io/
https://medium.com/@merunasgrincalaitis/the-fastest-way-to-learn-vyper-for-creating-secure-ethereum-smart-contracts-8f9d7289ccea

Enforcing simplicity

 Removes modifiers
function withdraw() ctf { … }

 SI ctf modifier defined in a separate file
 Typically, modifiers are single-condition checks
 Vyper encourages these to be done as in-line asserts for readability

 Removes class inheritance
 Similar issue of code across multiple files
 Inheritance requires knowledge of precedence rules in case of conflicts

 Inheriting from 2 classes that both implement a particular function call

 Removes in-line assembly
 Removes the potential for having assembly-level aliases to variables to

improve code auditability
 Removes function overloading

 SI CTF: withdraw(uint8 amount) vs withdraw(uint amount)

 Confusion over which version is being executed
 Removes operator overloading

 Similar issues to above

Portland State University CS 410/510 Blockchain Development & Security

Avoiding vulnerable patterns

 Removes infinite or arbitrary-length loops
 Hard to analyze run-time execution for (e.g. gas)

 Recall DoS contract bricking attacks on while loops in contracts

 Removes recursive calling (e.g. re-entrancy)
 Prevents one from estimating upper bound on gas consumption for a call

 All integers 256-bit

 Other details
 address(this) in Solidity replaced by self in Vyper

 address(0) in Solidity replaced by ZERO_ADDRESS in Vyper

 require in Solidity is assert in Vyper

Portland State University CS 410/510 Blockchain Development & Security

Other features

 Strongly and statically typed

 Bounds and overflow checking on array accesses

 Overflow and underflow checks for arithmetic operations

 Decimal fixed point numbers

 Precise upper bounds on gas consumption (execution

deterministic)

Portland State University CS 410/510 Blockchain Development & Security

Language syntax

https://vyper.readthedocs.io

https://vyper.readthedocs.io/

Variables and types

 State variables
 Stored in contract storage
 Must have type specified
 Declare myStateVariable as a signed, 128-bit integer

 Boolean type
 Can be either True or False

 Integer types
 Only 256-bit unsigned and 128-bit signed integers

 Decimal fixed-point type
 Values from -2127 to (2127-1) at a precision of 10 decimal places

Portland State University CS 410/510 Blockchain Development & Security

myStateVariable: int128

mySignedInteger: int128

myUnsignedInteger: uint256

myDecimal: decimal

myBooleanFlag: bool

 Address type
 20-byte Ethereum address

 Contains built-in members (e.g. myWalletAddress.<member>)
 balance (returns wei_value for address)

 codesize (returns amount of bytes in bytecode for address)

 is_contract (returns whether address is a contract versus a wallet)

Portland State University CS 410/510 Blockchain Development & Security

myWalletAddress: address

 Strings (as in Python)
 Stored strings with maximum length specified so it can be allocated

 Byte Arrays
 Fixed to 32 bytes (e.g. the size of a uint256)

 Lists
 Fixed-size array of elements of a specified type
 Example

 Declare a list of 3 signed integers, initialize it, then set an element of it

 Mappings (hash tables)
 Example

 Declare a mapping called myBalances that stores values of unit type decimal
and is keyed by an address

 Set the sender's balance to 10.5

Portland State University CS 410/510 Blockchain Development & Security

myBalances: HashMap(address, decimal)

myIntegerList: int128[3]
myIntegerList = [10, 11, 12]
myIntegerList[2] = 42

exampleString: String[100] = "Test String"

codehash: bytes32

myBalances[msg.sender] = 10.5

 Structs
 Declare custom struct data type with attributes and their types

 Cannot contain mappings

 Instantiate an instance, initialize it, then change one of its attributes

Portland State University CS 410/510 Blockchain Development & Security

struct Bid:
id: uint256
deposit: decimal

myBid: Bid

myBid = Bid({id: 10, deposit: 10.5})

myBid.deposit = 11.5

 Operators
 All similar to Python and Solidity

 true and false booleans

 not, and, or, ==, != logical operators

 <, <=, ==, !=, >=, > arithmetic comparisons

 +, -, *, /, **, % arithmetic operators

 Bitwise operators
 Done as function calls
 bitwise_and(), bitwise_not(), bitwise_or(), bitwise_xor(),

shift()

