
Solidity Pt. 2

Lessons 3-5

Libraries/OpenZeppelin, SafeMath

Time

Random number generation

Transfers

Tokens

Comments

Including libraries and contracts

 OpenZeppelin repository containing source code for implementing

commonly used functions and base smart contracts
 Can include base contract class to derive from

 Can include only functions

 Included into contract via "import" statement in Solidity

Portland State University CS 410/510 Blockchain Development & Security

Example: Ownership contract

 Common features for denoting and managing contract control
 Set owner to creator of contract in constructor
 Implement modifier that throws an error if owner is not the caller

contract Ownable {
address private _owner;
constructor() internal {

_owner = msg.sender;
}

function owner() public view returns(address) {
return _owner;

}

modifier onlyOwner() {
require(isOwner());
_;

}

function isOwner() public view returns(bool) {
return msg.sender == _owner;

}

function renounceOwnership() public onlyOwner
_owner = address(0);

}

function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);

}

function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
_owner = newOwner;

}
}

 renounceOwnership to remove owner with no replacement
(functions with "onlyOwner" modifier can no longer be called)
 e.g. to disable God mode ☺

 Transfer ownership to new owner
 External transferOwnership call protected with
onlyOwner

 Internal _transferOwnership call not callable from outside

Example: SafeMath library

 What happens here

 and here?

 Same as C: integer overflow and underflow

 DASP Top 10 D3 (Arithmetic issues)

 Motivates OpenZeppelin SafeMath library for preventing overflow

and underflow
 SafeMath library performs operations, but includes an assert to

ensure no issues

Portland State University CS 410/510 Blockchain Development & Security

uint8 number = 255;
number++;

uint8 number = 0;
number--;

But first …

 Defining libraries similar to contracts
 Done via library keyword

Portland State University CS 410/510 Blockchain Development & Security

library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;

}

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;

}
. . .
. . .

}

 Include via the using keyword that associates library methods to a

specific datatype
 e.g. Library code used for datatype uint256

 Uses code in library to perform operations

 Note: first argument is implicit (a)

 What about uint8, uint16, uint32?
 Must implement SafeMath operations per datatype

Portland State University CS 410/510 Blockchain Development & Security

import "./safemath.sol";
using SafeMath for uint256;
uint256 a = 5;
uint256 b = a.add(3); // 5 + 3 = 8
uint256 c = a.mul(2); // 5 * 2 = 10

function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) { return 0; }
uint256 c = a * b;
assert(c / a == b);
return c;

}

Time

 now keyword returns Unix timestamp of latest block (# of seconds

since epoch 1/1/1970)

 Semantic issue
 Looks like a variable, but is actually a function call

 Native time units of seconds, minutes, hours, days,

weeks, and years part of Solidity
 Unit conversion done by language similar to currency conversion

Portland State University CS 410/510 Blockchain Development & Security

function updateTimestamp() public {
lastUpdated = now;

}

function fiveMinutesHavePassed() public view returns (bool) {
return (now >= (lastUpdated + 5 minutes));

}

Random numbers (or lack thereof)

 keccak256 hash function
 Avalanche effect results in random distribution of output

 Ex ample

 But, input often known to everyone or subject to manipulation
 Who controls now variable (block timestamp)?

 Miner

 Can choose a value to his/her advantage

 What if miner doesn't like the random number generated after mining?

 Can keep mined block to him/herself

 DASP Top 10 D7 (Front-running), D8 (Time manipulation)

Portland State University CS 410/510 Blockchain Development & Security

// Generate a random number between 1 and 100:
uint nonce = 0;
uint random1;
uint random2;

random1 = uint(keccak256(abi.encodePacked(now, msg.sender, nonce))) % 100;
nonce++;

random2 = uint(keccak256(abi.encodePacked(now, msg.sender, nonce))) % 100;

 Agreeing on random numbers problematic
 Secure-coin flipping (not possible, afaik)

 Oracles off-chain?
 https://ethereum.stackexchange.com/questions/191/how-can-i-securely-

generate-a-random-number-in-my-smart-contract

 Contracts that rely upon random numbers vulnerable
 DASP Top 10 D6 (Bad randomness)

Portland State University CS 410/510 Blockchain Development & Security

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract

Transfers and withdrawals

 Smart contracts can send and receive Ether to/from wallets and

other contracts

 Example: Owner of contract cashes out all $ from it
 Specify address of recipient (e.g. _owner)

 Then using built-in function address() and the special keyword

this to specify current contract before accessing the attribute

balance to get the amount of Ether the contract has

 Before invoking built-in transfer() function in address to

send funds to _owner.

