
Solidity Pt. 1

Solidity

 Javascript-like programming language for writing programs that run

on the Ethereum Virtual Machine

 Domain-specific language that supports abstractions required for

operation of smart contracts
 e.g. contracts, addresses, ownership, payments, hash functions, block

information

 Will incrementally learn language using lessons from a guided, on-

line Solidity CTF
 6 lessons

Portland State University CS 410/510 Blockchain Development & Security

Lesson 1-2

Basic language features, modifiers, special functions, Web3 events

Mappings, msg object, inheritance, importing code, asserts, exceptions,
custom modifiers, storage/memory, calling other contracts

Contract setup

 pragma statement to identify compiler version
 Note that the syntax of Solidity has changed significantly over time

 Language is a moving target

 Will learn the version used in the CTFs

 contract keyword specifies contract code

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.24;

contract HelloWorld {

}

Data types

 Boolean (bool)
 Signed integers of various widths

 int = 256 bits
 Can also use smaller versions (to save gas)

 int8, int16 … etc.

 Unsigned integers of various widths
 uint = 256 bits
 Can also use smaller versions (to save gas)

 uint8, uint16 … etc.

 Note: Contract state variables stored on blockchain!

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.24;

contract ZombieFactory {
bool myBool = true;
uint my256BitUnsignedInteger = 100;
uint8 my8BitUnsignedInteger = 5;

}

 Aside: Typecasting and coercison between integers
 Must understand the rules for correctness

 Implicit cast to higher precision when types mixed

 Throws an error when types not compatible

 Product returns a uint not a uint8

 Must perform explicit cast to make work

Portland State University CS 410/510 Blockchain Development & Security

uint8 a = 5;
uint b = 6;
// Type of a * b ?

uint8 c = a * uint8(b);

// throws an error
uint8 c = a * b;

 bytes

 Dynamic array of bytes

 Individual bytes accessed via [] indexing

 string

 Array of characters

 address

 20 byte Ethereum address used to send and receive Ether (in units of

Wei)

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.24;

contract ZombieFactory {
bytes bytearray = 0xFFFFFFFF;
string myName = "Wu-chang Feng";
address myWalletAddr = 0xe9e7034AeD5CE7f5b0D281CFE347B8a5c2c53504;

}

 Arrays
 Fixed arrays of typed objects

 Dynamic arrays of typed objects

 Add via Array's built-in push() method

Portland State University CS 410/510 Blockchain Development & Security

// Fixed array of 2 unsigned integers
uint[2] uintArray;
// Fixed Array of 5 strings:
string[5] stringArray;

// Dynamic array of unsigned integers (can keep growing)
uint[] dynamicArray;

dynamicArray.push(5);
dynamicArray.push(10);
dynamicArray.push(15);

Arithmetic operators

Portland State University CS 410/510 Blockchain Development & Security

+ - * / % ** (exponentiation)

pragma solidity ^0.4.24;

contract ZombieFactory {
uint number1 = 10000;
uint number2 = 16;
uint result1 = 0;
uint result2 = 0;
result1 = (number1 + number2) * (number1 - number2);
result2 = 2 ** 3 ; // 2^3 == 8

}

Bitwise operators

& | ^ ~ << >>

Logical operators

Portland State University CS 410/510 Blockchain Development & Security

 Boolean results
 Negation, AND, OR

! && ||

 Equality and inequality

== !=

 Magnitude comparisons

<= >= < >

Conditionals

 Common control flow
 if, else, while, do, for, break, continue,

return

Portland State University CS 410/510 Blockchain Development & Security

function eatBLT(bool likeBLT, uint numBLT) {
if (likeBLT && (numBLT > 0)) {

numBLT--;
eat();

}
}

if (coin_balance[userId] > 100000000) {
// You're rich!!!

} else {
// You're poor!!!

}

 Example for loop for creating an array of even numbers

Portland State University CS 410/510 Blockchain Development & Security

uint[] evens = new uint[](5);
uint counter = 0;
for (uint i = 1; i <= 10; i++) {

if (i % 2 == 0) {
evens[counter] = i;
counter++;

}
}

Functions, parameters, and return values

 Declared with statically typed parameters & return values
 Return value specified in function definition via returns keyword

Portland State University CS 410/510 Blockchain Development & Security

function sum(uint _input1, uint _input2) returns (uint){
return(_input1 + _input2);

}

Inheritance and polymorphism

 is keyword to specify inheritance

 Derive specialized contracts from a more generic one

 Can inherit from multiple contracts

Portland State University CS 410/510 Blockchain Development & Security

contract BasicToken {
uint totalSupply;
function balanceOf(address who) returns (uint);
function transfer(address to, uint value) returns (bool);

}
contract AdvancedToken is BasicToken {

...
}

contract SatoshiNakamoto is NickSzabo, HalFinney {

}

Visibility modifiers

 Modfiers applied to functions and variables to annotate them with where
they can be accessed from
 Software engineering (not a security) mechanism

 public
 Similar to OO languages
 Functions and variables can be accessed either internally or from any other

contract including those derived from it (e.g. from anywhere)

 private
 Function and variable access only to code within contract they are defined in

(and not in derived contracts)
 Note: Do not confuse this with secrecy

 Data resides on blockchain still!

