
D9: Off-chain attacks

Server vulnerabilities

Complex software runs all blockchains

 Too large to formally verify full node, all contracts are vulnerable

from underneath
 e.g. formally verified contracts can *still* be subverted if security

assumptions of infrastructure running them are broken

 Miner exploits the network’s mining algorithm implementation to obtain $1.1M

(20M XVG)

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Memory-safe languages
 geth (Go Ethereum), parity, lighthouse (Rust Ethereum)

 Formally specified virtual machines and languages
 Cardano (KEVM, IELE)

 Formal verification of EVM
 Formal verification of smart contracts

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/pirapira/eth-isabelle
https://github.com/pirapira/ethereum-formal-verification-overview

Supply-chain attacks

Poison software used

 Attack web3.js front-end code

 Attack Javascript packages wallets use

 Example (11/2018)

 EventStream, a highly popular JavaScript library used in wallets
 Downloaded 2 million times per week, but not maintained from 2012-2018

 Original owner transfers project ownership to a volunteer to maintain

 New owner is malicious
 Adds a dependency to flatmap-stream a little-known library that had no downloads

on NPM

 Malicious code added to flatmap-stream to enable Bitcoins to be stolen from wallets

using EventStream

Portland State University CS 410/510 Blockchain Development & Security

 Trojan wallet software (11/2019)
 14-hour window of compromise

 Attack grabs release code, adds code to steal keys, and uploads to

compromised site for users to download

Portland State University CS 410/510 Blockchain Development & Security

https://www.zdnet.com/article/official-monero-website-compromised-with-malware-that-steals-funds/

Remediation

 Monitor and validate your software supply chain

 Reduce dependencies

 Philosophical question: To patch or not to patch?
 Similar to WannaCry vs CCleaner

 Patch if you can trust the source (fix vulnerabilities)

 Don't patch if you can't trust the source (avoid supply-chain attacks)

 Increasingly, in a package-driven world, you might not want to!

Portland State University CS 410/510 Blockchain Development & Security

Attacks on exchanges, hot-wallets

Mt. Gox (2014)

 Founded in 2010

 Handled 70% of all BTC transactions at its peak in "hot" wallets
 e.g. Mt. Gox stores private keys for wallets, connected to the Internet

to perform transactions on behalf of its users

 Service compromised in 2011
 Attackers break into computer of an auditor of Mt. Gox

 Change BTC pricing to a penny

 Compromised again in 2014 (causing bankruptcy)
 Obtained the private keys of Mt.Gox clients to generate transactions

 At the time, all crypto assets were kept in hot wallets

 Total value consisted of a massive $460 million worth of Bitcoin at the

time ($17 billion at 2019 levels)

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/@jimmysong/mt-gox-hack-technical-explanation-37ea5549f715

Coincheck (1/2018)

"The company did own up to a security lapse that allowed the thief to seize

such a large sum: It kept customer assets in what’s known as a hot wallet,

which is connected to external networks."

Portland State University CS 410/510 Blockchain Development & Security

Binance (5/2019)

 From earlier discussion on 'reorg'
 7th largest crypto exchange in 5/2019

 https://coinmarketcap.com/exchanges/binance/
 Attack against high-value users to obtain account credentials on exchange

 7,000 BTC stolen (~$40 million)
 2FA codes and API tokens stolen
 CEO of Binance – "The hackers used a variety of techniques, including

phishing, viruses and other attacks…It appears that hackers were able to
compromise several high-net-worth accounts, whose bitcoin was kept in
Binance’s so-called hot wallet—which, unlike cold wallets, are connected to
the internet—and filch those funds in a single transaction."

 "The bad news is, if your bitcoin was in Binance’s hot wallet, it now belongs to
bad guys."

