
D6: Bad Randomness

#6: Bad Randomness

 also known as nothing is secret
 Contract code is public

 Execution of contracts deterministic

 Random number generation can not be done secretly
 PNRG algorithm whose code and seed is public

 Results in ability to predict any random numbers generated

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A victim contract uses the block number as a source of

randomness for a game.

 An attacker creates a malicious contract that checks if the

current block number is a winner
 If so, it calls the victim contract in order to win

 Since the call will be part of the same transaction, the block

number will remain the same on both contracts.

 The attacker only has to call his/her malicious

contract until it wins.

Portland State University CS 410/510 Blockchain Development & Security

Example #1

Portland State University CS 410/510 Blockchain Development & Security

Common errors

 Using known or predictable block variables as a source of entropy
 block.coinbase (address of miner who mined the block)

 block.difficulty (puzzle difficulty solved)

 block.gaslimit (maximum gas for a transaction)

 block.number (current level/height in chain)

 block.timestamp (wall-clock time of mined block given in

seconds since the epoch)

Portland State University CS 410/510 Blockchain Development & Security

 block.blockhash(block.number)

 Always 0

 Current block.number is known, but its hash (as the current block), is not

known while executing contract function (i.e. known only after block is actually

mined)!

 https://github.com/axiomzen/eth-random/issues/3

 block.blockhash(block.number - 1)

 Blockhash of the last block (or any prior block)

 Known to an adversary who can craft an attacking contract to leverage it using the

exact same code that the victim contract uses

 Calling block.blockhash() (conveniently abstraction

provided by Solidity...)
 Hides underlying fact that EVM returns 0 on blocks more than 256 blocks old!

 Smart Billions bug…next slide

Portland State University CS 410/510 Blockchain Development & Security

https://github.com/axiomzen/eth-random/issues/3

Smart Billions bug

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #1

 A private seed is used in combination with an iteration

number and the keccak256 hash function to determine if

the caller wins.
 Even though the seed is private, it must have been set

via a transaction at some point in time and thus is visible on

the blockchain.

 Attacker knows exactly which iterations will win

Portland State University CS 410/510 Blockchain Development & Security

uint256 private seed;

function play() public payable {
require(msg.value >= 1 ether);
iteration++;
uint randomNumber = uint(keccak256(seed + iteration));
if (randomNumber % 3918507 == 0) {
msg.sender.transfer(this.balance);

}
}

Code vulnerability example #2

 block.blockhash used to generate random number using current

block.number

 Value is 0

 First call wins

Portland State University CS 410/510 Blockchain Development & Security

function play() public payable {
require(msg.value >= 1 ether);
if (block.blockhash(block.number) % 3918507 == 0) {
msg.sender.transfer(this.balance);

}
}

Code vulnerability example #3

 block.coinbase, block.difficulty, and msg.sender used to

generate random number
 Data sources are public (block.difficulty)

 Data sources can be manipulated directly by miners giving them an advantage
(block.coinbase, msg.sender)

 Miner can calculate number and insert a winning transaction

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Commit reveal (Bit-commitment)
 A “commit” stage, when the parties submit their cryptographically

protected secrets to the smart contract.

 A “reveal” stage, when the parties announce cleartext seeds, the smart

contract verifies that they are correct, and the seeds are used to generate

a random number.

 But, can refuse to reveal if you know you've lost!
 Contracts must be written to penalize such behavior

 https://blog.positive.com/predicting-random-numbers-in-ethereum-

smart-contracts-e5358c6b8620

Portland State University CS 410/510 Blockchain Development & Security

https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620

SI CTF Lab 3.1 (D6_LockBox)

SI CTF Lab 3.2 (D6_HeadsOrTails,

D6_Lottery)