Portland State University CS 410/510 Blockchain Development & Security

contract GetPaid is Ownable {
function withdraw() external onlyOwner {

address _owner = owner();
_owner.transfer(address(this).balance);

}
}

 Example: Consignment store giving seller money after someone buys

item

 What if msg.value is less than commission?

 Example: On-line store contract repays a sender if they've overpaid for

an item

 What happens when msg.value is 0.001?

 DASP Top 10 D3 (Arithmetic issues)

 CTF exercise

Portland State University CS 410/510 Blockchain Development & Security

uint itemPrice = 0.01 ether;
msg.sender.transfer(msg.value - itemPrice);

contract ConsignmentStore {
uint commission = 0.001 ether;
function buyItem(address itemOwner) external payable {

...
itemOwner.transfer(msg.value - commission);
...

}
}

Tokens

 Special contracts that track ownership stakes within it similar to

corporate stocks
 Each token with a pre-defined interface (e.g. standard set of functions)

to enable exchanges

 Many kinds of tokens, standardized via ERC (Ethereum Request for

Comments)

 Main tokens being used: ERC 721 and ERC 20

Portland State University CS 410/510 Blockchain Development & Security

function balanceOf(address _owner) public view returns (uint256 _balance);
function ownerOf(uint256 _tokenId) public view returns (address _owner);
function transfer(address _to, uint256 _tokenId) public;
function approve(address _to, uint256 _tokenId) public;
function takeOwnership(uint256 _tokenId) public;

ERC 721 standard

 Unique (non-fungible), indivisible tokens suitable for single owner

object ownership (http://erc721.org/)

 Supports standard calling interface

 Supports standard events for web interface (will revisit with

web3.js)

Portland State University CS 410/510 Blockchain Development & Security

import "./erc721.sol"

contract foo is ERC721 {
}

event Transfer(address indexed _from, address indexed _to,
uint256 _tokenId);

event Approval(address indexed _owner, address indexed _approved,
uint256 _tokenId);

http://erc721.org/

ERC 20 tokens

 Interchangeable (fungible), divisible tokens suitable for being used as

currency
 Proposed by Fabian Vogelsteller 11/2015 to implement tradeable digital

assets in an interoperable manner
 An application written to interact with one ERC20 token can directly work with

another ERC20 token

 Commonly used for crowdfunding startup companies doing an initial

coin offering to raise money (ICO) by issuing virtual shares
 Examples

 EOS, TON, Tezos, Filecoin (> $200 million each)

 Polyswarm podcast for how it was used to raise money

 Total number of ERC-20 token contracts

 https://etherscan.io/tokens

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/tokens

ERC 20 token interface

Portland State University CS 410/510 Blockchain Development & Security

contract ERC20 {
// Get the total token supply in circulation
function totalSupply() constant returns (totalSupply);

// Get the account balance of another account with address _owner
function balanceOf(address _owner) constant returns (balance);

// Send _value amount of tokens to address _to
function transfer(address _to, _value) returns (bool success);

// Send _value amount of tokens from address _from to address _to
function transferFrom(address _from, address _to, _value) returns (bool success);

// Allow _spender to withdraw from your account, multiple times, up to the _value amount.
// If this function is called again it overwrites the current allowance with _value.
function approve(address _spender, _value) returns (bool success);

// Returns the amount which _spender is still allowed to withdraw from _owner
function allowance(address _owner, address _spender) constant returns (remaining);

// Triggered when tokens are transferred.
event Transfer(address indexed _from, address indexed _to, _value);

// Triggered whenever approve(address _spender, uint256 _value) is called.
event Approval(address indexed _owner, address indexed _spender, _value);

}

ERC 20 example token

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.17;

contract MyToken is ERC20 {
mapping (address => mapping (address => uint256)) allowed;
mapping (address => uint256) balances;

function MyToken() {
// There will be 5 million tokens
totalSupply = 5 * (10 ** 6);
// All initial tokens belong to the owner
balances[msg.sender] = totalSupply;