Portland State University CS 410/510 Blockchain Development & Security

https://coinmarketcap.com/exchanges/binance/

Remediation

 Use hardware wallets
 Exchanges now support transactions that must be signed by a hardware

wallet the user carries
 But now a single-point of failure (loss of wallet means loss of all $

associated with it)
 Use hardware tokens to authenticate hot wallets

 Binance CEO on 5/10/2019 after $40M heist
 "The company plans to give away 1,000 YubiKeys when the feature goes live"

 U2F, FIDO2 security keys with better security than traditional 2FA
 https://bit.ly/pdx-yubi

 Use cold wallet storage
 Use exchanges that keep a majority of customer deposits in cold wallets
 Keys kept offline (e.g. in a bank vault)

 Use multi-signature wallets
 Require multiple sign-offs before funds can be moved
 Adversary must compromise multiple wallets to transact

Portland State University CS 410/510 Blockchain Development & Security

https://bit.ly/pdx-yubi

Weak or leaked keys

Improper use of crypto in wallets

 Software that doesn't appropriately manage randomness used in

digital signatures allowing cryptanalysis to reveal private key

 Wallets generating cryptographic signatures on Bitcoin, Ethereum, and

Ripple with flaw allowing attackers to calculate private keys and,

consequently, steal any crypto in that wallet.

 Hundreds of Bitcoin private keys and dozens of Ethereum, Ripple, SSH,

and HTTPS private keys vulnerable to this unique form of cryptanalytic

attack

 https://eprint.iacr.org/2019/023.pdf
Portland State University CS 410/510 Blockchain Development & Security

https://eprint.iacr.org/2019/023.pdf

Improper key generation

 Key generation algorithm configured with insufficient entropy

(allows private keys to be easily guessed)

Portland State University CS 410/510 Blockchain Development & Security

Fake key generation sites

 IOTA wallets (2018)

 Phishing site masquerading

as a legitimate site for

generating unique

cryptographic seeds for

IOTA wallets

 Stores seeds instead to

cashout wallets that used it

Portland State University CS 410/510 Blockchain Development & Security

https://iotaseed.io/

 WalletGenerator.net (5/2019)
 The site has been using a coding sleight of hand to generate private keys

that are suspiciously trivial for the operators to guess…

 …leaving all funds stored in the wallets open to theft.

Portland State University CS 410/510 Blockchain Development & Security

Leaked private key in source repository

 Seed phrase accidentally left in a GitHub upload.
 Immediately scanned by malicious bots that monitor code commits.

 Less than two minutes before attackers siphoned the funds.

Portland State University CS 495/595 Web and Cloud Security

Comedy bug: Leaking private key in

spellchecker

Portland State University CS 495/595 Web and Cloud Security

Phishing users

Spoofing Ethereum addresses

 Modify a company's advertised Ethereum address off-chain (e.g.

replace address on web page)
 Coindash ICO ($7M in ETH lost)

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/crypt-bytes-tech/ico-hack-coindash-ed-dd336a4f1052

Portland State University CS 410/510 Blockchain Development & Security

Spoofing legitimate sites

 6/2019
"Law enforcement agencies in Europe arrested a group of six individuals for

emptying cryptocurrency wallets of at least 4,000 victims by setting up a website

that impersonated Blockchain.com."

Portland State University CS 410/510 Blockchain Development & Security

 Typosquatting combined with advertisements placed using Google

AdWords to lure victims

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Password managers, 2FA

 U2F, FIDO2 authentication

 Multi-signature wallets for high-value accounts

Portland State University CS 410/510 Blockchain Development & Security

Network vulnerabilities

DNS rebinding

 Wallet software running on local interface (e.g. geth's JSON RPC interface)
 Connections only from local machine allowed

 User goes to a malicious web site "evil.com"
 Loads DNS entry for "evil.com" that has a short TTL
 Upon loading, "evil.com" quickly rebinds site DNS record to point to local interface

(127.0.0.1) to allow access to internal process housing wallet (e.g. geth's JSON
RPC interface)

 User attempts to load embedded objects on "evil.com"
 Is redirected to local interface
 If interface written to not require continual reauthentication per request, attacker

gets unauthenticated JSON-RPC access (and complete control) over your wallets

Portland State University CS 410/510 Blockchain Development & Security

Example

 Accessing unlocked private keys

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/coinmonks/the-call-is-coming-from-inside-the-house-dns-rebinding-in-eosio-keosd-wallet-e11deae05974

