
Solidity Pt. 1

Solidity

 Javascript-like programming language for writing programs that run

on the Ethereum Virtual Machine

 Domain-specific language that supports abstractions required for

operation of smart contracts
 e.g. contracts, addresses, ownership, payments, hash functions, block

information

 Will incrementally learn language using lessons from a guided, on-

line Solidity CTF
 6 lessons

Portland State University CS 410/510 Blockchain Development & Security

Lesson 1-2

Basic language features, modifiers, special functions, Web3 events

Mappings, msg object, inheritance, importing code, asserts, exceptions,
custom modifiers, storage/memory, calling other contracts

Contract setup

 pragma statement to identify compiler version
 Note that the syntax of Solidity has changed significantly over time

 Language is a moving target

 Will learn the version used in the CTFs

 contract keyword specifies contract code

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.24;

contract HelloWorld {

}

Data types

 Boolean (bool)
 Signed integers of various widths

 int = 256 bits
 Can also use smaller versions (to save gas)

 int8, int16 … etc.

 Unsigned integers of various widths
 uint = 256 bits
 Can also use smaller versions (to save gas)

 uint8, uint16 … etc.

 Note: Contract state variables stored on blockchain!

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.24;

contract ZombieFactory {
bool myBool = true;
uint my256BitUnsignedInteger = 100;
uint8 my8BitUnsignedInteger = 5;

}

 Aside: Typecasting and coercison between integers
 Must understand the rules for correctness

 Implicit cast to higher precision when types mixed

 Throws an error when types not compatible

 Product returns a uint not a uint8

 Must perform explicit cast to make work

Portland State University CS 410/510 Blockchain Development & Security

uint8 a = 5;
uint b = 6;
// Type of a * b ?

uint8 c = a * uint8(b);

// throws an error
uint8 c = a * b;

 bytes

 Dynamic array of bytes

 Individual bytes accessed via [] indexing

 string

 Array of characters

 address

 20 byte Ethereum address used to send and receive Ether (in units of

Wei)

Portland State University CS 410/510 Blockchain Development & Security

pragma solidity ^0.4.24;

contract ZombieFactory {
bytes bytearray = 0xFFFFFFFF;
string myName = "Wu-chang Feng";
address myWalletAddr = 0xe9e7034AeD5CE7f5b0D281CFE347B8a5c2c53504;

}

 Arrays
 Fixed arrays of typed objects

 Dynamic arrays of typed objects

 Add via Array's built-in push() method

Portland State University CS 410/510 Blockchain Development & Security

// Fixed array of 2 unsigned integers
uint[2] uintArray;
// Fixed Array of 5 strings:
string[5] stringArray;

// Dynamic array of unsigned integers (can keep growing)
uint[] dynamicArray;

dynamicArray.push(5);
dynamicArray.push(10);
dynamicArray.push(15);

Arithmetic operators

Portland State University CS 410/510 Blockchain Development & Security

+ - * / % ** (exponentiation)

pragma solidity ^0.4.24;

contract ZombieFactory {
uint number1 = 10000;
uint number2 = 16;
uint result1 = 0;
uint result2 = 0;
result1 = (number1 + number2) * (number1 - number2);
result2 = 2 ** 3 ; // 2^3 == 8

}

Bitwise operators

& | ^ ~ << >>

Logical operators

Portland State University CS 410/510 Blockchain Development & Security

 Boolean results
 Negation, AND, OR

! && ||

 Equality and inequality

== !=

 Magnitude comparisons

<= >= < >

Conditionals

 Common control flow
 if, else, while, do, for, break, continue,

return

Portland State University CS 410/510 Blockchain Development & Security

function eatBLT(bool likeBLT, uint numBLT) {
if (likeBLT && (numBLT > 0)) {

numBLT--;
eat();

}
}

if (coin_balance[userId] > 100000000) {
// You're rich!!!

} else {
// You're poor!!!

}

 Example for loop for creating an array of even numbers

Portland State University CS 410/510 Blockchain Development & Security

uint[] evens = new uint[](5);
uint counter = 0;
for (uint i = 1; i <= 10; i++) {

if (i % 2 == 0) {
evens[counter] = i;
counter++;

}
}

Functions, parameters, and return values

 Declared with statically typed parameters & return values
 Return value specified in function definition via returns keyword

Portland State University CS 410/510 Blockchain Development & Security

function sum(uint _input1, uint _input2) returns (uint){
return(_input1 + _input2);

}

Inheritance and polymorphism

 is keyword to specify inheritance

 Derive specialized contracts from a more generic one

 Can inherit from multiple contracts

Portland State University CS 410/510 Blockchain Development & Security

contract BasicToken {
uint totalSupply;
function balanceOf(address who) returns (uint);
function transfer(address to, uint value) returns (bool);

}
contract AdvancedToken is BasicToken {

...
}

contract SatoshiNakamoto is NickSzabo, HalFinney {

}

Visibility modifiers

 Modfiers applied to functions and variables to annotate them with where
they can be accessed from
 Software engineering (not a security) mechanism

 public
 Similar to OO languages
 Functions and variables can be accessed either internally or from any other

contract including those derived from it (e.g. from anywhere)

 private
 Function and variable access only to code within contract they are defined in

(and not in derived contracts)
 Note: Do not confuse this with secrecy

 Data resides on blockchain still!

