Solidity Pt. 2

@ Portland State
& Computer Science /

Lessons 3-5

Libraries/ OpenZeppelin, SateMath
Time

Random number generation
Transfers

Tokens

Comments

L . N
Including libraries and contracts

° OpenZeppelin repository containing source code for implementing

commonly used functions and base smart contracts
Can include base contract class to derive from
Can include only functions

® Included into contract via "1mport" statement in Solidity

Portland State University CS 410/ 510 Blockchain Development & Security

Example: Ownership contract

® Common features for denoting and managing contract control
Set owner to creator of contract in constructor
Implement modifier that throws an error if owner is not the caller
contract Ownable {
address private _owner;

constructor() internal {
_owner = msg.sender;

¥

function owner() public view returns(address) {
return _owner;

¥

modifier onlyOwner() {
require(isOwner());

—

¥

function isOwner() public view returns(bool) {
return msg.sender == _owner;

¥

* renounceOwnership to remove owner with no replacement

(functions with "onlyOwner" modifier can no longer be called)
e.g. to disable God mode ©

® Transfer ownership to new owner

External transferOwnership call protected with
onlyOwner

Internal transferOwnership call not callable from outside

function renounceOwnership() public onlyOwner
_owner = address(9);
}

function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}

function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
_owner = newOwner;

e
Example: SafeMath library

® What happens here

uint8 number = 255;

number++;

® and here?

uint8 number = 0;

number--;

Same as C: integer overflow and underflow
DASP Top 10 D3 (Arithmetic issues)
® Motivates OpenZeppelin SateMath library for preventing overtlow
and underflow
SateMath library performs operations, but includes an assert to

ensure no issues

Portland State University CS 410/ 510 Blockchain Development & Security

e
But first ...

o Defining libraries similar to contracts
Done via 1 1brary keyword

library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 ¢ = a + b;
assert(c >= a);
return c;

}

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;

}

Portland State University CS 410/ 510 Blockchain Development & Security

e

Include via the us1ng keyword that associates library methods to a

specific datatype
e.g. Library code used for datatype uint256

import "./safemath.sol";
using SafeMath for uint256;
uint256 a = 5;

uint256 b = a.add(3); // 5 + 3
uint256 ¢ = a.mul(2); // 5 * 2

Uses code in library to perform operations

function mul(uint256 a, uint256 b) internal pure returns (uint256) {

if (a == 9) { return 9; }
uint256 ¢ = a * b;
assert(c / a == b);
return c;

Note: first argument is implicit (a)
What about uint8,uintl6o, uint32?
Must implement SafeMath operations per datatype

™

Portland State University CS 410/ 510 Blockchain Development & Security

O
Time

* now keyword returns Unix timestamp of latest block (# of seconds
since epoch 1/1/1970)
® Semantic issue
Looks like a variable, but is actually a function call
e Native time units of seconds, minutes, hours, days,
weeks, and years part of Solidity

Lhﬁtconverﬂonmhnuabylanguageshnﬂarto(nnTenqyconverﬁon

function updateTimestamp() public {
lastUpdated = now;

}

function fiveMinutesHavePassed() public view returns (bool) {
return (now >= (lastUpdated + 5 minutes));

}

Portland State University CS 410/ 510 Blockchain Development & Security

4 I
Random numbers (or lack thereof)

e keccak?25o6 hash function

Avalanche effect results in random distribution of output

// Generate a random number between 1 and 100:
uint nonce = 0;

uint randoml;

uint random2;

randoml = uint(keccak256(abi.encodePacked(now, msg.sender, nonce))) % 100;
nonce++;

random2 = uint(keccak256(abi.encodePacked(now, msg.sender, nonce))) % 100;

But, input often known to everyone or subject to manipulation
Who controls now variable (block timestamp)?
® Miner
* Can choose a value to his/her advantage
What if miner doesn't like the random number generated after mining?

