D6: Bad Randomness

Portland State
& Computer Science /

e

#6: Bad Randomness

® also known as nothing 1S secret

Contract code is public

Execution of contracts deterministic

e Random number generation can not be done secretly

PNRG algorithm whose code and seed is public

Results in ability to predict any random numbers generated

Portland State University CS 410/ 510 Blockchain Development & Security

g
Walkthrough scenario

e A victim contract uses the block number as a source of
randomness for a game.
e An attacker creates a malicious contract that checks if the

current block number is a winner
e If so, it calls the victim contract in order to win
* Since the call will be part of the same transaction, the block
number will remain the same on both contracts.
e The attacker only has to call his/her malicious

contract until it wins.

Portland State University CS 410/ 510 Blockchain Development & Security

e
Example #1

° Hrishi Olickel

Jun 21, 2016 - 7 min read

Why Smart Contracts Fail: Undiscovered
bugs and what we can do about them

ones programmers are used to. For example, the contract TheRun uses the

current timestamp in order to generate random numbers and award a jackpot

based on the result. Similarly, a betting contract may run for a predetermined

Unfortunately, this timestamp can be manipulated by a colluding miner. He

may adjust the timestamp provided by a few seconds, changing the output of

the contract to his benefit. In TheRun, the output of the random number

Portland State University CS 410/ 510 Blockchain Development & Security

e

Common errors

* Using known or predictable block variables as a source of entropy
block.
block.
block.
block.
block.

seconds since the epoch)

colnbase (address of miner who mined the block)
difficulty (puzzle difficulty solved)

gaslimilt (maximum gas for a transaction)
number (current level/height in chain)
timestamp (wall-clock time of mined block given in

Portland State University CS 410/ 510 Blockchain Development & Security

block.blockhash (block.number)

Always 0
Current block.number is known, but its hash (as the current block), is not
known while executing contract function (i.e. known only after block is actually

mined)!

https:// github.com/ axiomzen/eth-random /issues/ 3

block.blockhash (block.number - 1)
Blockhash of the last block (or any prior block)
Known to an adversary who can craft an attacking contract to leverage it using the

exact same code that the victim contract uses
Calling block.blockhash () (conveniently abstraction
provided by Solidity...)

Hides underlying fact that EVM returns O on blocks more than 256 blocks old!

Smart Billions bug. ..next slide

Portland State University CS 410/ 510 Blockchain Development & Security

https://github.com/axiomzen/eth-random/issues/3

e
Smart Billions bug

CHOOSE TICKET VALUE @ Your ticket value can be any number between 0,001 to 1ETH
'| ®e0 SMART
ess BILLIONS 001 -

CHOOSE YOUR LUCKY NUMBERS FROM 0 TO 15

1 2 3
4 5 6
YOUR ESTIMATED WIN:
HIT #6 70,000 ETH
HIT #5 200ETH

4 Posted by u/supr3m 1 year ago

13k SmartBillions lottery contract just got hacked!

Someone made it in the "hackathon” (lol). The hacker could withdraw 400 ETH before the owners, who wrote “the
successful hacker keeps ALL of the 1500 ETH reward”, withdrew quickly the remaining 1100 ETH, that happened 5min
before the next transaction (from the “hacker”) would have emptied the whole contract. So that's already a lie from

How did it happen? Their lottery functions were flawed, if you place a bet (systemPlay() function) with
betting on number value “0" and then call the won() function after 256+ blocks (after you placed the
bet) the returning value will be “0" so you would have bet on “000000” and result would be “000000"
and baaam you have the jackpot. The lucky guys first bet was “1” so0 “000001"” and result after 256+
blocks calling won() would be “000000" so he matched 5 correctly which is 20000x and with 0.01ETH
bet amount a win of 200ETH. He managed to pull that 2 time and corrected to “0" and for that

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #1

e A private seed is used in combination with an iteration
number and the keccak256 hash function to determine if

the caller wins.
e Even though the seed is private, it must have been set

via a transaction at some point in time and thus is visible on

the blockchain.
e Attacker knows exactly which iterations will win

uint256 private seed;

function play() public payable {
require(msg.value >= 1 ether);
iteration++;
uint randomNumber = uint(keccak256(seed + iteration));
if (randomNumber % 3918507 == @) {
msg.sender.transfer(this.balance);

}
}

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #2

e block.blockhash used to generate random number using current
block.number

e Valueis O

e First call wins

function play() public payable {
require(msg.value >= 1 ether);
if (block.blockhash(block.number) % 3918507 == 0) {
msg.sender.transfer(this.balance);

}
}

Portland State University CS 410/ 510 Blockchain Development & Security

e

17
2
3
A
5
B
Fi
a8

Code vulnerability example #3

e block.coinbase, block.difficulty, and msg.sender usedto

generate random number
Data sources are public (block.difficulty)
Data sources can be manipulated directly by miners giving them an advantage
(block.coinbase, msg.sender)

Miner can calculate number and insert a winning transaction

on generateRandom() public
contestants[uint(-coinbase) % totalTickets].addr;
contestants[uint(.sender) % totalTickets].addr;
-difficulty;
bytes32 randHash = (seedl, seed2, seed3);
yint winningNumber = uvint{randHash) % totalTickets;
1 winningNumber;

Portland State University CS 410/ 510 Blockchain Development & Security

Remediation

* Commit reveal (Bit-commitment)
A “commit” stage, when the parties submit their cryptographically
protected secrets to the smart contract.
A “reveal” stage, when the parties announce cleartext seeds, the smart
contract verifies that they are correct, and the seeds are used to generate
a random number.

But, can refuse to reveal if you know you've lost!
Contracts must be written to penalize such behavior

https: // blog.positive. com / predicting—random—numbers—in—ethereum—
smart-contracts-e5358c6b8620

Portland State University CS 410/ 510 Blockchain Development & Security

https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620

SI CTF Lab 3.1 (D6_LockBox)
SI CTF Lab 3.2 (D6_HeadsOrTails,
D6_Lottery)

