
DASP Top 10 (Smart Contract Vulns)

Recall

 Bitcoin
 Scripting language with limited functionality to validate conditions for

transactions to occur

 Intended for handling transfers of digital stores of value (i.e. cash)

 Reasonable security and verifiability of correctness due to language

being non-Turing complete

 Ethereum
 Full turing-complete language to implement arbitrary distributed

application (DApp)

 High-level language such as Solidity compiled down to Ethereum Virtual

Machine bytecode (EVM)

Portland State University CS 410/510 Blockchain Development & Security

But…

"Imagine trying to hack Bank of America—

except you can read all of their code in

advance, all of their transactions are

public, and if you steal the money it’s

irreversible. Sounds like a paranoid

worst-case scenario? Well, this is

exactly the setup Ethereum smart contract

developers have to deal with every day."

-- Ivan Bogatyy

Portland State University CS 410/510 Blockchain Development & Security

Problems

 Improperly programmed contracts have led to an estimated $400

million in losses

 More than 30k contracts have known vulnerabilities in them

 Contracts immutable
 Once deployed, code and any of its bugs remain forever

 Requires a deep understanding of security issues and secure

programming to get right

Portland State University CS 410/510 Blockchain Development & Security

Not easy

"[The DAO] contract, even if coded using

best practices and following language

documentation exactly, would have remained

vulnerable to attack. […] the EVM was

operating as intended, but Solidity was

introducing security flaws into contracts

that were not only missed by the

community, but missed by the designers of

the language themselves."

-P. Daian on DAO re-entrancy vulnerability

Portland State University CS 410/510 Blockchain Development & Security

Some issues

 Semantic mismatches of Solidity language
 Looks like Javascript, but doesn't act like it sometimes

 Numbers are all int (no floating point supported in Solidity)

 Lack of code audits to catch errors
 Improper visibility modifiers

 Lack of input validation

 Lack of error checking on calls

 Common language features misunderstood
 Data types misused

 Fallback functions

 Low-level calls

Portland State University CS 410/510 Blockchain Development & Security

 Languages obfuscate underlying mechanics of the blockchain paper
 Conceal low-level operations for ease of programming at the cost of

security

 Examples
 Making a transaction as simple as a send() command

 Programmer unaware of complications due to failed transactions

 Making time-relative computations as simple as (now > a+1 day)

 now looks like variable, but is actually a function that changes on every use

 Programmer not aware how timestamp can be manipulated

 Underlying security, payment, and execution issues hidden in an API call

wrapper

Portland State University CS 410/510 Blockchain Development & Security

https://eprint.iacr.org/2016/633.pdf

DASP Top 10

 Decentralized Application Security Project

 Similar to OWASP Top 10, but for DApps built on Ethereum VM
 https://dasp.co/

1. Reentrancy

2. Access Control

3. Arithmetic

4. Unchecked Low Level Calls

5. Denial of Service

6. Bad Randomness

7. Front Running

8. Time Manipulation

9. Short Addresses

10. Unknown Unknowns

 Sobering statistic: Automatic analysis of 19,366 contracts worth

$62M found 44% vulnerable paper
Portland State University CS 410/510 Blockchain Development & Security

https://dasp.co/
https://eprint.iacr.org/2016/633.pdf

Security Innovations CTF

SI CTF Lab 3.1 (D0_Donation)

