
D6: Bad Randomness

#6: Bad Randomness

 also known as nothing is secret
 Contract code is public

 Execution of contracts deterministic

 Random number generation can not be done secretly
 PNRG algorithm whose code and seed is public

 Results in ability to predict any random numbers generated

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A victim contract uses the block number as a source of

randomness for a game.

 An attacker creates a malicious contract that checks if the

current block number is a winner
 If so, it calls the victim contract in order to win

 Since the call will be part of the same transaction, the block

number will remain the same on both contracts.

 The attacker only has to call his/her malicious

contract until it wins.

Portland State University CS 410/510 Blockchain Development & Security

Example #1

Portland State University CS 410/510 Blockchain Development & Security

Common errors

 Using known or predictable block variables as a source of entropy
 block.coinbase (address of miner who mined the block)

 block.difficulty (puzzle difficulty solved)

 block.gaslimit (maximum gas for a transaction)

 block.number (current level/height in chain)

 block.timestamp (wall-clock time of mined block given in

seconds since the epoch)

Portland State University CS 410/510 Blockchain Development & Security

 block.blockhash(block.number)

 Always 0

 Current block.number is known, but its hash (as the current block), is not

known while executing contract function (i.e. known only after block is actually

mined)!

 https://github.com/axiomzen/eth-random/issues/3

 block.blockhash(block.number - 1)

 Blockhash of the last block (or any prior block)

 Known to an adversary who can craft an attacking contract to leverage it using the

exact same code that the victim contract uses

 Calling block.blockhash() (conveniently abstraction

provided by Solidity...)
 Hides underlying fact that EVM returns 0 on blocks more than 256 blocks old!

 Smart Billions bug…next slide

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/axiomzen/eth-random/issues/3

Smart Billions bug

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #1

 A private seed is used in combination with an iteration

number and the keccak256 hash function to determine if

the caller wins.
 Even though the seed is private, it must have been set

via a transaction at some point in time and thus is visible on

the blockchain.

 Attacker knows exactly which iterations will win

Portland State University CS 410/510 Blockchain Development & Security

uint256 private seed;

function play() public payable {
require(msg.value >= 1 ether);
iteration++;
uint randomNumber = uint(keccak256(seed + iteration));
if (randomNumber % 3918507 == 0) {
msg.sender.transfer(this.balance);

}
}

Code vulnerability example #2

 block.blockhash used to generate random number using current

block.number

 Value is 0

 First call wins

Portland State University CS 410/510 Blockchain Development & Security

function play() public payable {
require(msg.value >= 1 ether);
if (block.blockhash(block.number) % 3918507 == 0) {
msg.sender.transfer(this.balance);

}
}

Code vulnerability example #3

 block.coinbase, block.difficulty, and msg.sender used to

generate random number
 Data sources are public (block.difficulty)

 Data sources can be manipulated directly by miners giving them an advantage
(block.coinbase, msg.sender)

 Miner can calculate number and insert a winning transaction

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Commit reveal (Bit-commitment)
 A “commit” stage, when the parties submit their cryptographically

protected secrets to the smart contract.

 A “reveal” stage, when the parties announce cleartext seeds, the smart

contract verifies that they are correct, and the seeds are used to generate

a random number.

 But, can refuse to reveal if you know you've lost!
 Contracts must be written to penalize such behavior

 https://blog.positive.com/predicting-random-numbers-in-ethereum-

smart-contracts-e5358c6b8620

Portland State University CS 410/510 Blockchain Development & Security

https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620

SI CTF Lab 3.1 (D6_LockBox)

SI CTF Lab 3.2 (D6_HeadsOrTails,

D6_Lottery)