Portland State University CS 410/510 Blockchain Development & Security

 Normal operation
 Wallet's keys unlocked and displayed after correct password given
 Access allowed for 15 minutes without a password

 DNS rebinding attack within 15 minutes displays keys
 Wallet software returns 404 on rest of the page assets

Portland State University CS 410/510 Blockchain Development & Security

DNS Hijacking

 MyEtherWallet.com (MEW)

 Lots of $, enormous target for exploitation (4/2018)

 Impact
 $152,000 ➔ 216 Ether known to be stolen

 But, two wallets used in the attack eventually held more than 520 Ether

(~$365,000 at the time)
Portland State University CS 430P/530 Internet, Web & Cloud Systems

 MEW using AWS Route 53 to provide DNS
 BGP hijack from ISP in Ohio

 Adversary advertises a more specific route to AWS Route 53 DNS (/24)

 Redirects DNS for MEW to point to fake web servers in Russia that impersonate

MEW

 “a couple of Domain Name System registration servers were hijacked around

12PM UTC 24 April to redirect users to a phishing site.”

 Users visit fake MEW site and enter their private seeds which captures the

credentials

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

Typical operaion

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Hijacked operation

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Short-address attack

 Unnamed exchange uses insecure marshalling between web API and

programming language (Web3/Solidity) and underlying execution

environment (Ethereum Virtual Machine)

Portland State University CS 410/510 Blockchain Development & Security

https://blog.golemproject.net/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95

Walkthrough

 Web interface of DApp calls into sendCoin function in the smart

contract that takes a recipient address and an amount
sendCoin(address _to, uint256 _amount)

 sendCoin has a 4-byte keccak hash of 0x90b98a11 and interaction with it

uses padded arguments (multiples of 32 bytes)

 Bob has a wallet address ending with 0x00
(0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00)
 Asks Alice to transfer him 2 tokens, but maliciously gives her his address

truncated to remove the trailing byte (last 2 zeroes).

Portland State University CS 410/510 Blockchain Development & Security

function sendCoin(address to, uint amount) returns(bool sufficient) {
if (balances[msg.sender] < amount)

return false;
balances[msg.sender] -= amount;
balances[to] += amount;
Transfer(msg.sender, to, amount);
return true;

}

 Bob 0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00
asks Alice to send him 2 ETH via sendCoin(address,uint)

call (0x90b98a11)

 If Bob was not malicious, sends through web form the 20-byte

address above and the integer 2.
 Alice, via Web interface code, generates msg.data …

 Notice 20-byte address padded out to 32-bytes in msg.data with

exactly 12 bytes because API assumes it will *always* be given a 20-

byte address

Portland State University CS 410/510 Blockchain Development & Security

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

0002

 Malicious Bob instead sends
0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f

not

0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00
 Alice, via the Web API that improperly marshals data generates

not

 Missing byte of an address pulled from subsequent arguments
 EVM appends a byte of 00 at the end of msg.data since one byte is

missing

 Results in Bob receiving 0x200 (512) ETH!

Portland State University CS 410/510 Blockchain Development & Security

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

0002

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

0002

0x90b98a11

0000000000000000000000003bdde1e9fbaef2579dd63e2abbf0be445ab93f00

000200

Remediation

 Validate input
 Check address lengths provided by user

 Generate transaction data sent to contract function, but check against user

input before execution

 Only use checksummed addresses
 Done in-band with Bitcoin (appended to end of address)

 Now done for Ethereum addresses via EIP55 standard
 See EthSum

 Use vetted implementations for marshalling user addresses into

transactions
 e.g. web3.js

 Change EVM to throw on data underflows (rather than pad silently)?

 Use Solidity versions > 0.5
 Short address attack checks no longer needed and are being removed

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/OpenZeppelin/zeppelin-solidity/issues/261

