
D9: Off-chain attacks

Server vulnerabilities

Complex software runs all blockchains

 Too large to formally verify full node, all contracts are vulnerable

from underneath
 e.g. formally verified contracts can *still* be subverted if security

assumptions of infrastructure running them are broken

 Miner exploits the network’s mining algorithm implementation to obtain $1.1M

(20M XVG)

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Memory-safe languages
 geth (Go Ethereum), parity, lighthouse (Rust Ethereum)

 Formally specified virtual machines and languages
 Cardano (KEVM, IELE)

 Formal verification of EVM
 Formal verification of smart contracts

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/pirapira/eth-isabelle
https://github.com/pirapira/ethereum-formal-verification-overview

Supply-chain attacks

Poison software used

 Attack web3.js front-end code

 Attack Javascript packages wallets use

 Example (11/2018)

 EventStream, a highly popular JavaScript library used in wallets
 Downloaded 2 million times per week, but not maintained from 2012-2018

 Original owner transfers project ownership to a volunteer to maintain

 New owner is malicious
 Adds a dependency to flatmap-stream a little-known library that had no downloads

on NPM

 Malicious code added to flatmap-stream to enable Bitcoins to be stolen from wallets

using EventStream

Portland State University CS 410/510 Blockchain Development & Security

 Trojan wallet software (11/2019)
 14-hour window of compromise

 Attack grabs release code, adds code to steal keys, and uploads to

compromised site for users to download

Portland State University CS 410/510 Blockchain Development & Security

https://www.zdnet.com/article/official-monero-website-compromised-with-malware-that-steals-funds/

Remediation

 Monitor and validate your software supply chain

 Reduce dependencies

 Philosophical question: To patch or not to patch?
 Similar to WannaCry vs CCleaner

 Patch if you can trust the source (fix vulnerabilities)

 Don't patch if you can't trust the source (avoid supply-chain attacks)

 Increasingly, in a package-driven world, you might not want to!

Portland State University CS 410/510 Blockchain Development & Security

Attacks on exchanges, hot-wallets

Mt. Gox (2014)

 Founded in 2010

 Handled 70% of all BTC transactions at its peak in "hot" wallets
 e.g. Mt. Gox stores private keys for wallets, connected to the Internet

to perform transactions on behalf of its users

 Service compromised in 2011
 Attackers break into computer of an auditor of Mt. Gox

 Change BTC pricing to a penny

 Compromised again in 2014 (causing bankruptcy)
 Obtained the private keys of Mt.Gox clients to generate transactions

 At the time, all crypto assets were kept in hot wallets

 Total value consisted of a massive $460 million worth of Bitcoin at the

time ($17 billion at 2019 levels)

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/@jimmysong/mt-gox-hack-technical-explanation-37ea5549f715

Coincheck (1/2018)

"The company did own up to a security lapse that allowed the thief to seize

such a large sum: It kept customer assets in what’s known as a hot wallet,

which is connected to external networks."

Portland State University CS 410/510 Blockchain Development & Security

Binance (5/2019)

 From earlier discussion on 'reorg'
 7th largest crypto exchange in 5/2019

 https://coinmarketcap.com/exchanges/binance/
 Attack against high-value users to obtain account credentials on exchange

 7,000 BTC stolen (~$40 million)
 2FA codes and API tokens stolen
 CEO of Binance – "The hackers used a variety of techniques, including

phishing, viruses and other attacks…It appears that hackers were able to
compromise several high-net-worth accounts, whose bitcoin was kept in
Binance’s so-called hot wallet—which, unlike cold wallets, are connected to
the internet—and filch those funds in a single transaction."

 "The bad news is, if your bitcoin was in Binance’s hot wallet, it now belongs to
bad guys."