* Can keep mined block to him/herself
e DASPTop 10 D7 (Front-running), D8 (Time manipulation)

- /

Portland State University CS 410/ 510 Blockchain Development & Security

e

* Agreeing on random numbers problematic
Secure-coin flipping (not possible, afaik)
Oracles off-chain?

https: // ethereum.stackexchange.com/ questions/191/ how—can-i-securely-

generate—a-random-number-in-my—smart-contract

e Contracts that rely upon random numbers vulnerable
DASP Top 10 D6 (Bad randomness)

Portland State University CS 410/ 510 Blockchain Development & Security

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract

g I
Transfers and withdrawals

® Smart contracts can send and receive Ether to/from wallets and

other contracts
* Example: Owner of contract cashes out all § from it
Specity address of recipient (e.g. owner)
Then using built-in function address () and the special keyword
this to specify current contract before accessing the attribute
balance to get the amount of Ether the contract has
Betfore invoking built-in transfer () functionin address to
send funds to owner.
contract GetPaid is Ownable {

function withdraw() external onlyOwner {
address _owner = owner();

_owner.transfer(address(this).balance);

Portland State University CS 410/ 510 Blockchain Development & Security

™

Example: Consignment store giving seller money after someone buys

1tem

contract ConsignmentStore {
uint commission = 0.001 ether;
function buyItem(address itemOwner) external payable {

itemOwner.transfer(msg.value - commission);

What if msg . value is less than commission?
Example: On-line store contract repays a sender if they've overpaid for

an item

uint itemPrice = 0.01 ether;

msg.sender.transfer(msg.value - itemPrice);

What happens when msg.valueis 0.001?
DASP Top 10 D3 (Arithmetic issues)

CTF exercise

Portland State University CS 410/ 510 Blockchain Development & Security

e
Tokens

© Special contracts that track ownership stakes within it similar to

corporate stocks
Each token with a pre-defined interface (e.g. standard set of functions)
to enable exchanges
Many kinds of tokens, standardized via ERC (Ethereum Request for

Comments)

Main tokens being used: ERC 721 and ERC 20

Portland State University CS 410/ 510 Blockchain Development & Security

/ERC 721 standard

® Unique (non-fungible), indivisible tokens suitable for single owner

object ownership (http://erc721.org/)

import "./erc721.sol”

contract foo is ERC721 {
}

Supports standard calling interface

function balanceOf(address _owner) public view returns (uint256 _balance);
function ownerOf(uint256 _tokenId) public view returns (address _owner);
function transfer(address _to, uint256 _tokenId) public;

function approve(address _to, uint256 _tokenlId) public;

function takeOwnership(uint256 _tokenId) public;

Supports standard events for web interface (will revisit with
web3.Js)

event Transfer(address indexed from, address indexed _to,
uint256 _tokenld);

event Approval(address indexed _owner, address indexed _approved,
\\‘ uint256 tokenld);

Portland State University CS 410/ 510 Blockchain Development & Security

http://erc721.org/

: N
ERC 20 tokens

® Interchangeable (fungible), divisible tokens suitable for being used as

currency
Proposed by Fabian Vogelsteller 11/2015 to implement tradeable digital

assets in an interoperable manner
An application written to interact with one ERC20 token can directly work with
another ERC20 token

Commonly used for crowdfunding startup companies doing an initial

coin offering to raise money (ICO) by issuing virtual shares
Examples
e EOS, TON, Tezos, Filecoin (> $200 million each)

o Polyswarm podcast for how it was used to raise money
Total number of ERC-20 token contracts
° https: / / etherscan.io/tokens

Portland State University CS 410/ 510 Blockchain Development & Security

https://etherscan.io/tokens

(ERC 20 token interface

contract ERC20 {
// Get the total token supply in circulation
function totalSupply() constant returns (totalSupply);

// Get the account balance of another account with address _owner
function balanceOf(address _owner) constant returns (balance);

// Send _value amount of tokens to address _to
function transfer(address _to, _value) returns (bool success);

// Send _value amount of tokens from address _from to address _to
function transferFrom(address _from, address _to, _value) returns (bool success);

// Allow _spender to withdraw from your account, multiple times, up to the _value amount.
// If this function is called again it overwrites the current allowance with _value.
function approve(address _spender, _value) returns (bool success);

// Returns the amount which _spender is still allowed to withdraw from _owner
function allowance(address _owner, address _spender) constant returns (remaining);

// Triggered when tokens are transferred.
event Transfer(address indexed _from, address indexed _to, _value);

// Triggered whenever approve(address _spender, uint256 _value) 1is called.
event Approval(address indexed _owner, address indexed _spender, _value);

o /

Portland State University CS 410/ 510 Blockchain Development & Security

N

e
ERC 20 example token

pragma solidity 70.4.17;

contract MyToken is ERC20 {

mapping (address => mapping (address => uint256)) allowed;

mapping (address => uint256) balances;
function MyToken() {
totalSupply = 5 * (10 ** 6);

balances[msg.sender] = totalSupply;
}

function balanceOf(address _owner) constant returns (uint256 balance) {

return balances[_owner];