Portland State University CS 410/510 Blockchain Development & Security

// Dynamic array of Person structs publicly readable
// (e.g. automatically have getter method and viewable
// externally)
Person[] public people;

 If not specified, default public
 Any user or contract can call _addToArray

 Use private modifier after parameter declaration to make

private
 Only other functions within our contract can add to array of numbers

 Array is still visible to a full node

Portland State University CS 410/510 Blockchain Development & Security

uint[] numbers;
function _addToArray(uint _number) {

numbers.push(_number);
}

uint[] numbers;
function _addToArray(uint _number) private {

numbers.push(_number);
}

Additional visibility modifiers

 external

 Declare as part of the contract interface that can be called

 Used to construct its application binary interface (ABI)

 Similar to public, but function can *only* be called from outside of

the contract by other contracts and via transactions

 Can not be called internally unless via "this" (e.g. this.f())
 msg.sender use contract's address vs address of initial caller

 internal

 Similar to private, but allows access both to other code within

contract and contracts derived from it via inheritance

 Akin to protected visibility of methods in OO languages

Portland State University CS 410/510 Blockchain Development & Security

 eatWithBacon() callable from anywhere, but eat()

callable only from derived class
 No way to eat a sandwich without bacon!

Portland State University CS 410/510 Blockchain Development & Security

contract Sandwich {
uint private sandwichesEaten = 0;

function eat() internal {
sandwichesEaten++;

}
}

contract BLT is Sandwich {
uint private baconSandwichesEaten = 0;

function eatWithBacon() public returns (string) {
baconSandwichesEaten++;
// We can call this here because it's internal
eat();

}
}

Auditing visibility modifiers for security

 Improper setting of internal/external and

public/private are a common source of vulnerabilities

 Ensure all public and external function calls are intended to

be called by anyone!

Portland State University CS 410/510 Blockchain Development & Security

Modifiers

 Modifiers applied to functions to annotate them with whether they
access or modify state

 view
 Does not modify any data in contract

 Called for free since transaction handled by a single node (light node)
 Make external view functions whenever possible

 pure
 Does not access any data in contract

Portland State University CS 410/510 Blockchain Development & Security

string greeting = "What's up dog?";

function sayHello() external view returns (string) {
return greeting;

}

function _multiply(uint a, uint b) private pure returns (uint) {
return a * b;

}

payable modifier

 Functions in contracts can accept Ether
 Unique to Ethereum since money (ether) and contract code/data both

stored on blockchain

 payable modifier specifies function that can receive payment

 Examples
 Charging caller $ for execution of an API call!

 Purchase an item in a smart contract

Portland State University CS 410/510 Blockchain Development & Security

contract OnlineStore {
function buySomething() external payable {

if (msg.value == 0.001 ether)
transferThing(msg.sender);

}
}

Constructor function

 Special function executed upon contract creation
 Example: Initialize number of tokens in an ICO contract

 Earlier versions specify it as function named after contract

Portland State University CS 410/510 Blockchain Development & Security

contract ICO {
uint private _totalSupply;
constructor(uint totalSupply) {

_totalSupply = totalSupply;
}

...
}

contract ICO {
uint private _totalSupply;
ICO(uint totalSupply) {

_totalSupply = totalSupply;
}

...
}

Fallback functions

 Contracts can declare precisely one unnamed function in its code that

takes no arguments and does not return anything

 Special function that is executed when…
 Contract is called with a function that does not match any of the functions

 Contract receives Ether without any data (e.g. an EOA just wants to send money to

contract)
 To actually receive Ether, the fallback function must be marked as "payable"

 Part of the EVM design (not Solidity)
 Often assumed to consume < 2300 gas and to always complete

 A tenuous assumption when using one smart contract to pay another one

Portland State University CS 410/510 Blockchain Development & Security

contract foo {
...

