
D3: Arithmetic Issues

#3: Arithmetic Issues

 Integer overflow and integer underflow

 Unsigned vs signed integer confusion

 Turns many benign-seeming codepaths into vectors for theft or

denial of service.

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A contract's withdraw() function allows you to retrieve ether

donated to the contract as long as your balance remains

positive after the operation.

 An attacker attempts to withdraw more than his or her

current balance.
 The check in withdraw() function is done with unsigned

(positive) integers, resulting in an always positive condition.

 Attacker withdraws more than allowed and the resulting

balance underflows and becomes orders of magnitude larger

than it should be.

Portland State University CS 410/510 Blockchain Development & Security

Example

 April 22, 2018
 https://peckshield.com/2018/04/22/batchOverflow/

Portland State University CS 410/510 Blockchain Development & Security

https://peckshield.com/2018/04/22/batchOverflow/

Code vulnerability example #1

 Underflow Code Example

 Using uint makes require statement useless (uint can never be <

0!
 Attacker has 5 tokens and withdraws 6

 Ends up with 2255-1 tokens instead in balance

 What would make this code problematic?

 Brick a contract by popping it when its length is 0

Portland State University CS 410/510 Blockchain Development & Security

function withdraw(uint _amount) {

require(balances[msg.sender] - _amount >= 0);

msg.sender.transfer(_amount);

balances[msg.sender] -= _amount;

}

function popArrayOfThings() {

require(arrayOfThings.length >= 0);

arrayOfThings.length--;

}

Code vulnerability example #2

 Overflow Code Example
 Code seeks to send each address in _receivers, a certain _value amount of

ETH from their account (balances[msg.sender])

 Line 257, the amount local variable is calculated as the product of cnt (the
number of receivers) and _value (the amount to send each receiver)

 Line 258 ensures there are only 1-20 receivers
 Line 259 ensures the amount in our balances is more than the amount
 Line 261 updates our balances
 Line 263 updates the balances for each of the _receivers
 Any errors here?

Portland State University CS 410/510 Blockchain Development & Security

 Contract Exploit
 Pass two _receivers into batchTransfer()

 Pass 2255 for _value (an arbitrary 256 bit integer)

 What is the value of amount?

 Do the checks in lines 258-259 pass?

 What is the effect of line 261?

 What happens in line 263 to the balance of each of the two

receivers?
 Receivers get an extremely large _value added to their accounts

without costing a dime in the attacker’s pocket!

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Validation: validate all arithmetic operations

Portland State University CS 410/510 Blockchain Development & Security

contract Overflow {
uint private sellerBalance = 0;
function unsafe_add(uint value) returns (bool) {
sellerBalance += value; // possible overflow

}

function safe_add(uint value) returns (bool){
require(value + sellerBalance >= sellerBalance);
sellerBalance += value;

}
}

 Using SafeMath library (or an equivalent)
 https://ethereumdev.io/safemath-protect-overflows/

Portland State University CS 410/510 Blockchain Development & Security

library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;

}

function div(uint256 a, uint256 b) internal constant returns (uint256) {
// Note: Solidity automatically throws when dividing by 0
uint256 c = a / b;
return c;

}

function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;

}

function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;

}
}

https://ethereumdev.io/safemath-protect-overflows/

 Replacing native opeartors with SafeMath in contracts

Portland State University CS 410/510 Blockchain Development & Security

contract MyContract {

using SafeMath for uint256;

uint256 result;

function MyAdd(uint256 a, uint256 b) {
result = 0;
result = a.add(b);

}
}

SI CTF Lab 3.3: D3_TokenSale

