D1: Re-entrancy

Portland State
& Computer Science /

Where has this term been used
before?

e
#1: Re-entrancy

* Race to empty, recursive call vulnerability, call to the

unknown
Top vulnerability in DASP
Calls to external contracts that result in new calls back into the calling
contract (often via low-level call () that forwards all gas)
For the calling function, this means that the contract state may change in

the middle of its execution.

® Loss: estimated at 3.6M ETH (~$60M at the time)

Portland State University CS 410/ 510 Blockchain Development & Security

Walkthrough scenario

e A victim contract tracks the balance of a number of addresses
and allows users to retrieve funds with its
public withdraw() function.

¢ A malicious smart contract uses the withdraw() function to
retrieve its entire balance.

® The victim contract executes the call.value(amount)() low level
function to send the ether to the malicious contract before
updating the balance of the malicious contract.

e The malicious contract has a payable fallback() function that
accepts the funds and then calls back into the victim
contract's withdraw() function again.

e This second execution triggers a transfer of funds: remember, the
balance of the malicious contract still hasn't been updated from
the first withdrawal.

e The malicious contract successfully withdraws its entire balance
a second time.

Portland State University CS 410/ 510 Blockchain Development & Security

e
Example #1: DAO

§:° coindesk
The DAO Attacked: Code

Issue Leads to $S60 Million
Ether Theft

Jun 17, 2016 at 13:00 UTC = Updated Jun 18, 2016 at 13:46 UTC

https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft

e
Example #1

o Expected scenario

-

TheDao Balance: @00
splitDAO(proposal, address) Payout * Q@@

withdrawRewardFor(msg.sender)

rewardAccount.payOut(_account, reward)

balances[msg.sender] = 0;

Receiver

function() {}

Portland State University CS 410/ 510 Blockchain Development & Security

e

o Exploitation scenario

Balance: 100
Payout : @00

Receiver

rewardAccount.payOut(_account, reward) = function() { splitDAO() }

Portland State University CS 410/ 510 Blockchain Development & Security

e

* Call before balance update

SAFELY ENDANGERED

ﬁ SWEET JESVUS, POOH)
THAT'S NOT HONEY

SAFELY ENDANGERCD

SWEET JESUS, POOH)

YOU'RE €ﬁT!NG : THAT'S NOT HONEY
RECURSION | U

YOU'RE EATING
RECURSION

Portland State University CS 410/ 510 Blockchain Development & Security

4 I
Example #2: Lendf.me protocol

® DeFi (Decentralized Finance) protocol for lending (4/2020)

Hackers steal $25 million worth of cryptocurrency from
Lendf.me platform

UPDATED: Hackers have returned the stolen funds after leaking their IP
address during the attack.

@ By Catalin Cimpanu for Zero Day | April 19, 2020

® Hackers appear to have chained together bugs and legitimate features
from different blockchain technologies to orchestrate a sophisticated
"reentrancy attack."

* Reentrancy attacks allow hackers to withdraw funds repeatedly, in a

loop, before the original transaction is approved or declined.

- /

Portland State University CS 410/ 510 Blockchain Development & Security

https://www.zdnet.com/article/hackers-steal-25-million-worth-of-cryptocurrency-from-uniswap-and-lendf-me/

™~
Code vulnerability example #1

o withdrawRewardFor() uses low level call() function to send ether to
the msg.sender address

® Address is a smart contract and payment will trigger its fallback function

with what's left of the transaction gas.
® Fallback function can then call (recurse) back into vulnerable

contract to again call withdrawRewardFor()

® Done before balances are updated!

// withdrawRewardFor() to get DAO Tokens

if (balances[msg.sender] == 0) function () {
revert () ; withdrawRewardFor();
withdrawRewardFor(msg.sender);

totalSupply -= balances[msg.sender];
balances[msg.sender] = 0;
paidOut[msg.sender] = 0;

return true;

Portland State University CS 410/ 510 Blockchain Development & Security

/Remediation #1: Check-effects-interactions

® Vulnerable pattern (check-interactions-effects)
function withdraw (uint amount)

require (balances[msg.sender] >= amount);
msg.sender.call.value (amount) () ;
balances[msg.sender] —-= amount;

}
* Fixed pattern (Checks-effects-interactions)

® https://fravoll.github.io/solidity-

patterns/ checks effects interactions.html

® Check all pre—conditions using assert and require
® Then, make changes to contract state

® Then, interact with other contracts via external calls
function withdraw (uint amount)

require (balances[msg.sender] >= amount);
balances[msg.sender] —-= amount;
msg.sender.call.value(amount) ()

_ }

Portland State University CS 410/ 510 Blockchain Development & Security

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

a N
Check-Effects-Interation

® Counter-intuitive
Typical pattern in programming is to apply effects after interactions

already have happened

Wait for return stating that function execution successful

Then change state based on result

But, does not need to address multiple encapsulated function invocations
(e.g. re-entrancy from within program)
® Must use regardless of trustworthiness of the external call

External call my transfer control to a third party that is malicious

Portland State University CS 410/ 510 Blockchain Development & Security

function getReward(address recipient) public {

require(!claimedReward[recipient]);

claimedReward[recipient] = true;

require(recipient.call.value(rewardValue)());

Portland State University CS 110/510 Blockchain Dev u/upmcm & Security

function buy (uint256 _itemId) payable public {
require(priceOf(_itemId) > 0);
require(ownerOf(_itemId) != address(0));
require(msg.value == priceOf(_itemId));
require(ownerOf(_itemId) != msg.sender);
require(!isContract(msg.sender));

address oldOwner = ownerOf(_itemId);
address newOwner = msg.sender;
uint256 price = priceOf(_itemlId);

ownerOfItem[itemId] = newOwner;
priceOfItem[_ itemId] nextPriceOf(_itemlId);

Bought(_itemId, newOwner, price);
Sold(_itemId, oldOwner, price);

uint256 cut = 0;
if (cutDenominator > © && cutNumerator > 0) {

// ChecR

// Effects

cut = price.mul(cutNumerator).div(cutDenominator);

}

oldOwner.transfer(price - cut); // Interact

Portland State University CS 410/ 510 Blockchain Development & Security

Remediation #2

e Use a lock/mutex to protect against re—entrancy

contract ReentrancyGuard {
bool private reentrancylLock = false;

modifier nonReentrant() {

require(!reentrancylLock);
reentrancylLock = true;

 J

reentrancylLock = false;

Modifier then used to protect...

Portland State University CS 410/ 510 Blockchain Development & Security

® Malicious contract can not recursively call claimDay on transfer

function claimDay(uint256 _dayIndex) public nonReentrant payable
{

require(msg.sender != seller);
require(amountPaid >= purchasePrice);

Bought(_dayIndex, buyer, purchasePrice);
Sold(_dayIndex, seller, purchasePrice);

if (seller != address(©0)) {
seller.transfer(salePrice);

}
if (changeToReturn > 0) {

buyer.transfer(changeToReturn);

}

Portland State University CS 410/ 510 Blockchain Development & Security

