
D4: Unchecked Return Values For

Low Level Calls

#4:Unchecked Return Values For Low Level Calls

 Also known as silent failing sends, unchecked-send
 Inconsistent Exception Handling in EVM

 Errors in calls typically lead to transaction failure and a total reversion of

the execution

 Low level functions call(), callcode(), delegatecall() and send() with

different error handling than regular Solidity functions
 Errors do not propagate (e.g. bubble up via exception)

 Return "false" upon failure

 If return value not checked, code can be incorrect

 In Solidity, such calls should be avoided whenever possible

 Note: Beyond 0.4.13, usage is now flagged upon compilation

Portland State University CS 410/510 Blockchain Development & Security

Example #1

 "King of the Ether Throne"
 https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/

contracts/KingOfTheEtherThrone.sol

 http://www.kingoftheether.com/postmortem.html

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
http://www.kingoftheether.com/postmortem.html

Code vulnerability example #1

 If fundraising goal not met, return money
 Donors can be either wallets or smart contracts

 Sending Ether to a smart contract invokes fallback function on that

contract
 Use of send() forwards all gas to donor's fallback function

 If gas runs out in fallback, send() returns false and the rest of refund loop fails

(no more gas)

 Return not checked for success

 Funds may be locked up for good with one rogue donor

Portland State University CS 410/510 Blockchain Development & Security

 Same contract can fail via obscure VM rules
 Maximum stack depth is 1024

 Low-level calls return true or false only

 Unless checked, can lead to contract bricking

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Use address.transfer()
 Throws exception on failure

 Forwards only 2,300 gas making it safe against re-entrancy (more later)

 Avoid low level call address.send()
 Returns false on failure

 Call forwards only 2,300 gas making it safe against re-entrancy

 Only use in rare cases that you want to handle failure condition within

your contract (versus reverting call)

 Avoid low level call address.call.value().gas()()

 Returns false on failure

 Forwards all available gas by default, not safe against re-entrancy

 Only use when you need to control how much gas to forward when

sending ether or to call a function of another contract

Portland State University CS 410/510 Blockchain Development & Security

 Check for call failure if using low-level call
 e.g. Recipient runs out of gas processing transfer

 EVM call stack full (past 1024) on executing contract

 http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-

contracts-for-bugs

Portland State University CS 410/510 Blockchain Development & Security

if (gameHasEnded && !(prizePaidOut)) {
winner.send(1000); // send a prize to the winner
prizePaidOut = True;

}

if (gameHasEnded && !(prizePaidOut)) {
if (winner.send(1000))
prizePaidOut = True;

else
revert("Failure to send. Undo call.");

}

http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs

 Have recipient withdraw money (and pay gas to do so)

Portland State University CS 410/510 Blockchain Development & Security

if (gameHasEnded && !(prizePaidOut)) {
accounts[winner] += 1000
prizePaidOut = True;

}
...
function withdraw(amount) {
require(accounts[msg.sender] >= amount);
if (msg.sender.send(amount))
accounts[msg.sender] -= amount;

else
revert("Failure to send. Undo call.");

}

