
Race conditions

D7: Front-running

#7: Front-running

 A form of a race condition time-of-check vs time-of-use

(TOCTOU) race conditions and transaction ordering

dependence (TOD)
 A classic problem in operating systems

 15.8% of all smart contracts contain a transaction ordering dependence

vulnerability

 Allows a miner to subvert a pending transaction before it has been

committed onto the ledger.

 Term "front-running" from financial trading

Portland State University CS 410/510 Blockchain Development & Security

https://eprint.iacr.org/2016/633.pdf

Front-running in stock trading

 Trading originally done on stock market

floor by paper
 Orders carried by hand between traders

 Broker receives a buy order from client

 Places his/her own order for themselves in

front to clear lower-priced sell orders

 Stock price increases and broker sells at

higher price at the expense of client

 Practice is outlawed for brokers in real-life,

but such laws don't apply on blockchain

 TOC
 Client checking price and deciding to buy

 TOU
 Getting a different price upon execution

due to trader front-running

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario #1

 A prime factoring smart contract publishes an RSA number
N = prime1 x prime2

 A call to its submitSolution() public function with the values

for prime1 and prime2 rewards the caller.

 Alice successfully factors the RSA number and submits a solution.

 Attacker on the network sees Alice's transaction (containing the

solution) waiting to be mined and resubmits it as his/her own with a

higher gas price

 Attacker's transaction gets picked up first by miners due to the

higher paid fee

 The attacker wins the prize.

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

PuzzleSolver()

SetPuzzle

reward=100

PuzzleSolver Contract

SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

UpdateReward(newReward)

reward=newReward

Owner can update

the reward anytime

Anyone can submit a

solution to claim the

reward

Balance: 100

Walkthrough scenario #2

Random
TXs

 Expected operation

Portland State University CS 410/510 Blockchain Development & Security

PuzzleSolver()

SetDifficulty

reward=100

PuzzleSolver Contract

SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

UpdateReward(newReward)

reward=newReward

Miners

Other
TXs

Solution
for

Puzzle
Block

Random TXs

SubmitSolution

Other TXs

+100

Balance: 100Balance: 0

 Malicious contract operator scenario

Portland State University CS 410/510 Blockchain Development & Security

PuzzleSolver()

SetDifficulty

reward=100

PuzzleSolver Contract

SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

UpdateReward(newReward)

reward=newReward

Miners

Other
TXs

Solution
for

Puzzle

Update
Reward
to $0! Block

UpdateReward = 0

SubmitSolution

Other TXs

+0

Balance:100Balance: 0

Intuition

 Observed state != execution state
 Transactions do not have atomicity property

 Can be coincidence
 Two transactions happen at the same time

 But, can be malicious

Portland State University CS 410/510 Blockchain Development & Security

Example

 Front-running the Bancor market-maker for ERC-20 tokens
 Matches buyers and sellers of tokens automatically within a smart-

contract

Portland State University CS 410/510 Blockchain Development & Security

https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798

Mechanism

 Buyer submits a transaction to purchase tokens to the network
 Broadcast immediately to other nodes as a pending transaction and

added to common queue
 Not confirmed until the block confirmation hash mined (~20 seconds)
 Order of pending transactions is malleable until then

 Miners sort transactions by gas price willing to be paid
 Any user running a full-node can spot a pending transaction and

insert their own transaction in front of it by paying 1 Wei more per
gas.

 If a large BUY is about to happen, BNT price will increase (following
deterministic formula in contract)
 Put buy in before that transaction to get an instant appreciation of your

tokens and a guaranteed return on your investment
 If a large SELL is about to happen, BNT price will decrease

 Put a sell in before to get the higher price for you tokens
 Link (6 min)

Portland State University CS 410/510 Blockchain Development & Security

https://www.youtube.com/watch?v=RL2nE3huNiI

Example: Rescuing funds from contracts

 2nd book in "Three-Body Problem" trilogy
 Survival of lower civilizations depends upon not being discovered by higher ones

 Apex predators tracking Ethereum mempool
 Arbitrage bots monitor pending transactions and attempt to exploit profitable

opportunities created by them

 "If the chain itself is a battleground, the mempool is something worse: a dark forest..Detection

means certain death at the hands of advanced predators"

 Rescues of vulnerable smart contracts require obfuscation to hide from

Arbitrage bots
 "If I submitted a transaction calling burn, it would be like a flashing “free money” sign

pointing directly at this profitable opportunity. If these monsters were really in the mempool,

they would see, copy, mutate, and front-run my transaction, taking the money before my

transaction was included."