Portland State University CS 410/510 Blockchain Development & Security

https://coinmarketcap.com/exchanges/binance/

Remediation

 Use hardware wallets
 Exchanges now support transactions that must be signed by a hardware

wallet the user carries
 But now a single-point of failure (loss of wallet means loss of all $

associated with it)
 Use hardware tokens to authenticate hot wallets

 Binance CEO on 5/10/2019 after $40M heist
 "The company plans to give away 1,000 YubiKeys when the feature goes live"

 U2F, FIDO2 security keys with better security than traditional 2FA
 https://bit.ly/pdx-yubi

 Use cold wallet storage
 Use exchanges that keep a majority of customer deposits in cold wallets
 Keys kept offline (e.g. in a bank vault)

 Use multi-signature wallets
 Require multiple sign-offs before funds can be moved
 Adversary must compromise multiple wallets to transact

Portland State University CS 410/510 Blockchain Development & Security

https://bit.ly/pdx-yubi

Weak or leaked keys

Improper use of crypto in wallets

 Software that doesn't appropriately manage randomness used in

digital signatures allowing cryptanalysis to reveal private key

 Wallets generating cryptographic signatures on Bitcoin, Ethereum, and

Ripple with flaw allowing attackers to calculate private keys and,

consequently, steal any crypto in that wallet.

 Hundreds of Bitcoin private keys and dozens of Ethereum, Ripple, SSH,

and HTTPS private keys vulnerable to this unique form of cryptanalytic

attack

 https://eprint.iacr.org/2019/023.pdf
Portland State University CS 410/510 Blockchain Development & Security

https://eprint.iacr.org/2019/023.pdf

Improper key generation

 Key generation algorithm configured with insufficient entropy

(allows private keys to be easily guessed)

Portland State University CS 410/510 Blockchain Development & Security

Fake key generation sites

 IOTA wallets (2018)

 Phishing site masquerading

as a legitimate site for

generating unique

cryptographic seeds for

IOTA wallets

 Stores seeds instead to

cashout wallets that used it

Portland State University CS 410/510 Blockchain Development & Security

https://iotaseed.io/

 WalletGenerator.net (5/2019)
 The site has been using a coding sleight of hand to generate private keys

that are suspiciously trivial for the operators to guess…

 …leaving all funds stored in the wallets open to theft.

Portland State University CS 410/510 Blockchain Development & Security

Leaked private key in source repository

 Seed phrase accidentally left in a GitHub upload.
 Immediately scanned by malicious bots that monitor code commits.

 Less than two minutes before attackers siphoned the funds.

Portland State University CS 495/595 Web and Cloud Security

Comedy bug: Leaking private key in

spellchecker

Portland State University CS 495/595 Web and Cloud Security

Phishing users

Spoofing Ethereum addresses

 Modify a company's advertised Ethereum address off-chain (e.g.

replace address on web page)
 Coindash ICO ($7M in ETH lost)

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/crypt-bytes-tech/ico-hack-coindash-ed-dd336a4f1052

Portland State University CS 410/510 Blockchain Development & Security

Spoofing legitimate sites

 6/2019
"Law enforcement agencies in Europe arrested a group of six individuals for

emptying cryptocurrency wallets of at least 4,000 victims by setting up a website

that impersonated Blockchain.com."

Portland State University CS 410/510 Blockchain Development & Security

 Typosquatting combined with advertisements placed using Google

AdWords to lure victims

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Password managers, 2FA

 U2F, FIDO2 authentication

 Multi-signature wallets for high-value accounts

Portland State University CS 410/510 Blockchain Development & Security

Network vulnerabilities

DNS rebinding

 Wallet software running on local interface (e.g. geth's JSON RPC interface)
 Connections only from local machine allowed

 User goes to a malicious web site "evil.com"
 Loads DNS entry for "evil.com" that has a short TTL
 Upon loading, "evil.com" quickly rebinds site DNS record to point to local interface

(127.0.0.1) to allow access to internal process housing wallet (e.g. geth's JSON
RPC interface)