}

// Gets the balance of the specified address.
function balanceOf(address _owner) constant returns (uint256 balance) {

// Return the balance of _owner
return balances[_owner];

}

// Transfer tokens to a specified address
function transfer(address _to, uint256 _value) returns (bool) {

require(balances[msg.sender] >= _value);
// Decrease the balance of the sender by _value
// Then, increase the value of _to by _value
Transfer(msg.sender, _to, _value);
return true;

}

Portland State University CS 410/510 Blockchain Development & SecurityPortland State University CS 410/510 Blockchain Development & Security

// Transfer tokens from one address to another
function transferFrom(address _from, address _to, uint256 _value) returns (bool) {

var _allowance = allowed[_from][msg.sender];
// Make sure the function does not get executed if _allowance is lower than _value
// Make sure the balance of _from is larger than _value
balances[_to] = balances[_to] + _value; balances[_from] = balances[_from] - _value;
allowed[_from][msg.sender] = _allowance - _value;
Transfer(_from, _to, _value);
return true;

}

// Function to check the amount of tokens that an owner allowed to a spender
function allowance(address _owner, address _spender) constant returns (uint256 remain) {

return allowed[_owner][_spender];
}

// Approve the passed address to spend the specified amount of tokens on behalf
// of msg.sender
function approve(address _spender, uint256 _value) returns (bool) {

// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value); return true;

}
}

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

Comments

 Similar to Javascript
 Single-line comments via //
 Multi-line comments via /* */
 natspec standard similar to docstring for documenting function parameters

(@param) and return values (@return)
 Ensure your code is properly commented using natspec

Portland State University CS 410/510 Blockchain Development & Security

/// @title A contract for basic math operations

/// @author H4XF13LD

/// @notice For now, this contract just adds a multiply function

contract Math {

/// @notice Multiplies 2 numbers together

/// @param x the first uint.

/// @param y the second uint.

/// @return z the product of (x * y)

/// @dev This function does not currently check for overflows

function multiply(uint x, uint y) returns (uint z) {

// This is just a normal comment, and won't get picked up by natspec

z = x * y;

}

}

Example contracts

Fundraiser

Portland State University CS 410/510 Blockchain Development & Security

contract Fundraiser {
address public owner;
uint256 public target; // target fundraising value
uint256 public endTime; // time that fundraiser ends
Contributor[] contributors; // list of contributors
struct Contributor {

address userAddress;
uint contribution;

}
constructor(uint _target, uint duration) public payable {

owner = msg.sender;
target = _target;
endTime = now + duration;

}
function contribute() public payable {

// require that fundraiser hasn't ended yet
require(now < endTime);
// add to list of contributors
contributors.push(Contributor(msg.sender, msg.value));

}

Portland State University CS 410/510 Blockchain Development & Security

function collect() public {
//once target has been reached, owner can collect funds
require(address(this).balance >= target);
require(msg.sender == owner);
selfdestruct(owner);

}

function refund() public {
// If goal not met on time, anyone can trigger refund()
require(now > endTime);
require(address(this).balance < target);
// refund all contributors
for (uint i; i<contributors.length; i++) {

contributors[i].userAddress.transfer(contributors[i].contribution)
;

}
}

function balance() public view returns(uint) {
return address(this).balance;

}
}

Lesson 6

web3.js

web3.js

 Web3.js running within browser interfaces with wallet (e.g.

Metamask) to send transactions to blockchain and receive event

callbacks from it

web3.js details

 web3 provider variable used to specify node to interact with (e.g. Infura)
 Include in a NodeJS backend application that needs to interact with blockchain

 Include in frontend application that needs to interact with blockchain

 Session can be over a web socket

 Session can be over HTTPS

 web3 methods can then be used in application

Portland State University CS 410/510 Blockchain Development & Security

const web3 = new Web3(
new Web3.providers.WebsocketProvider("wss://mainnet.infura.io/ws")
);

web3.eth.getBalance("0x5A0b54D5dc17e0AadC383d2db43B0a0D3E029c4c",
function(err, result) {

if (err) { console.log(err) }
else {
console.log(web3.utils.fromWei(result, "ether"))

}
})

const Web3 = require("web3")
const web3 = new Web3(

new Web3.providers.HttpProvider("https://mainnet.infura.io/..."))

