
D2: Access Control

#2: Access Control

 Similar to OWASP Top 10

 Insufficient access control and authentication checks

 Insecure access control methods

 Private, internal functions and data are accessible through a contract's

public/external functions

 Results in unauthorized access

 Loss: estimated at 150,000 ETH (~$30M USD at the time)

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A smart contract designates the address which

initializes it as the contract's owner in an initialization

function
 Grants special privileges such as the ability to withdraw the

contract's funds.

 Initialization function not protected and can be called by

anyone — even after it has already been called

 Allows anyone to become the owner of the contract and

take its funds.

Portland State University CS 410/510 Blockchain Development & Security

Example

 Owning a wallet contract (7/19/2017)
 https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

 Could have been up to ~$180M, but white hat hackers "stole" the rest
and returned it to rightful owners
 https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-

happened-and-what-it-means-for-ethereum-9e5dc29e33ce

Portland State University CS 410/510 Blockchain Development & Security

It was possible to turn the Parity Wallet library contract into

a regular multi-sig wallet and become an owner of it by

calling the initWallet function. -- Parity

https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce

Code vulnerability example #1

 Contract's initialization function sets the caller of the function as its

owner.

 Logic is detached from the contract's constructor and does not keep

track of the fact that it has already been called.

 Anyone can call initContract after contract creation to become

owner

Portland State University CS 410/510 Blockchain Development & Security

function initContract() public {

owner = msg.sender;

}

Code vulnerability example #2

 Parity WalletLibrary in example

 Library used to implement common wallet functions
 Initializer allows one to specify withdraw limit and owners

 Library implemented as an external contract call to reduce costs
 Rather than have each contract deploy a copy of the exact same library

code, wallets do this…

 Then, use delegatecall() to invoke its functions
 DELEGATECALL instruction in EVM takes call and invokes the exact same one

on the contract you're using it on

Portland State University CS 410/510 Blockchain Development & Security

function initWallet(address[] _owners, uint _required, uint _daylimit) {
initDaylimit(_daylimit);
initMultiowned(_owners, _required);

}

 Issue within fallback function
 Fallback receives payment if someone sends you $
 Otherwise, msg.data has unknown function call that should be

handled by library since no function in contract matches
 delegatecall dispatches unknown calls to library

 Issue: ALL public calls in library can now be called (including
initWallet again!)

 Leads to..
 Unintended call to initWallet

https://etherscan.io/tx/0x707aabc2f24d756480330b75fb4890ef6b8a26ce0554e
c80e3d8ab105e63db07

 Followed by transfer out of wallet WHG
https://etherscan.io/tx/0x9654a93939e98ce84f09038b9855b099da38863b3c2e
0e04fd59a540de1cb1e5

Portland State University CS 410/510 Blockchain Development & Security

function() payable {
if (msg.value > 0)

Deposit(msg.sender, msg.value);
else if (msg.data.length > 0)

_walletLibrary.delegatecall(msg.data);
}

https://etherscan.io/tx/0x707aabc2f24d756480330b75fb4890ef6b8a26ce0554ec80e3d8ab105e63db07
https://etherscan.io/tx/0x9654a93939e98ce84f09038b9855b099da38863b3c2e0e04fd59a540de1cb1e5

Code vulnerability example #3

 MetaCoin contract for purchasing and exchanging coins
 sendCoin call to doTransfer from msg.sender to receiver

 What errors are there?
 doTransfer not set to internal (can be called externally)

 No check on from being msg.sender in doTransfer

 Bonus vulnerability: Underflow and overflow on balances update not checked

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #4

 Same contract

 What is the error?
 Contract's password set to "private", but appears in clear on blockchain

 Find secretPassword and mint coins

 Everything is public by design
 Contract code & storage

 Transaction contents

 Private modifier does nothing for secrecy!

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #5

 Adversary can see everything!
 Must use a bit-commitment protocol

 Two players commit to a keyed cryptographic hash of choice

 Both reveal choice to determine winner

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Remove all catch-all function dispatchers (specify exact calls allowed)

 Ensure calls are internal, unless intended to be external

 Validate identity before execution using modifiers and via require

Portland State University CS 410/510 Blockchain Development & Security

contract Unprotected{
address private owner;

modifier onlyOwner {
require(msg.sender==owner);
_;

}

function constructor() public {
owner = msg.sender;

}

// This function should be protected
function changeOwner_broken(address _newOwner) public {
owner = _newOwner;

}

function changeOwner_fixed(address _newOwner) public onlyOwner {
owner = _newOwner;

}
}

SI CTF Lab 3.4, 3.5

