
D1: Re-entrancy

Where has this term been used

before?

#1: Re-entrancy

 Race to empty, recursive call vulnerability, call to the

unknown
 Top vulnerability in DASP

 Calls to external contracts that result in new calls back into the calling

contract (often via low-level call() that forwards all gas)

 For the calling function, this means that the contract state may change in

the middle of its execution.

 Loss: estimated at 3.6M ETH (~$60M at the time)

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A victim contract tracks the balance of a number of addresses

and allows users to retrieve funds with its
public withdraw() function.

 A malicious smart contract uses the withdraw() function to

retrieve its entire balance.
 The victim contract executes the call.value(amount)() low level

function to send the ether to the malicious contract before

updating the balance of the malicious contract.
 The malicious contract has a payable fallback() function that

accepts the funds and then calls back into the victim
contract's withdraw() function again.

 This second execution triggers a transfer of funds: remember, the

balance of the malicious contract still hasn't been updated from

the first withdrawal.

 The malicious contract successfully withdraws its entire balance

a second time.

Portland State University CS 410/510 Blockchain Development & Security

Example #1: DAO

Portland State University CS 410/510 Blockchain Development & Security

https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft

splitDAO()

Receiver

TheDao

withdrawRewardFor(msg.sender)

splitDAO(proposal, address)

Balance: 100
Payout : 0

function() {}

rewardAccount.payOut(_account, reward)

balances[msg.sender] = 0;

Balance: 100
Payout : 100
Balance: 0
Payout : 100

Example #1

 Expected scenario

Portland State University CS 410/510 Blockchain Development & Security

 Exploitation scenario

Portland State University CS 410/510 Blockchain Development & Security

Receiver

TheDao

withdrawRewardFor(msg.sender)

splitDAO(proposal, address)

Balance: 100
Payout : 0

splitDAO()rewardAccount.payOut(_account, reward)

Balance: 100
Payout : 100
Balance: 100
Payout : 200
Balance: 100
Payout : 300
Balance: 100
Payout : 400
Balance: 100
Payout : 500

 Call before balance update

Portland State University CS 410/510 Blockchain Development & Security

Example #2: Lendf.me protocol

 DeFi (Decentralized Finance) protocol for lending (4/2020)

 Hackers appear to have chained together bugs and legitimate features

from different blockchain technologies to orchestrate a sophisticated

"reentrancy attack."

 Reentrancy attacks allow hackers to withdraw funds repeatedly, in a

loop, before the original transaction is approved or declined.

Portland State University CS 410/510 Blockchain Development & Security

https://www.zdnet.com/article/hackers-steal-25-million-worth-of-cryptocurrency-from-uniswap-and-lendf-me/

Code vulnerability example #1

 withdrawRewardFor() uses low level call() function to send ether to

the msg.sender address
 Address is a smart contract and payment will trigger its fallback function

with what's left of the transaction gas.

 Fallback function can then call (recurse) back into vulnerable

contract to again call withdrawRewardFor()
 Done before balances are updated!

Portland State University CS 410/510 Blockchain Development & Security

// withdrawRewardFor() to get DAO Tokens
if (balances[msg.sender] == 0)

revert();
withdrawRewardFor(msg.sender);
totalSupply -= balances[msg.sender];
balances[msg.sender] = 0;
paidOut[msg.sender] = 0;
return true;

function () {
withdrawRewardFor();

}

Remediation #1: Check-effects-interactions

 Vulnerable pattern (check-interactions-effects)
function withdraw(uint _amount) {

require(balances[msg.sender] >= _amount);

msg.sender.call.value(_amount)();

balances[msg.sender] -= _amount;

}

 Fixed pattern (Checks-effects-interactions)
 https://fravoll.github.io/solidity-

patterns/checks_effects_interactions.html

 Check all pre-conditions using assert and require

 Then, make changes to contract state

 Then, interact with other contracts via external calls
function withdraw(uint _amount) {

require(balances[msg.sender] >= _amount);

balances[msg.sender] -= _amount;

msg.sender.call.value(_amount)();

}

Portland State University CS 410/510 Blockchain Development & Security

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Check-Effects-Interation

 Counter-intuitive
 Typical pattern in programming is to apply effects after interactions

already have happened
 Wait for return stating that function execution successful

 Then change state based on result

 But, does not need to address multiple encapsulated function invocations

(e.g. re-entrancy from within program)

 Must use regardless of trustworthiness of the external call
 External call my transfer control to a third party that is malicious

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

function getReward(address recipient) public {
// Check that reward hasn’t already been claimed
require(!claimedReward[recipient]);

// Internal work first (claimedReward)
claimedReward[recipient] = true;

require(recipient.call.value(rewardValue)());
}

Portland State University CS 410/510 Blockchain Development & Security

function buy (uint256 _itemId) payable public {
require(priceOf(_itemId) > 0); // Check
require(ownerOf(_itemId) != address(0));
require(msg.value == priceOf(_itemId));
require(ownerOf(_itemId) != msg.sender);
require(!isContract(msg.sender));

address oldOwner = ownerOf(_itemId);
address newOwner = msg.sender;
uint256 price = priceOf(_itemId);

ownerOfItem[_itemId] = newOwner; // Effects
priceOfItem[_itemId] = nextPriceOf(_itemId);

Bought(_itemId, newOwner, price);
Sold(_itemId, oldOwner, price);

uint256 cut = 0;
if (cutDenominator > 0 && cutNumerator > 0) {

cut = price.mul(cutNumerator).div(cutDenominator);
}
oldOwner.transfer(price - cut); // Interact

}

Remediation #2

 Use a lock/mutex to protect against re-entrancy

 Modifier then used to protect…

Portland State University CS 410/510 Blockchain Development & Security

contract ReentrancyGuard {
bool private reentrancyLock = false;

// Prevent contract from calling itself (directly or indirectly).
modifier nonReentrant() {

require(!reentrancyLock);
reentrancyLock = true;
_;
reentrancyLock = false;

}
}

 Malicious contract can not recursively call claimDay on transfer

Portland State University CS 410/510 Blockchain Development & Security

function claimDay(uint256 _dayIndex) public nonReentrant payable
{

...
require(msg.sender != seller);
require(amountPaid >= purchasePrice);
...
// Fire Claim Events
Bought(_dayIndex, buyer, purchasePrice);
Sold(_dayIndex, seller, purchasePrice);
...
// Transfer Funds
if (seller != address(0)) {

seller.transfer(salePrice);
}
if (changeToReturn > 0) {

buyer.transfer(changeToReturn);
}

}