 Built-in functions (selected)
 send() to send a recipient a specified amount of Wei

 clear() to reset datatype to default value

 len() to return the length of a variable

 min(), max() to return smaller or larger of two values

 floor(), ceil() to round a decimal down or up to nearest int

Portland State University CS 410/510 Blockchain Development & Security

 Defining your own functions
 Done via Pythonic method via def keyword

 Return types specified via -> operator

Portland State University CS 410/510 Blockchain Development & Security

def bid():

Check if bidding period is over.

assert block.timestamp < self.auctionEnd

def returnBalance() -> wei_value:

return self.balance

 Visibility declarations
 Default setting on everything is private

 Explicitly denote public variables (via wrapping with public())

 Explicitly denote public functions (via @external decorator)

Portland State University CS 410/510 Blockchain Development & Security

Keep track of refunded bids so we can follow the withdraw pattern

pendingReturns: public(HashMap(address, uint256))

@external

def withdraw():

pending_amount: wei_value = self.pendingReturns[msg.sender]

self.pendingReturns[msg.sender] = 0

send(msg.sender, pending_amount)

 Other function decorators
 @internal (Can only be called within current contract)

 @payable (Can receive Ether)

 @nonreentrant (Cannot be called back into during an external call to stop re-

entrancy attacks)

 @view (Does not alter contract state)

 Default function (a.k.a. Fallback function)
 Function that is executed when receiving a payment only

 Function that is executed when no function matches

 Declared via __default__ syntax

Portland State University CS 410/510 Blockchain Development & Security

@external

@payable

def __default__():

self.funds = self.funds + msg.value

 Constructor function
 Syntax similar to Python

Portland State University CS 410/510 Blockchain Development & Security

Setup global variables

beneficiary: address

deadline: public(uint256)

goal: public(uint256)

timelimit: public(uint256)

@public

def __init__(_beneficiary: address, _goal: uint256, _timelimit: uint256):

self.beneficiary = _beneficiary

self.deadline = block.timestamp + _timelimit

self.timelimit = _timelimit

self.goal = _goal

 Control flow
 if-else as in Python

 for as in Python (with fixed range)

Portland State University CS 410/510 Blockchain Development & Security

for i in range(len(self.funders)):

if self.funders[i].value >= 0:

send(self.funders[i].sender, self.funders[i].value)

clear(self.funders[i])

 Events to send to UI (e.g. web browser)
 Syntax similar to structs

 Use indexed arguments that can be searched for by listeners

 Sent via log command

Portland State University CS 410/510 Blockchain Development & Security

Declare event

event Transfer:

sender: indexed(address)

receiver: indexed(address)

value: uint256

Transfer some tokens from message sender to another address

def transfer(_to : address, _value : uint256) -> bool:

Do transfer here

Then generate event for listeners to update UI

log Transfer(msg.sender, _to, _amount)

 Within Web3.js front-end

Portland State University CS 410/510 Blockchain Development & Security

var abi = /* abi as generated by the compiler */;
var MyToken = web3.eth.contract(abi);
var myToken = MyToken.at("0x1234...ab67" /* address */);

// watch for changes in the callback
var event = myToken.Transfer(function(error, result) {

if (!error) {
var args = result.returnValues;
console.log('value transferred = ', args._amount)

;
}

});

Fe

Fe

 Vyper spin-off
 https://decrypt.co/44961/ethereum-blockchain-gets-new-language-

called-fe

 Syntactic properties from Rust typing added

 Burgdorf: "It's likely that Fe will begin to more closely resemble Rust"

 Note: Vyper compiler written in Rust with Python bindings

https://decrypt.co/44961/ethereum-blockchain-gets-new-language-called-fe

Final projects

DApp of your own in Vyper

 Games

 Auctions

 Parking meter

 Stock market trading application

 Ticket application

 See https://codelabs.cs.pdx.edu for specification

Portland State University CS 410/510 Blockchain Development & Security

https://codelabs.cs.pdx.edu/

