
Solidity Pt. 2



Lessons 3-5

Libraries/OpenZeppelin, SafeMath

Time

Random number generation

Transfers

Tokens

Comments



Including libraries and contracts

 OpenZeppelin repository containing source code for implementing 

commonly used functions and base smart contracts
 Can include base contract class to derive from

 Can include only functions

 Included into contract via "import" statement in Solidity

Portland State University CS 410/510 Blockchain Development & Security



Example: Ownership contract

 Common features for denoting and managing contract control
 Set owner to creator of contract in constructor
 Implement modifier that throws an error if owner is not the caller

contract Ownable {
address private _owner;
constructor() internal {

_owner = msg.sender;
}

function owner() public view returns(address) {
return _owner;

}

modifier onlyOwner() {
require(isOwner());
_;

}

function isOwner() public view returns(bool) {
return msg.sender == _owner;

}



function renounceOwnership() public onlyOwner
_owner = address(0);

}

function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);

}

function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
_owner = newOwner;

}
}

 renounceOwnership to remove owner with no replacement 
(functions with "onlyOwner" modifier can no longer be called)
 e.g. to disable God mode  ☺

 Transfer ownership to new owner
 External transferOwnership call protected with 
onlyOwner

 Internal _transferOwnership call not callable from outside



Example: SafeMath library

 What happens here

 and here?

 Same as C: integer overflow and underflow

 DASP Top 10 D3 (Arithmetic issues)

 Motivates OpenZeppelin SafeMath library for preventing overflow 

and underflow
 SafeMath library performs operations, but includes an assert to 

ensure no issues

Portland State University CS 410/510 Blockchain Development & Security

uint8 number = 255;
number++;

uint8 number = 0;
number--;



But first …

 Defining libraries similar to contracts
 Done via library keyword

Portland State University CS 410/510 Blockchain Development & Security

library SafeMath { 
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;

}

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;

}
. . .
. . .

}



 Include via the using keyword that associates library methods to a 

specific datatype
 e.g. Library code used for datatype uint256

 Uses code in library to perform operations

 Note: first argument is implicit (a)

 What about uint8, uint16, uint32?
 Must implement SafeMath operations per datatype

Portland State University CS 410/510 Blockchain Development & Security

import "./safemath.sol";
using SafeMath for uint256;
uint256 a = 5;
uint256 b = a.add(3); // 5 + 3 = 8
uint256 c = a.mul(2); // 5 * 2 = 10

function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) { return 0; }
uint256 c = a * b;
assert(c / a == b);
return c;

}



Time

 now keyword returns Unix timestamp of latest block (# of seconds 

since epoch 1/1/1970)

 Semantic issue
 Looks like a variable, but is actually a function call

 Native time units of seconds, minutes, hours, days, 

weeks, and years part of Solidity
 Unit conversion done by language similar to currency conversion

Portland State University CS 410/510 Blockchain Development & Security

function updateTimestamp() public {
lastUpdated = now;

}

function fiveMinutesHavePassed() public view returns (bool) {
return (now >= (lastUpdated + 5 minutes));

}



Random numbers (or lack thereof)

 keccak256 hash function
 Avalanche effect results in random distribution of output

 Ex ample

 But, input often known to everyone or subject to manipulation
 Who controls now variable (block timestamp)?

 Miner

 Can choose a value to his/her advantage

 What if miner doesn't like the random number generated after mining?

 Can keep mined block to him/herself

 DASP Top 10 D7 (Front-running), D8 (Time manipulation)

Portland State University CS 410/510 Blockchain Development & Security

// Generate a random number between 1 and 100:
uint nonce = 0;
uint random1;
uint random2;

random1 = uint(keccak256(abi.encodePacked(now, msg.sender, nonce))) % 100;
nonce++;

random2 = uint(keccak256(abi.encodePacked(now, msg.sender, nonce))) % 100;



 Agreeing on random numbers problematic
 Secure-coin flipping (not possible, afaik)

 Oracles off-chain?
 https://ethereum.stackexchange.com/questions/191/how-can-i-securely-

generate-a-random-number-in-my-smart-contract

 Contracts that rely upon random numbers vulnerable
 DASP Top 10 D6 (Bad randomness)

Portland State University CS 410/510 Blockchain Development & Security

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract


Transfers and withdrawals

 Smart contracts can send and receive Ether to/from wallets and 

other contracts

 Example: Owner of contract cashes out all $ from it
 Specify address of recipient (e.g. _owner)

 Then using built-in function address() and the special keyword 

this to specify current contract before accessing the attribute 

balance to get the amount of Ether the contract has

 Before invoking built-in transfer() function in address to 

send funds to _owner.

