
D4: Unchecked Return Values For

Low Level Calls

#4:Unchecked Return Values For Low Level Calls

 Also known as silent failing sends, unchecked-send
 Inconsistent Exception Handling in EVM

 Errors in calls typically lead to transaction failure and a total reversion of

the execution

 Low level functions call(), callcode(), delegatecall() and send() with

different error handling than regular Solidity functions
 Errors do not propagate (e.g. bubble up via exception)

 Return "false" upon failure

 If return value not checked, code can be incorrect

 In Solidity, such calls should be avoided whenever possible

 Note: Beyond 0.4.13, usage is now flagged upon compilation

Portland State University CS 410/510 Blockchain Development & Security

Example #1

 "King of the Ether Throne"
 https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/

contracts/KingOfTheEtherThrone.sol

 http://www.kingoftheether.com/postmortem.html

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
http://www.kingoftheether.com/postmortem.html

Code vulnerability example #1

 If fundraising goal not met, return money
 Donors can be either wallets or smart contracts

 Sending Ether to a smart contract invokes fallback function on that

contract
 Use of send() forwards all gas to donor's fallback function

 If gas runs out in fallback, send() returns false and the rest of refund loop fails

(no more gas)

 Return not checked for success

 Funds may be locked up for good with one rogue donor

Portland State University CS 410/510 Blockchain Development & Security

 Same contract can fail via obscure VM rules
 Maximum stack depth is 1024

 Low-level calls return true or false only

 Unless checked, can lead to contract bricking

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Use address.transfer()
 Throws exception on failure

 Forwards only 2,300 gas making it safe against re-entrancy (more later)

 Avoid low level call address.send()
 Returns false on failure

 Call forwards only 2,300 gas making it safe against re-entrancy

 Only use in rare cases that you want to handle failure condition within

your contract (versus reverting call)

 Avoid low level call address.call.value().gas()()

 Returns false on failure

 Forwards all available gas by default, not safe against re-entrancy

 Only use when you need to control how much gas to forward when

sending ether or to call a function of another contract

Portland State University CS 410/510 Blockchain Development & Security

 Check for call failure if using low-level call
 e.g. Recipient runs out of gas processing transfer

 EVM call stack full (past 1024) on executing contract

 http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-

contracts-for-bugs

Portland State University CS 410/510 Blockchain Development & Security

if (gameHasEnded && !(prizePaidOut)) {
winner.send(1000); // send a prize to the winner
prizePaidOut = True;

}

if (gameHasEnded && !(prizePaidOut)) {
if (winner.send(1000))
prizePaidOut = True;

else
revert("Failure to send. Undo call.");

}

http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs

 Have recipient withdraw money (and pay gas to do so)

Portland State University CS 410/510 Blockchain Development & Security

if (gameHasEnded && !(prizePaidOut)) {
accounts[winner] += 1000
prizePaidOut = True;

}
...
function withdraw(amount) {
require(accounts[msg.sender] >= amount);
if (msg.sender.send(amount))
accounts[msg.sender] -= amount;

else
revert("Failure to send. Undo call.");

}