 Communication to/from full node done via JSON-RPC
 akin to a REST API

Portland State University CS 410/510 Blockchain Development & Security

{
"jsonrpc":"2.0",
"method":"eth_sendTransaction",
"params":[

{"from":"0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to":"0xd46e8dd67c5d32be8058bb8eb970870f07244567",
"gas":"0x76c0",
"gasPrice":"0x9184e72a000",
"value":"0x9184e72a",
"data":"0xd46e8dd67c5d32be8d46e...8eb970870f07244502445675"
}

],
"id":1

}

CryptoZombies.methods.createRandomZombie("Vitalik").send({
from: "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
gas: "3000000"})

Metamask & web3.js

 Metamask
 Browser extension for managing Ethereum accounts and private keys

 Injects itself into web pages to set web3.currentProvider to itself
 Allows client browser to interact with DApps on blockchain directly

 Include in single-page web applications that interact with blockchain without web

server intermediary

 Then, get user account using provider

Portland State University CS 410/510 Blockchain Development & Security

window.addEventListener('load', function() {
if (typeof web3 !== 'undefined') {
web3js = new Web3(web3.currentProvider);

} else {
// Prompt to install Metamask

}
...

)

var userAccount = web3.eth.accounts[0]

Example

Interacting with contracts in web3.js

 Need address to interact with to be set in DApp's JavaScript code

 Need ABI (application binary interface) to format calls to the

contract
 Compiled and stored so that clients can interact with it appropriately

 From Lesson 6, Chapter 3
 Include ABI via <script> include in <head> for

cryptozombies_abi.js

Portland State University CS 410/510 Blockchain Development & Security

address myContractAddress = 0x06012c8cf97BEaDab38...

var myABI = [
{ "constant": false,

"inputs": [
{ "name": "_to",

"type": "address"
},
{ "name": "_tokenId",

"type": "uint256"
}

],
"name": "approve",
"outputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "function"

},
{ "constant": false,

"inputs": [
{ "name": "_zombieId",

"type": "uint256"
}

],
"name": "levelUp",
"outputs": [],
"payable": true,
"stateMutability": "payable",
"type": "function"

},
...

Portland State University CS 410/510 Blockchain Development & Security

// Instantiate myContract
var myContract = new web3js.eth.Contract(myABI, myContractAddress);

cryptozombies_abi.js

address myContractAddress = 0x06012c8cf97BEaDab38...

web3 call vs. send

 Invoke methods in ABI

 call()

 Used to invoke view and pure functions in ABI

 In CryptoZombies contract Zombie[] public zombies;
 Public list of zombies automatically has a gettr function associated with it

 From Javascript, can use below call to retrieve
 cryptoZombies.methods.zombies(id).call()

 Only runs on local node so no gas required and wallet will not be

prompted for funds

 Returns a JSON object

Portland State University CS 410/510 Blockchain Development & Security

{
"name": "H4XF13LD MORRIS'S COOLER OLDER BROTHER",
"dna": "1337133713371337",
"level": "9999",
"winCount": "999999999",
"lossCount": "0"

}

 send()

 Used to create a transaction and send to blockchain

 Requires user to pay gas to execute so wallet will be prompted for

funds via pop-up

 Similar to call(), but must include a sending (from) address
cryptoZombies.methods.createRandomZombie(name).send({

from: userAccount

})

 web3 provider (Metamask) automatically signs transaction when approved by user

 Wallet address initializes msg.sender in transaction sent to contract

 Significant delay before transaction committed to blockchain so

requires the use of asynchronous JavaScript handling

Portland State University CS 410/510 Blockchain Development & Security

 Example: calling payable functions via send()

 In JavaScript, denomination units are in wei (not Ether)

 Function to do conversion supplied in web3.js

 10^18 wei =1 ether

Portland State University CS 410/510 Blockchain Development & Security

cryptoZombies.methods.levelUp(zombieId).send({
from: userAccount,
value: web3js.utils.toWei("0.001", "ether")

})

function levelUp(uint _zombieId) external payable {
require(msg.value == levelUpFee);
zombies[_zombieId].level++;

}