Portland State University CS 410/510 Blockchain Development & Security

contract GetPaid is Ownable {
function withdraw() external onlyOwner {

address _owner = owner();
_owner.transfer(address(this).balance);

}
}



 Example: Consignment store giving seller money after someone buys 

item

 What if msg.value is less than commission?

 Example: On-line store contract repays a sender if they've overpaid for 

an item

 What happens when msg.value is 0.001?

 DASP Top 10 D3 (Arithmetic issues)

 CTF exercise

Portland State University CS 410/510 Blockchain Development & Security

uint itemPrice = 0.01 ether; 
msg.sender.transfer(msg.value - itemPrice);

contract ConsignmentStore {
uint commission = 0.001 ether;
function buyItem(address itemOwner) external payable {

...
itemOwner.transfer(msg.value - commission);
...

}
}



Tokens

 Special contracts that track ownership stakes within it similar to

corporate stocks
 Each token with a pre-defined interface (e.g. standard set of functions) 

to enable exchanges

 Many kinds of tokens, standardized via ERC (Ethereum Request for 

Comments)

 Main tokens being used: ERC 721 and ERC 20

Portland State University CS 410/510 Blockchain Development & Security



function balanceOf(address _owner) public view returns (uint256 _balance);
function ownerOf(uint256 _tokenId) public view returns (address _owner);
function transfer(address _to, uint256 _tokenId) public;
function approve(address _to, uint256 _tokenId) public;
function takeOwnership(uint256 _tokenId) public;

ERC 721 standard

 Unique (non-fungible), indivisible tokens suitable for single owner 

object ownership (http://erc721.org/)

 Supports standard calling interface

 Supports standard events for web interface (will revisit with 

web3.js)

Portland State University CS 410/510 Blockchain Development & Security

import "./erc721.sol"

contract foo is ERC721 {
}

event Transfer(address indexed _from, address indexed _to,
uint256 _tokenId);

event Approval(address indexed _owner, address indexed _approved,
uint256 _tokenId);

http://erc721.org/


ERC 20 tokens

 Interchangeable (fungible), divisible tokens suitable for being used as 

currency
 Proposed by Fabian Vogelsteller 11/2015 to implement tradeable digital 

assets in an interoperable manner
 An application written to interact with one ERC20 token can directly work with 

another ERC20 token

 Commonly used for crowdfunding startup companies doing an initial 

coin offering to raise money (ICO) by issuing virtual shares
 Examples

 EOS, TON, Tezos, Filecoin (> $200 million each)

 Polyswarm podcast for how it was used to raise money

 Total number of ERC-20 token contracts

 https://etherscan.io/tokens

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/tokens


ERC 20 token interface

Portland State University CS 410/510 Blockchain Development & Security

contract ERC20 {
// Get the total token supply in circulation
function totalSupply() constant returns (totalSupply);

// Get the account balance of another account with address _owner
function balanceOf(address _owner) constant returns (balance);

// Send _value amount of tokens to address _to
function transfer(address _to, _value) returns (bool success);

// Send _value amount of tokens from address _from to address _to
function transferFrom(address _from, address _to, _value) returns (bool success);

// Allow _spender to withdraw from your account, multiple times, up to the _value amount.
// If this function is called again it overwrites the current allowance with _value.
function approve(address _spender, _value) returns (bool success);

// Returns the amount which _spender is still allowed to withdraw from _owner
function allowance(address _owner, address _spender) constant returns (remaining);

// Triggered when tokens are transferred.
event Transfer(address indexed _from, address indexed _to, _value);

// Triggered whenever approve(address _spender, uint256 _value) is called.
event Approval(address indexed _owner, address indexed _spender, _value);

}



ERC 20 example token

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.17;

contract MyToken is ERC20 {
mapping (address => mapping (address => uint256)) allowed;
mapping (address => uint256) balances;

function MyToken() {
// There will be 5 million tokens
totalSupply = 5 * (10 ** 6);
// All initial tokens belong to the owner
balances[msg.sender] = totalSupply;

