D2: Access Control

Portland State
i Computer Science %

e

#2: Access Control

Similar to OWASP Top 10

Insufficient access control and authentication checks

Insecure access control methods

Private, internal functions and data are accessible through a contract's
public/external functions

Results in unauthorized access

Loss: estimated at 150,000 ETH (~$30M USD at the time)

Portland State University CS 410/ 510 Blockchain Development & Security

e
Walkthrough scenario

e A smart contract designates the address which
initializes it as the contract's owner in an initialization
function

» Grants special privileges such as the ability to withdraw the
contract's funds.

e Initialization function not protected and can be called by
anyone — even after it has already been called

e Allows anyone to become the owner of the contract and
take its funds.

e
Example

® Owning a wallet contract (7/19/2017)

* https:// blog.zeppelin.solutions/ on—the—paritv—Wallet—multisig—hack—405a8c1 2817

Developer and Security Researcher at Zeppelin Solutions.
Jul 19, 2017 - 2 min read

ﬁ Santiago Palladino

The Parity Wallet Hack Explained
TL;DR

« Avulnerability was found on the Parity Multisig Wallet version 1.5+, that
allowed an attacker to steal over 150,000 ETH (~30M USD).

It was possible to turn the Parity Wallet Iibrary contract into
a regular multi—sig wallet and become an owner ofit by

calling the init Wal]etfunction. - Parity

® Could have been up to ~$180M, but white hat hackers "stole" the rest

and returned it to rightful owners
https: // medium.freecodecamp.org/ a-hacker-stole-31m-of-ether-how-it-

happened—and—what—it—rneans—for—ethereum—965dc2 9e33ce

-

Portland State University CS 410/ 510 Blockchain Development & Security

https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce

e
Code vulnerability example #1

® Contract's initialization function sets the caller of the function as its

OWICT.

function initContract() public {
owner = msg.sender;

J

Logic is detached from the contract's constructor and does not keep
track of the fact that it has already been called.
Anyone can call initContract after contract creation to become

owner

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #2

® Parity WalletLibrary in example
© Library used to implement common wallet functions
Initializer allows one to specify withdraw limit and owners

function initWallet(address[] _owners, uint _required, uint _daylimit) {
initDaylimit(_daylimit);

initMultiowned(_owners, _required);

© Library implemented as an external contract call to reduce costs

Rather than have each contract deploy a copy of the exact same library
code, wallets do this. ..

0x2a657491cle7f16adb35bSbe0

Then, use delegatecall () to invoke its functions

DELEGATECALL instruction in EVM takes call and invokes the exact same one
OntheconUactyouﬁfruﬁngiton

Portland State University CS 410/ 510 Blockchain Development & Security

4 e [ssue within fallback function N

Fallback receives payment if someone sends you $
Otherwise, msg . data has unknown function call that should be

handkxibylﬂnaryshuxanofhncﬁoninxxnﬂractnunches
delegatecall dispatches unknown calls to library

function() payable {
if (msg.value > 0)
Deposit(msg.sender, msg.value);

else if (msg.data.length > 0)
_walletLibrary.delegatecall(msg.data);

[ssue: ALL public calls in library can now be called (including
1nitWallet again!)

Leads to..
Unintended call to initWallet
https: //etherscan.io/tx/0x707aabc2{24d756480330b75fb4890ef6b8a26ce0554¢
c80e3d8ab105e63db07
Followed by transfer out of wallet WHG
https: //etherscan.io/tx/0x9654a93939¢98ce84109038b9855b099da38863b3c2e
0e04£d59a540delcble5

Portland State University CS 410/ 510 Blockchain Development & Security

https://etherscan.io/tx/0x707aabc2f24d756480330b75fb4890ef6b8a26ce0554ec80e3d8ab105e63db07
https://etherscan.io/tx/0x9654a93939e98ce84f09038b9855b099da38863b3c2e0e04fd59a540de1cb1e5

e
Code vulnerability example #3

e MetaCoin contract for purchasing and exchanging coins

sendCoin call to doTransfer from msg.sender to receiver

contract MetaCoin {
public balances;

‘unction sendCoin(address receiver, uint amount) public returns(bool sufficient) {
it (balances| .sender] < amount) return :
doTransfer(.sender, receiver, amount);

.
¥

-unction doTransfer(address from, address to, uint amount) {

balances[from] -= amount;
balances[to] += amount;

What errors are there?
doTransfer notsetto internal (can be called externally)
No check on frombeingmsg.senderindoTransfer
Bonus vulnerability: Underflow and overflow on balances update not checked

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #4

® Same contract

contract MetaCoin {
string private secretPassword;

-unction mintNewCoins{uint amount, sti
require(password == secretPassword);
balances| .sender] += amount;

}

What is the error?
Contract's password set to "private", but appears in clear on blockchain
Find secretPassword and mint coins
Everything is public by design
Contract code & storage
Transaction contents

Private modifier does nothing for secrecy!

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #5

def input(choice):
if self.storage["playerl”] == msg.sender:
self.storage["plvalue”] = choice

return(1)

elif self.storage["player2”] == msg.sender:
self.storage["p2value”] = choice
return(2)

else:
return(0)

© Adversary can see everything!
® Must use a bit-commitment protocol
* Two players commit to a keyed cryptographic hash of choice

® Both reveal choice to determine winner

Portland State University CS 410/ 510 Blockchain Development & Security

Remediation

® Remove all catch-all function dispatchers (specity exact calls allowed)
® Ensure calls are internal, unless intended to be external

* Validate identity before execution using modifiers and via require

contract Unprotected{
address private owner;

modifier onlyOwner {
require(msg.sender==owner);

—

}

function constructor() public {
owner = msg.sender;

}

function changeOwner_broken(address _newOwner) public {
owner = _newOwner;

}

function changeOwner_fixed(address _newOwner) public onlyOwner {
owner = _newOwner;

}

K }

Portland State University CS 410/ 510 Blockchain Development & Security

S| CTF Lab 3.4, 3.5