/** Accept any incoming payment. */
function () public payable {
}

...
}

keccak256()

 Native, built-in function for performing a version of SHA3

 Maps input into a random 256-bit hexadecimal number

 Slight change in input causes (on average) half of the bits in random

number to flip (avalanche effect)

 Note the return is a bytes32 object not a uint256!
 Bytes are individually indexable in bytes32 while uint256 typically used for single

addresses, numbers, and balances

Portland State University CS 410/510 Blockchain Development & Security

//6e91ec6b618bb462a4a6ee5aa2cb0e9cf30f7a052bb467b0ba58b8748c00d2e5
keccak256(abi.encodePacked("aaaab"));
//b1f078126895a1424524de5321b339ab00408010b7cf0e6ed451514981e58aa9
keccak256(abi.encodePacked("aaaac"));

selfdestruct()

 Native, built-in function for destroying a contract and sending

its balance to a specific address
 Will be flagged as a potential vector for denial of service by

compiler

Portland State University CS 410/510 Blockchain Development & Security

address beneficiary = 0x38E1a0d... ;

function collect() external {
// If called after April 14, 2019, send balance
// to beneficiary
if (now > 1555280607)

selfdestruct(beneficiary);
}

Mappings

 Data type that implements a dictionary
 Both keys and entries statically typed

 Unlike Python dictionaries that can use multiple types for both keys and

entries

 Syntax similar to arrays for access

Portland State University CS 410/510 Blockchain Development & Security

// Balance of account for user's address
mapping (address => uint) public accountBalance;

// Return username based on userId
mapping (uint => string) userIdToName;

userIdToName[1] = "Wu-chang Feng";

msg

 Special object denoting what caller has sent to contract
 Various parts of msg accessible within contract

 msg.sender : address of caller

 msg.value : amount Ether caller has sent in transaction

Portland State University CS 410/510 Blockchain Development & Security

mapping (address => uint) favoriteNumber;

function setMyNumber(uint _myNumber) public {
favoriteNumber[msg.sender] = _myNumber;

}
function whatIsMyNumber() public view returns (uint) {

return favoriteNumber[msg.sender];
}

import other code

 Done as source-code

 Typically located as relative path from current directory

Portland State University CS 410/510 Blockchain Development & Security

import "./someothercontract.sol";

contract newContract is SomeOtherContract {
...

}

assert/require exceptions

 Throw error, stop execution, and revert state if condition not met
 Exceptions bubble up to caller and cannot be caught

 require used to check externally provided input data

 assert used to check for internal conditions that should not occur

 require refunds user the rest of their gas when a function fails,

assert will not
 Both call revert() to undo state and return an error string

Portland State University CS 410/510 Blockchain Development & Security

function sayHiToVitalik(string _name) public returns (string) {
// See if _name is "Vitalik" via keccak256 hash
// Throws an error and exits if not true.
// No native string comparison in Solidity
require(keccak256(_name) == keccak256("Vitalik"));
// If it's true, proceed with the function:
return "Hi!";

}

contract FundRaise {

uint public constant minimumContribution = 3 ether;
uint public weiRaised;
address public owner;

constructor() public {
owner = msg.sender;

}

function contribute() payable external {
require(msg.value >= minimumContribution);
weiRaised += msg.value;

}

function withdraw() external {
require(owner == msg.sender);
owner.transfer(this.balance);

}
}

 Ensure contribute call has a minimum value

 Ensure withdraw is from owner

Custom modifiers with require

 Often used to amend a function in-line

 Defined using modifier keyword

 Modifier must end with _; to call original function

 Modifier onlyOwner executed when changePrice called

 Similar to Python function decorators (430P/530) and

detours/trampolines in Windows and x86 (492/592)

Portland State University CS 410/510 Blockchain Development & Security

modifier onlyOwner() {
require(owner == msg.sender);
_;

}

function changePrice(uint256 _price) onlyOwner public {
price = _price;

}

 Modifier can take parameters

Portland State University CS 410/510 Blockchain Development & Security

// A mapping to store a user's age indexed by userId:
mapping (uint => uint) public age;

// Modifier to require user be older than a certain age:
modifier olderThan(uint _age, uint _userId) {

require(age[_userId] >= _age);
_;

}

function driveCar(uint _userId) public olderThan(16, _userId) {
// Some function logic

}

function canBarHop(uint _userId) public olderThan(21, _userId) {
// Some function logic

}

Storage and memory

 Two types of variables

 Storage
 Persistent storage on blockchain itself (survives between function

invocations)

 Any state variables outside of function call are placed in storage

 Memory
 Temporary storage used within lifetime of a function execution

 Any state variables within function calls are placed in temporary

memory

 Disappear when function ends

 Similar to pass by reference (storage) and pass by value (memory)
 Can specify with keywords memory and storage

Portland State University CS 410/510 Blockchain Development & Security

function _doStuff(Zombie storage _zombie) internal {
// do stuff with _zombie

}

contract SandwichFactory {
struct Sandwich { string name; string status; }
Sandwich[] sandwiches;
function eatSandwich(uint _index) public {