}

// Gets the balance of the specified address.
function balanceOf(address _owner) constant returns (uint256 balance) {

// Return the balance of _owner
return balances[_owner];

}

// Transfer tokens to a specified address
function transfer(address _to, uint256 _value) returns (bool) {

require(balances[msg.sender] >= _value);
// Decrease the balance of the sender by _value
// Then, increase the value of _to by _value
Transfer(msg.sender, _to, _value);
return true;

}



Portland State University CS 410/510 Blockchain Development & SecurityPortland State University CS 410/510 Blockchain Development & Security

// Transfer tokens from one address to another
function transferFrom(address _from, address _to, uint256 _value) returns (bool) {

var _allowance = allowed[_from][msg.sender];
// Make sure the function does not get executed if _allowance is lower than _value
// Make sure the balance of _from is larger than _value
balances[_to] = balances[_to] + _value; balances[_from] = balances[_from] - _value;
allowed[_from][msg.sender] = _allowance - _value;
Transfer(_from, _to, _value);
return true;

}

// Function to check the amount of tokens that an owner allowed to a spender
function allowance(address _owner, address _spender) constant returns (uint256 remain) {

return allowed[_owner][_spender];
}

// Approve the passed address to spend the specified amount of tokens on behalf
// of msg.sender
function approve(address _spender, uint256 _value) returns (bool) {

// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value); return true;

}
}

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729


Comments

 Similar to Javascript
 Single-line comments via //
 Multi-line comments via /*     */
 natspec standard similar to docstring for documenting function parameters 

(@param) and return values (@return)
 Ensure your code is properly commented using natspec

Portland State University CS 410/510 Blockchain Development & Security

/// @title A contract for basic math operations

/// @author H4XF13LD

/// @notice For now, this contract just adds a multiply function

contract Math {

/// @notice Multiplies 2 numbers together

/// @param x the first uint.

/// @param y the second uint.

/// @return z the product of (x * y)

/// @dev This function does not currently check for overflows

function multiply(uint x, uint y) returns (uint z) {

// This is just a normal comment, and won't get picked up by natspec

z = x * y;

}

}



Example contracts



Fundraiser

Portland State University CS 410/510 Blockchain Development & Security

contract Fundraiser {
address public owner;
uint256 public target; // target fundraising value
uint256 public endTime; // time that fundraiser ends
Contributor[] contributors; // list of contributors
struct Contributor {

address userAddress;
uint contribution;

}
constructor(uint _target, uint duration) public payable {

owner = msg.sender;
target = _target;
endTime = now + duration;

}
function contribute() public payable {

// require that fundraiser hasn't ended yet
require(now < endTime);
// add to list of contributors
contributors.push(Contributor(msg.sender, msg.value));

}



Portland State University CS 410/510 Blockchain Development & Security

function collect() public {
//once target has been reached, owner can collect funds
require(address(this).balance >= target);
require(msg.sender == owner);
selfdestruct(owner);

}

function refund() public {
// If goal not met on time, anyone can trigger refund()
require(now > endTime);
require(address(this).balance < target);
// refund all contributors
for (uint i; i<contributors.length; i++) {               

contributors[i].userAddress.transfer(contributors[i].contribution)
;

}
}

function balance() public view returns(uint) {
return address(this).balance;

}
}



Lesson 6

web3.js



web3.js

 Web3.js running within browser interfaces with wallet (e.g. 

Metamask) to send transactions to blockchain and receive event 

callbacks from it



web3.js details

 web3 provider variable used to specify node to interact with (e.g. Infura)
 Include in a NodeJS backend application that needs to interact with blockchain

 Include in frontend application that needs to interact with blockchain

 Session can be over a web socket

 Session can be over HTTPS

 web3 methods can then be used in application

Portland State University CS 410/510 Blockchain Development & Security

const web3 = new Web3(
new Web3.providers.WebsocketProvider("wss://mainnet.infura.io/ws")
); 

web3.eth.getBalance("0x5A0b54D5dc17e0AadC383d2db43B0a0D3E029c4c",
function(err, result) { 

if (err) { console.log(err) }
else { 
console.log(web3.utils.fromWei(result, "ether"))

}
})

const Web3 = require("web3") 
const web3 = new Web3(

new Web3.providers.HttpProvider("https://mainnet.infura.io/..."))