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff

 Predator wins (taking $12,000 in ETH)

 But subsequently…

Portland State University CS 410/510 Blockchain Development & Security

 Similar vulnerability putting ~$10M USD at risk (9/2020)

 Combine obfuscation from previous rescue attempt with cooperation
 Convince Chinese SharkPool miners to include a transaction in a block that

they would attempt to mine without broadcasting it to others
 If ever there was a time to appeal to a miner to include a transaction without giving front-runners

the chance to steal it, it was now.

 "WhiteHat" API built on the spot once translation issues overcome

Portland State University CS 410/510 Blockchain Development & Security

https://samczsun.com/escaping-the-dark-forest/

Code vulnerability example

 Can also be leveraged by a malicious client
 Bank contract

 userBalances mapping to track account balances per user address (in
storage that only changes after block committed)

 transfer() moves balance from one user to another if sufficient funds
 withdrawBalance() zeros out account and sends user remaining balance

 Issue?

Portland State University CS 410/510 Blockchain Development & Security

contract myBank {
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
if (userBalances[msg.sender] >= amount) {

userBalances[to] += amount;
userBalances[msg.sender] -= amount;

}
}
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.send(amountToWithdraw)());
userBalances[msg.sender] = 0;

}
}

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

 Cross-function race condition with external calls
 Found in The DAO (along with re-entrancy)
 Simultaneous execution of transfer() and
withdrawBalance()

 What would you do to avoid this?

Portland State University CS 410/510 Blockchain Development & Security

contract myBank {
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
if (userBalances[msg.sender] >= amount) {

userBalances[to] += amount;
userBalances[msg.sender] -= amount;

}
}
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.send(amountToWithdraw)());
userBalances[msg.sender] = 0;

}
}

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

Remediation

 Mutexes, semaphores/locks, condition variables, etc. (critical sections)
when external calls unavoidable
 But, prone to deadlock and livelock issues.

Portland State University CS 410/510 Blockchain Development & Security

contract mutexExample {
mapping (address => uint) private balances;
bool private lockBalances;
function deposit() payable public {

require(!lockBalances);
lockBalances = true;
balances[msg.sender] += msg.value;
lockBalances = false;

}

function withdraw(uint amount) payable public {
require(!lockBalances && amount > 0 && balances[msg.sender] >= amount);
lockBalances = true;
if (msg.sender.call(amount)()) {

balances[msg.sender] -= amount;
}
lockBalances = false;

}
}

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

D8: Time Manipulation

#8: Time manipulation

 also known as timestamp dependence

 Time tracked via block.timestamp (or its Solidity alias now)
 Locking a token sale

 Unlocking funds at a specific time for a game

 Timestamp value determined by miner that successfully mines block
 Miner has leeway to manipulate actual value

 Contracts must avoid relying strongly on advertised time
 e.g. using it to generate random numbers critical to smart contract

execution

Portland State University CS 410/510 Blockchain Development & Security

Example #1

 Lottery that uses block.timestamp to generate numbers

 Miner either
 Selects block.timestamp so he/she can win

 Otherwise, selects block.timestamp so no one else can win in current

block

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #1

 A game pays out the very first player at midnight.

 A malicious miner includes his or her attempt to win the game and

sets the timestamp to midnight.
 Just before midnight, miner submits attempt and begins mining the

block

 Even, though real current time slightly before midnight, miner includes

timestamp that is "close enough" to be accepted by all nodes in network

Portland State University CS 410/510 Blockchain Development & Security

function play() public {
require(now > 1521763200 && neverPlayed == true);
neverPlayed = false;
msg.sender.transfer(1500 ether);

}

Renamed since unknown unknowns would be blank

D10: Everything else (Unknown

unknowns)

Usage and logic errors

Logic errors

 Code takes your money if you send less than 1000

 Code takes your money if you are not player1 or player2

Portland State University CS 410/510 Blockchain Development & Security

 Game implements bit-commitment protocol
 2-players publish a keyed hash of their random numbers

