
D1: Re-entrancy

Where has this term been used

before?

#1: Re-entrancy

 Race to empty, recursive call vulnerability, call to the

unknown
 Top vulnerability in DASP

 Calls to external contracts that result in new calls back into the calling

contract (often via low-level call() that forwards all gas)

 For the calling function, this means that the contract state may change in

the middle of its execution.

 Loss: estimated at 3.6M ETH (~$60M at the time)

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A victim contract tracks the balance of a number of addresses

and allows users to retrieve funds with its
public withdraw() function.

 A malicious smart contract uses the withdraw() function to

retrieve its entire balance.
 The victim contract executes the call.value(amount)() low level

function to send the ether to the malicious contract before

updating the balance of the malicious contract.
 The malicious contract has a payable fallback() function that

accepts the funds and then calls back into the victim
contract's withdraw() function again.

 This second execution triggers a transfer of funds: remember, the

balance of the malicious contract still hasn't been updated from

the first withdrawal.

 The malicious contract successfully withdraws its entire balance

a second time.

Portland State University CS 410/510 Blockchain Development & Security

Example #1: DAO

Portland State University CS 410/510 Blockchain Development & Security

https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft

splitDAO()

Receiver

TheDao

withdrawRewardFor(msg.sender)

splitDAO(proposal, address)

Balance: 100
Payout : 0

function() {}

rewardAccount.payOut(_account, reward)

balances[msg.sender] = 0;

Balance: 100
Payout : 100
Balance: 0
Payout : 100

Example #1

 Expected scenario

Portland State University CS 410/510 Blockchain Development & Security

 Exploitation scenario

Portland State University CS 410/510 Blockchain Development & Security

Receiver

TheDao

withdrawRewardFor(msg.sender)

splitDAO(proposal, address)

Balance: 100
Payout : 0

splitDAO()rewardAccount.payOut(_account, reward)

Balance: 100
Payout : 100
Balance: 100
Payout : 200
Balance: 100
Payout : 300
Balance: 100
Payout : 400
Balance: 100
Payout : 500

 Call before balance update

Portland State University CS 410/510 Blockchain Development & Security

Example #2: Lendf.me protocol

 DeFi (Decentralized Finance) protocol for lending (4/2020)

 Hackers appear to have chained together bugs and legitimate features

from different blockchain technologies to orchestrate a sophisticated

"reentrancy attack."

 Reentrancy attacks allow hackers to withdraw funds repeatedly, in a

loop, before the original transaction is approved or declined.

Portland State University CS 410/510 Blockchain Development & Security

https://www.zdnet.com/article/hackers-steal-25-million-worth-of-cryptocurrency-from-uniswap-and-lendf-me/

Code vulnerability example #1

 withdrawRewardFor() uses low level call() function to send ether to

the msg.sender address
 Address is a smart contract and payment will trigger its fallback function

with what's left of the transaction gas.

 Fallback function can then call (recurse) back into vulnerable

contract to again call withdrawRewardFor()
 Done before balances are updated!

Portland State University CS 410/510 Blockchain Development & Security

// withdrawRewardFor() to get DAO Tokens
if (balances[msg.sender] == 0)

revert();
withdrawRewardFor(msg.sender);
totalSupply -= balances[msg.sender];
balances[msg.sender] = 0;
paidOut[msg.sender] = 0;
return true;

function () {
withdrawRewardFor();

}

Remediation #1: Check-effects-interactions

 Vulnerable pattern (check-interactions-effects)
function withdraw(uint _amount) {

require(balances[msg.sender] >= _amount);

msg.sender.call.value(_amount)();

balances[msg.sender] -= _amount;

}

 Fixed pattern (Checks-effects-interactions)
 https://fravoll.github.io/solidity-

patterns/checks_effects_interactions.html

 Check all pre-conditions using assert and require

 Then, make changes to contract state

 Then, interact with other contracts via external calls
function withdraw(uint _amount) {

require(balances[msg.sender] >= _amount);

balances[msg.sender] -= _amount;

msg.sender.call.value(_amount)();

}

Portland State University CS 410/510 Blockchain Development & Security

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Check-Effects-Interation

 Counter-intuitive
 Typical pattern in programming is to apply effects after interactions

already have happened
 Wait for return stating that function execution successful

 Then change state based on result

 But, does not need to address multiple encapsulated function invocations

(e.g. re-entrancy from within program)

 Must use regardless of trustworthiness of the external call
 External call my transfer control to a third party that is malicious

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

function getReward(address recipient) public {
// Check that reward hasn’t already been claimed
require(!claimedReward[recipient]);

// Internal work first (claimedReward)
claimedReward[recipient] = true;

require(recipient.call.value(rewardValue)());
}

Portland State University CS 410/510 Blockchain Development & Security

function buy (uint256 _itemId) payable public {
require(priceOf(_itemId) > 0); // Check
require(ownerOf(_itemId) != address(0));
require(msg.value == priceOf(_itemId));
require(ownerOf(_itemId) != msg.sender);
require(!isContract(msg.sender));

address oldOwner = ownerOf(_itemId);
address newOwner = msg.sender;
uint256 price = priceOf(_itemId);

ownerOfItem[_itemId] = newOwner; // Effects
priceOfItem[_itemId] = nextPriceOf(_itemId);

Bought(_itemId, newOwner, price);
Sold(_itemId, oldOwner, price);

uint256 cut = 0;
if (cutDenominator > 0 && cutNumerator > 0) {

cut = price.mul(cutNumerator).div(cutDenominator);
}
oldOwner.transfer(price - cut); // Interact

}

Remediation #2

 Use a lock/mutex to protect against re-entrancy

 Modifier then used to protect…

Portland State University CS 410/510 Blockchain Development & Security

contract ReentrancyGuard {
bool private reentrancyLock = false;

// Prevent contract from calling itself (directly or indirectly).
modifier nonReentrant() {

require(!reentrancyLock);
reentrancyLock = true;
_;
reentrancyLock = false;

}
}

 Malicious contract can not recursively call claimDay on transfer

Portland State University CS 410/510 Blockchain Development & Security

function claimDay(uint256 _dayIndex) public nonReentrant payable
{

...
require(msg.sender != seller);
require(amountPaid >= purchasePrice);
...
// Fire Claim Events
Bought(_dayIndex, buyer, purchasePrice);
Sold(_dayIndex, seller, purchasePrice);
...
// Transfer Funds
if (seller != address(0)) {

seller.transfer(salePrice);
}
if (changeToReturn > 0) {

buyer.transfer(changeToReturn);
}

}