 Communication to/from full node done via JSON-RPC
 akin to a REST API

Portland State University CS 410/510 Blockchain Development & Security

{
"jsonrpc":"2.0",
"method":"eth_sendTransaction",
"params":[

{"from":"0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to":"0xd46e8dd67c5d32be8058bb8eb970870f07244567",
"gas":"0x76c0",
"gasPrice":"0x9184e72a000",
"value":"0x9184e72a",
"data":"0xd46e8dd67c5d32be8d46e...8eb970870f07244502445675"
}

],
"id":1

} 

CryptoZombies.methods.createRandomZombie("Vitalik").send({
from: "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
gas: "3000000"})



Metamask & web3.js

 Metamask
 Browser extension for managing Ethereum accounts and private keys

 Injects itself into web pages to set web3.currentProvider to itself
 Allows client browser to interact with DApps on blockchain directly

 Include in single-page web applications that interact with blockchain without web 

server intermediary

 Then, get user account using provider

Portland State University CS 410/510 Blockchain Development & Security

window.addEventListener('load', function() {
if (typeof web3 !== 'undefined') {
web3js = new Web3(web3.currentProvider);

} else {
// Prompt to install Metamask

}
...

)

var userAccount = web3.eth.accounts[0] 



Example



Interacting with contracts in web3.js

 Need address to interact with to be set in DApp's JavaScript code

 Need ABI (application binary interface) to format calls to the 

contract
 Compiled and stored so that clients can interact with it appropriately

 From Lesson 6, Chapter 3
 Include ABI via <script> include in <head> for 

cryptozombies_abi.js

Portland State University CS 410/510 Blockchain Development & Security

address myContractAddress = 0x06012c8cf97BEaDab38... 



var myABI = [
{ "constant": false,

"inputs": [
{ "name": "_to",

"type": "address"
},
{ "name": "_tokenId",

"type": "uint256"
}

],
"name": "approve",
"outputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "function"

},
{ "constant": false,

"inputs": [
{ "name": "_zombieId",

"type": "uint256"
}

],
"name": "levelUp",
"outputs": [],
"payable": true,
"stateMutability": "payable",
"type": "function"

},
...

Portland State University CS 410/510 Blockchain Development & Security

// Instantiate myContract
var myContract = new web3js.eth.Contract(myABI, myContractAddress); 

cryptozombies_abi.js

address myContractAddress = 0x06012c8cf97BEaDab38... 



web3 call vs. send

 Invoke methods in ABI

 call()

 Used to invoke view and pure functions in ABI

 In CryptoZombies contract Zombie[] public zombies;
 Public list of zombies automatically has a gettr function associated with it

 From Javascript, can use below call to retrieve
 cryptoZombies.methods.zombies(id).call()

 Only runs on local node so no gas required and wallet will not be 

prompted for funds

 Returns a JSON object

Portland State University CS 410/510 Blockchain Development & Security

{
"name": "H4XF13LD MORRIS'S COOLER OLDER BROTHER",
"dna": "1337133713371337",
"level": "9999",
"winCount": "999999999",
"lossCount": "0"

}



 send()

 Used to create a transaction and send to blockchain

 Requires user to pay gas to execute so wallet will be prompted for 

funds via pop-up

 Similar to call(), but must include a sending (from) address
cryptoZombies.methods.createRandomZombie(name).send({

from: userAccount

})

 web3 provider (Metamask) automatically signs transaction when approved by user

 Wallet address initializes msg.sender in transaction sent to contract

 Significant delay before transaction committed to blockchain so 

requires the use of asynchronous JavaScript handling

Portland State University CS 410/510 Blockchain Development & Security



 Example: calling payable functions via send()

 In JavaScript, denomination units are in wei (not Ether)

 Function to do conversion supplied in web3.js

 10^18 wei =1 ether

Portland State University CS 410/510 Blockchain Development & Security

cryptoZombies.methods.levelUp(zombieId).send({
from: userAccount,
value: web3js.utils.toWei("0.001", "ether")

})

function levelUp(uint _zombieId) external payable {
require(msg.value == levelUpFee); 
zombies[_zombieId].level++;

}