 Subsequently reveal the numbers to determine winner

 Upon seeing a key that reveals a committed number, the other player

fails to reveal his/her key if it is a losing move
 e.g. player1 opens move, but player2 refuses to open move since

there is do no incentive to do so

 Must add a deposit to play and timeout player (forfeiting the deposit)

No penalty for bad behavior

Portland State University CS 410/510 Blockchain Development & Security

Malicious contracts

Intentional Backdoors

Portland State University CS 410/510 Blockchain Development & Security

"Blockchain gives us confidence that smart contracts will operate as coded,

but regular users can’t always be confident they will operate as intended."

K. Petrie (7/2019)

https://www.trustnodes.com/2018/11/10/concerns-rise-over-backdoored-smart-contracts

 "Vulnerabilities" that allow owner to totally drain balance, that allow

owner to prevent users from withdrawing ETH forever, or that

allows anyone to steal new deposits reported (9/27/2019)
 FairWin could “be one of the biggest scams ever

seen in Ethereum.”

Portland State University CS 410/510 Blockchain Development & Security

Example: FairWin (9/2019)

https://cointelegraph.com/news/from-10m-to-zero-in-10-days-eth-smart-contract-fairwin-is-empty
https://explore.duneanalytics.com/public/dashboards/GBCqJoDFdQwWLrqIEQJ9Hvdoi4zphn2Wjsh3eGYV

 Oyster Token (11/2018)
 ICOs typically have one event to sell tokens

 Oyster Token smart contract allows director to reopen

Portland State University CS 410/510 Blockchain Development & Security

 FunFair token (11/2018)
 Controller has ability to wipe out balance of contract (if hacked

presumably, but even if not!)

 Does a token purchaser have any recourse if it's in the contract code?

Portland State University CS 410/510 Blockchain Development & Security

Incorrect assumptions

Initial contract state

 Contract authors assuming
 No one knows contract addresses until they are created

 Are initialized with no balance (e.g. hold no ETH)

 Can only be sent ETH via payable functions including the fallback

function

 But
 Contract addresses predictable

 Given the creator's address and nonce

 Nonce starts at 1 and is incremented after each transaction from address

 Contract addresses can be sent and have ETH associated with them

before they are even created

 Can be sent ETH via self-destruction of a contract

Portland State University CS 410/510 Blockchain Development & Security

 Gridlock bug on Lockdrop contract (7/2019)

 Fixed-size token purchase done in multiple steps
 Wallets signal interest to buy

 Wallets then commit ETH (steps 1, 3, 5) for 3-12 months in contract

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/@nmcl/gridlock-a-smart-contract-bug-73b8310608a9

 Locks up ETH for the msg.sender (typically a smart contract) of
the amount msg.value
 Get msg.value amount of ETH from sender
 Create a new contract using the ETH that locks it up for a period
 After creation, ensure that the contract created has the correct balance

 assert assumes contract didn't receive any other ETH either before or after
creation
 Function is jammed forever if someone pre-sends ETH to address
 Nonce only changes when a contract is successfully created
 Assert will fail and roll-back results without advancing the nonce
 Fix via

Portland State University CS 410/510 Blockchain Development & Security

function lock(Term term, bytes calldata edgewareAddr, bool isValidator)
external payable didStart didNotEnd {

uint256 eth = msg.value;
address owner = msg.sender;
uint256 unlockTime = unlockTimeForTerm(term);
// Create ETH lock contract
Lock lockAddr = (new Lock).value(eth)(owner, unlockTime);
// ensure lock contract has all ETH, or fail
assert(address(lockAddr).balance == msg.value);
emit Locked(owner, eth, lockAddr, term, edgewareAddr, isValidator, now);

}

assert(address(lockAddr).balance >= msg.value);

Remediation

 Don't over-assert

 Remove any non-obvious behavior from the programming language

and virtual machine

 Assume smart contracts will always contain bugs (unless proven

otherwise)

 Audit via code analysis
 Example: Slither's dangerous-strict-equality detector (Trail of Bits,

crytic.io)

Portland State University CS 410/510 Blockchain Development & Security