}

function transfer(address _to, uint256 _value) returns (bool) {

require(balances[msg.sender] >= _value);

Transfer(msg.sender, _to, _value);
return true;

}

Portland State University CS 410/ 510 Blockchain Developmen

t & Security

function transferFrom(address _from, address _to, uint256 _value) returns (bool) {
var _allowance = allowed[_from][msg.sender];

balances[_to] = balances[_to] + _value; balances[_from] = balances[_from] - _value;
allowed[_from][msg.sender] = _allowance - _value;

Transfer(_from, _to, _value);

return true;

function allowance(address _owner, address _spender) constant returns (uint256 remain) {
return allowed[_owner][_spender];

}

function approve(address _spender, uint256 _value) returns (bool) {
https://qithub.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value); return true;

}
}

N y

Portland State University CS 410/ 510 Blockchain Development & Security

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

e
Comments

® Similar to Javascript
Single-line comments via //
Multi-line comments via /* */
natspec standard similar to docstring for documenting function parameters

(@param) and return values (@return)
Ensure your code is properly commented using natspec

/// @title A contract for basic math operations
/// @author H4XF13LD
/// @notice For now, this contract just adds a multiply function
contract Math {
/// @notice Multiplies 2 numbers together
/// @param x the first uint.
/// @param y the second uint.
/// @return z the product of (x * vy)
/// @dev This function does not currently check for overflows
function multiply(uint x, uint y) returns (uint z) {
// This is just a normal comment, and won't get picked up by natspec

z = x *y;

Portland State University CS 410/ 510 Blockchain Development & Security

Example contracts

Fundraiser

contract Fundraiser {
address public owner;
uint256 public target; // target fundraising value
uint256 public endTime; // time that fundraiser ends
Contributor[] contributors; // list of contributors
struct Contributor {
address userAddress;
uint contribution;
}
constructor(uint _target, uint duration) public payable {
owner = msg.sender;
target = _target;
endTime = now + duration;
}
function contribute() public payable {
// require that fundraiser hasn't ended yet
require(now < endTime);
// add to list of contributors
contributors.push(Contributor(msg.sender, msg.value));

Portland State University CS 410/ 510 Blockchain Development & Security

function collect() public {
//once target has been reached, owner can collect funds
require(address(this).balance >= target);
require(msg.sender == owner);
selfdestruct(owner);

}

function refund() public {
// If goal not met on time, anyone can trigger refund()
require(now > endTime);
require(address(this).balance < target);
// refund all contributors
for (uint i; i<contributors.length; i++) {

contributors[i].userAddress.transfer(contributors[i].contribution)

}

}

function balance() public view returns(uint) {
return address(this).balance;

}

Lesson 6

web3.js

e
web3.js

® Web3.js running within browser interfaces with wallet (e.g.
Metamask) to send transactions to blockchain and receive event

\Neb; . ‘ L . gel P() E

Qo.oom 3By

Bulbasaur / “\\6.0‘5 * “ '
BUY

BlockChain

4 N
web3.js details

web3 provider variable used to specity node to interact with (e.g. Infura)
Include in a Node]S backend application that needs to interact with blockchain

huﬂudeini%onuﬂulapphcaﬁonthatneedstoinUnactwdﬂlbkkahan

Session can be over a web socket

const web3 = new Web3(
new Web3.providers.WebsocketProvider("wss://mainnet.infura.io/ws")

)5
Session can be over HTTPS

const Web3 = require("web3")
const web3 = new Web3(
new Web3.providers.HttpProvider("https://mainnet.infura.io/..."))

web3 methods can then be used in application

web3.eth.getBalance("0x5A0b54D5dc17e0AadC383d2db43B0a®D3EO29c4c”,
function(err, result) {
if (err) { console.log(err) }
else {
console.log(web3.utils.fromWei(result, "ether"))

¥

})

Portland State University CS 410/ 510 Blockchain Development & Security

Communication to/from tull node done via [SON-RPC
akin to a REST API

CryptoZombies.methods.createRandomZombie("Vitalik").send({
from: "Oxb60e8dd61c5d32be8058bb8eb9708701f07233155",
gas: "3000000"})