// `mySandwich` is a pointer to sandwich in storage
Sandwich storage mySandwich = sandwiches[_index];
// Changes `sandwiches[_index]` status on the blockchain.
mySandwich.status = "Eaten!";

// `anotherSandwich` is a temporary copy of sandwich
Sandwich memory anotherSandwich = sandwiches[_index + 1];

// Changing copy has no effect on storage
// of `sandwiches[_index + 1]`.
anotherSandwich.status = "Eaten!";

// Unless you copy the changes back into storage.
sandwiches[_index + 1] = anotherSandwich;

}
}

 Sandwich on the blockchain accessed and changed (expensive)
 Copy of sandwich in memory (cheap)

 Written back to storage (expensive)

 Note: $ storage > $ computation on Ethereum
 Must optimize to reduce modifications to storage

 Example
 Keep a list of collectibles a contract has

 Items can be exchanged at anytime

 Goal: Return a sorted list of items
 Strategy #1: Sort in storage (requires significant updates to data on blockchain

each time an item is either added or removed)

 A common vector for bricking a contract

 Strategy #2: Keep items unsorted, update in-place. Sort items via array in

memory

 Strategy #3: Keep items unsorted, update in-place. Require front-end to sort

Portland State University CS 410/510 Blockchain Development & Security

Calling other contracts

 Done via defining contract's calling interface and address
 Similar to C's ".h" and function linking mechanisms

 Function call prototype (parameters, return values, and their types) with declaration

ending with a semi-colon

 Contract code

 Interface to call contract

Portland State University CS 410/510 Blockchain Development & Security

contract LuckyNumber {
mapping(address => uint) numbers;
function setNum(uint _num) public {

numbers[msg.sender] = _num;
}
function getNum(address _myAddr) public view returns (uint) {

return numbers[_myAddr];
}

}

contract LuckyNumberInterface {
function getNum(address _myAddr) public view returns (uint);

}

 Interface can now be used to call into LuckyNumber contract

 Suppose LuckyNumber contract is at 0xab38…. and we wish to

call its getNum function from our contract (MyContract)

contract LuckyNumberInterface {
function getNum(address _myAddr) public view returns (uint);

}

contract MyContract {
address LuckyNumberAddr = 0xab38...

// `numberContract` a pointer to LuckyNumber contract
LuckyNumberInterface numberContract =

LuckyNumberInterface(LuckyNumberAddr);

function someFunction() public {
// Can now call `getNum` from that contract

uint num = numberContract.getNum(msg.sender);
// ...and do something with `num` here
}

}

web3.js

web3.js

 Javascript library to interface Ethereum VM to a front-end web app
 Provider typically points to a full-node (e.g. Infura), but can be set

 If geth (Ethereum client written in Go) or Parity (Ethereum client

written in Rust) running locally, then

 web3.js communicates directly to locally running node

 Also interfaces with a wallet (e.g. Metamask) to provide bridge

between user, wallet, browser, and blockchain

Portland State University CS 410/510 Blockchain Development & Security

import Web3 from 'web3';
const web3 = new Web3('http://localhost:8545');

web3.js example

 Recall purchasing function in on-line store

 JavaScript in web browser to trigger purchase via web3.js
 web3.eth.defaultAccount to connect wallet

Portland State University CS 410/510 Blockchain Development & Security

contract OnlineStore {
function buySomething() external payable {

if (msg.value == 0.001 ether)
transferThing(msg.sender);

}
}

var abi = /* generated by the compiler */
var OnlineStoreContract = web3.eth.contract(abi)
var contractAddress = 0x1A3... /* contract address on Ethereum */
var OnlineStore = OnlineStoreContract.at(contractAddress)

OnlineStore.buySomething({from: web3.eth.defaultAccount,
value: web3.utils.toWei(0.001)})

Events

 Used to invoke JavaScript callbacks to send Ethereum events to

browser
 e.g. notify browser (via web3.js) that something has happened on the

blockchain

 Defined via event keyword in Solidity
 e.g. a transfer that has happened between two accounts on a tokenwill

emit…

 Javascript via web3.js updates browser UI to show transfer
 Used to generate update UI and generate Javascript popup in CTF

Portland State University CS 410/510 Blockchain Development & Security

event Transfer(address _from, address _to, uint256 _value);

 Example
 Event notification in smart contract

 Emit in function execution triggers JavaScript callback in browser

(more later)

Portland State University CS 410/510 Blockchain Development & Security

// Declare event
event IntegersAdded(uint x, uint y, uint result);

function add(uint _x, uint _y) public {
uint result = _x + _y;
// Notify app that function was called:
emit IntegersAdded(_x, _y, result);
return result;

}

YourContract.IntegersAdded(function(error, result) {
// Do something with result (e.g. update UI)

}