 User attempts to load embedded objects on "evil.com"
 Is redirected to local interface
 If interface written to not require continual reauthentication per request, attacker

gets unauthenticated JSON-RPC access (and complete control) over your wallets

Portland State University CS 410/510 Blockchain Development & Security

Example

 Accessing unlocked private keys

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/coinmonks/the-call-is-coming-from-inside-the-house-dns-rebinding-in-eosio-keosd-wallet-e11deae05974

Portland State University CS 410/510 Blockchain Development & Security

 Normal operation
 Wallet's keys unlocked and displayed after correct password given
 Access allowed for 15 minutes without a password

 DNS rebinding attack within 15 minutes displays keys
 Wallet software returns 404 on rest of the page assets

Portland State University CS 410/510 Blockchain Development & Security

DNS Hijacking

 MyEtherWallet.com (MEW)

 Lots of $, enormous target for exploitation (4/2018)

 Impact
 $152,000 ➔ 216 Ether known to be stolen

 But, two wallets used in the attack eventually held more than 520 Ether

(~$365,000 at the time)
Portland State University CS 430P/530 Internet, Web & Cloud Systems

 MEW using AWS Route 53 to provide DNS
 BGP hijack from ISP in Ohio

 Adversary advertises a more specific route to AWS Route 53 DNS (/24)

 Redirects DNS for MEW to point to fake web servers in Russia that impersonate

MEW

 “a couple of Domain Name System registration servers were hijacked around

12PM UTC 24 April to redirect users to a phishing site.”

 Users visit fake MEW site and enter their private seeds which captures the

credentials

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

Typical operaion

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Hijacked operation

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Short-address attack

 Unnamed exchange uses insecure marshalling between web API and

programming language (Web3/Solidity) and underlying execution

environment (Ethereum Virtual Machine)

Portland State University CS 410/510 Blockchain Development & Security

https://blog.golemproject.net/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95

Walkthrough

 Web interface of DApp calls into sendCoin function in the smart

contract that takes a recipient address and an amount
sendCoin(address _to, uint256 _amount)

 sendCoin has a 4-byte keccak hash of 0x90b98a11 and interaction with it

uses padded arguments (multiples of 32 bytes)

 Bob has a wallet address ending with 0x00
(0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00)
 Asks Alice to transfer him 2 tokens, but maliciously gives her his address

truncated to remove the trailing byte (last 2 zeroes).

Portland State University CS 410/510 Blockchain Development & Security

function sendCoin(address to, uint amount) returns(bool sufficient) {
if (balances[msg.sender] < amount)

return false;
balances[msg.sender] -= amount;
balances[to] += amount;
Transfer(msg.sender, to, amount);
return true;

}

 Bob 0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00
asks Alice to send him 2 ETH via sendCoin(address,uint)

call (0x90b98a11)

 If Bob was not malicious, sends through web form the 20-byte

address above and the integer 2.
 Alice, via Web interface code, generates msg.data …

 Notice 20-byte address padded out to 32-bytes in msg.data with

exactly 12 bytes because API assumes it will *always* be given a 20-

byte address

Portland State University CS 410/510 Blockchain Development & Security

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

0002

 Malicious Bob instead sends
0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f

not

0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00
 Alice, via the Web API that improperly marshals data generates

not

 Missing byte of an address pulled from subsequent arguments
 EVM appends a byte of 00 at the end of msg.data since one byte is

missing

 Results in Bob receiving 0x200 (512) ETH!

Portland State University CS 410/510 Blockchain Development & Security

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

0002

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

0002

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

000200

Remediation

 Validate input
 Check address lengths provided by user

 Generate transaction data sent to contract function, but check against user

input before execution

 Only use checksummed addresses
 Done in-band with Bitcoin (appended to end of address)

 Now done for Ethereum addresses via EIP55 standard
 See EthSum

 Use vetted implementations for marshalling user addresses into

transactions
 e.g. web3.js

 Change EVM to throw on data underflows (rather than pad silently)?

 Use Solidity versions > 0.5
 Short address attack checks no longer needed and are being removed

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/OpenZeppelin/zeppelin-solidity/issues/261