{
"jsonrpc":"2.0",
"method" :"eth _sendTransaction",

"params”: [

{"from":"0xb60e8dd61c5d32be8058bb8eb970870107233155",
"to":"0xd46e8dd67c5d32be8058bb8eb970870107244567" ,
"gas":"@x76c0",

"gasPrice":"0x9184e72a000",
"value" :"0x9184e72a",
"data":"oxd46e8dd67c5d32be8d46e. . .8eb970870107244502445675"
}
I,

"id":1

Portland State University CS 410/ 510 Blockchain Development & Security

e
Metamask & web3.js

® Metamask
Browser extension for managing Ethereum accounts and private keys

Injects itself into web pages to set web3 .currentProvider toitself
Allows client browser to interact with DApps on blockchain directly
Include in single-page web applications that interact with blockchain without web

server intermediary

window.addEventListener('load', function() {
if (typeof web3 !== "undefined') {
web3js = new Web3(web3.currentProvider);
} else {

// Prompt to install Metamask
}

Then, get user account using provider

var userAccount = web3.eth.accounts[0]

Portland State University CS 410/ 510 Blockchain Development & Security

4 I
Example

3. User confirmed, make the BUY transaction

Matarhasi plugin \ \

2. open Metamask popup to confirm action and Sign

@ &veb&js oy Citymayor contract
Citymayor User fClokuY s O — . A dA p p
Interraction with
Metamask

Citymayor dApp

e

Interacting with contracts in web3.js

® Need address to interact with to be set in DApp's JavaScript code

address myContractAddress = 0x06012c8cf97BEaDab38...

® Need ABI (application binary interface) to format calls to the

contract
Compiled and stored so that clients can interact with it appropriately

From Lesson 6, Chapter 3
Include ABI via <script> include in <head> for
cryptozombies abil.Jjs

Portland State University CS 410/ 510 Blockchain Development & Security

var myABI = |
{ "constant": false,
"inputs": |
{ "name": "_to",

"type": "address™
}s
{ "name": "_tokenId",
"type": "uint256"
}

1,
"name": "approve",
"outputs": [],

address myContractAddress =
// Instantiate myContract

cryptozombies abi.Js

Ox06012c8cf97BEaDab38. ..

var myContract = new web3js.eth

b
"inputs": [
{ "name": "_zombieIld",
"type": "uint256"
}
1,

"name": "levelUp",

"outputs": [],

"payable": true,
"stateMutability": "payable",
"type": "function"

}s

.Contract(myABI,

myContractAddress);

Portland State University CS 410/ 510 Blockchain Development & Security

™~

/web3 call vs. send

® Invoke methods in ABI
e call ()

Used to invoke view and pure functions in ABI
In CryptoZombies contract Zombie[] public zombies;
Public list of zombies automatically has a gettr function associated with it

From Javascript, can use below call to retrieve

cryptoZombies.methods.zombies (id) .call ()

Only runs on local node so no gas required and wallet will not be
prompted for funds
Returns a JSON object

"name”: "H4XF13LD MORRIS'S COOLER OLDER BROTHER",
"dna": "1337133713371337",
"level"”: "9999",

"winCount": "999999999",
"lossCount"”: "o@"

Portland State University CS 410/ 510 Blockchain Development & Security

e

* send ()
Used to create a transaction and send to blockchain
Requires user to pay gas to execute so wallet will be prompted for
funds via pop-up
Similar to call (), but must include a sending (£ rom) address

cryptoZombies.methods.createRandomZombie (name) .send ({
from: userAccount

})

web3 provider (Metamask) automatically signs transaction when approved by user
Wallet address initializes msg . sender in transaction sent to contract

Significant delay before transaction committed to blockchain so

requires the use of asynchronous JavaScript handling

Portland State University CS 410/ 510 Blockchain Development & Security

e

* Example: calling payable functions via send ()

function levelUp(uint _zombieId) external payable {
require(msg.value == levelUpFee);

zombies[_zombield].level++;

In JavaScript, denomination units are in we 1 (not Ether)
* Function to do conversion supplied in web3.js

e 10718 weili =1 ether

cryptoZombies.methods.levelUp(zombieId).send({
from: userAccount,

value: web3js.utils.toWei("0.001", "ether")
})

Portland State University CS 410/ 510 Blockchain Development & Security

