
D2: Access Control

#2: Access Control

 Similar to OWASP Top 10

 Insufficient access control and authentication checks

 Insecure access control methods

 Private, internal functions and data are accessible through a contract's

public/external functions

 Results in unauthorized access

 Loss: estimated at 150,000 ETH (~$30M USD at the time)

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A smart contract designates the address which

initializes it as the contract's owner in an initialization

function
 Grants special privileges such as the ability to withdraw the

contract's funds.

 Initialization function not protected and can be called by

anyone — even after it has already been called

 Allows anyone to become the owner of the contract and

take its funds.

Portland State University CS 410/510 Blockchain Development & Security

Example

 Owning a wallet contract (7/19/2017)
 https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

 Could have been up to ~$180M, but white hat hackers "stole" the rest
and returned it to rightful owners
 https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-

happened-and-what-it-means-for-ethereum-9e5dc29e33ce

Portland State University CS 410/510 Blockchain Development & Security

It was possible to turn the Parity Wallet library contract into

a regular multi-sig wallet and become an owner of it by

calling the initWallet function. -- Parity

https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce

Code vulnerability example #1

 Contract's initialization function sets the caller of the function as its

owner.

 Logic is detached from the contract's constructor and does not keep

track of the fact that it has already been called.

 Anyone can call initContract after contract creation to become

owner

Portland State University CS 410/510 Blockchain Development & Security

function initContract() public {

owner = msg.sender;

}

Code vulnerability example #2

 Parity WalletLibrary in example

 Library used to implement common wallet functions
 Initializer allows one to specify withdraw limit and owners

 Library implemented as an external contract call to reduce costs
 Rather than have each contract deploy a copy of the exact same library

code, wallets do this…

 Then, use delegatecall() to invoke its functions
 DELEGATECALL instruction in EVM takes call and invokes the exact same one

on the contract you're using it on

Portland State University CS 410/510 Blockchain Development & Security

function initWallet(address[] _owners, uint _required, uint _daylimit) {
initDaylimit(_daylimit);
initMultiowned(_owners, _required);

}

 Issue within fallback function
 Fallback receives payment if someone sends you $
 Otherwise, msg.data has unknown function call that should be

handled by library since no function in contract matches
 delegatecall dispatches unknown calls to library

 Issue: ALL public calls in library can now be called (including
initWallet again!)

 Leads to..
 Unintended call to initWallet

https://etherscan.io/tx/0x707aabc2f24d756480330b75fb4890ef6b8a26ce0554e
c80e3d8ab105e63db07

 Followed by transfer out of wallet WHG
https://etherscan.io/tx/0x9654a93939e98ce84f09038b9855b099da38863b3c2e
0e04fd59a540de1cb1e5

Portland State University CS 410/510 Blockchain Development & Security

function() payable {
if (msg.value > 0)

Deposit(msg.sender, msg.value);
else if (msg.data.length > 0)

_walletLibrary.delegatecall(msg.data);
}

https://etherscan.io/tx/0x707aabc2f24d756480330b75fb4890ef6b8a26ce0554ec80e3d8ab105e63db07
https://etherscan.io/tx/0x9654a93939e98ce84f09038b9855b099da38863b3c2e0e04fd59a540de1cb1e5

Code vulnerability example #3

 MetaCoin contract for purchasing and exchanging coins
 sendCoin call to doTransfer from msg.sender to receiver

 What errors are there?
 doTransfer not set to internal (can be called externally)

 No check on from being msg.sender in doTransfer

 Bonus vulnerability: Underflow and overflow on balances update not checked

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #4

 Same contract

 What is the error?
 Contract's password set to "private", but appears in clear on blockchain

 Find secretPassword and mint coins

 Everything is public by design
 Contract code & storage

 Transaction contents

 Private modifier does nothing for secrecy!

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #5

 Adversary can see everything!
 Must use a bit-commitment protocol

 Two players commit to a keyed cryptographic hash of choice

 Both reveal choice to determine winner

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Remove all catch-all function dispatchers (specify exact calls allowed)

 Ensure calls are internal, unless intended to be external

 Validate identity before execution using modifiers and via require

Portland State University CS 410/510 Blockchain Development & Security

contract Unprotected{
address private owner;

modifier onlyOwner {
require(msg.sender==owner);
_;

}

function constructor() public {
owner = msg.sender;

}

// This function should be protected
function changeOwner_broken(address _newOwner) public {
owner = _newOwner;

}

function changeOwner_fixed(address _newOwner) public onlyOwner {
owner = _newOwner;

}
}

SI CTF Lab 3.4, 3.5