Portland State University CS 410/510 Blockchain Development & Security

// Dynamic array of Person structs publicly readable
// (e.g. automatically have getter method and viewable
// externally)
Person[] public people;

 If not specified, default public
 Any user or contract can call _addToArray

 Use private modifier after parameter declaration to make

private
 Only other functions within our contract can add to array of numbers

 Array is still visible to a full node

Portland State University CS 410/510 Blockchain Development & Security

uint[] numbers;
function _addToArray(uint _number) {

numbers.push(_number);
}

uint[] numbers;
function _addToArray(uint _number) private {

numbers.push(_number);
}

Additional visibility modifiers

 external

 Declare as part of the contract interface that can be called

 Used to construct its application binary interface (ABI)

 Similar to public, but function can *only* be called from outside of

the contract by other contracts and via transactions

 Can not be called internally unless via "this" (e.g. this.f())
 msg.sender use contract's address vs address of initial caller

 internal

 Similar to private, but allows access both to other code within

contract and contracts derived from it via inheritance

 Akin to protected visibility of methods in OO languages

Portland State University CS 410/510 Blockchain Development & Security

 eatWithBacon() callable from anywhere, but eat()

callable only from derived class
 No way to eat a sandwich without bacon!

Portland State University CS 410/510 Blockchain Development & Security

contract Sandwich {
uint private sandwichesEaten = 0;

function eat() internal {
sandwichesEaten++;

}
}

contract BLT is Sandwich {
uint private baconSandwichesEaten = 0;

function eatWithBacon() public returns (string) {
baconSandwichesEaten++;
// We can call this here because it's internal
eat();

}
}

Auditing visibility modifiers for security

 Improper setting of internal/external and

public/private are a common source of vulnerabilities

 Ensure all public and external function calls are intended to

be called by anyone!

Portland State University CS 410/510 Blockchain Development & Security

Modifiers

 Modifiers applied to functions to annotate them with whether they
access or modify state

 view
 Does not modify any data in contract

 Called for free since transaction handled by a single node (light node)
 Make external view functions whenever possible

 pure
 Does not access any data in contract

Portland State University CS 410/510 Blockchain Development & Security

string greeting = "What's up dog?";

function sayHello() external view returns (string) {
return greeting;

}

function _multiply(uint a, uint b) private pure returns (uint) {
return a * b;

}

payable modifier

 Functions in contracts can accept Ether
 Unique to Ethereum since money (ether) and contract code/data both

stored on blockchain

 payable modifier specifies function that can receive payment

 Examples
 Charging caller $ for execution of an API call!

 Purchase an item in a smart contract

Portland State University CS 410/510 Blockchain Development & Security

contract OnlineStore {
function buySomething() external payable {

if (msg.value == 0.001 ether)
transferThing(msg.sender);

}
}

Constructor function

 Special function executed upon contract creation
 Example: Initialize number of tokens in an ICO contract

 Earlier versions specify it as function named after contract

Portland State University CS 410/510 Blockchain Development & Security

contract ICO {
uint private _totalSupply;
constructor(uint totalSupply) {

_totalSupply = totalSupply;
}

...
}

contract ICO {
uint private _totalSupply;
ICO(uint totalSupply) {

_totalSupply = totalSupply;
}

...
}

Fallback functions

 Contracts can declare precisely one unnamed function in its code that

takes no arguments and does not return anything

 Special function that is executed when…
 Contract is called with a function that does not match any of the functions

 Contract receives Ether without any data (e.g. an EOA just wants to send money to

contract)
 To actually receive Ether, the fallback function must be marked as "payable"

 Part of the EVM design (not Solidity)
 Often assumed to consume < 2300 gas and to always complete

 A tenuous assumption when using one smart contract to pay another one

Portland State University CS 410/510 Blockchain Development & Security

contract foo {
...

/** Accept any incoming payment. */
function () public payable {
}

...
}

keccak256()

 Native, built-in function for performing a version of SHA3

 Maps input into a random 256-bit hexadecimal number

 Slight change in input causes (on average) half of the bits in random

number to flip (avalanche effect)

 Note the return is a bytes32 object not a uint256!
 Bytes are individually indexable in bytes32 while uint256 typically used for single

addresses, numbers, and balances

Portland State University CS 410/510 Blockchain Development & Security

//6e91ec6b618bb462a4a6ee5aa2cb0e9cf30f7a052bb467b0ba58b8748c00d2e5
keccak256(abi.encodePacked("aaaab"));
//b1f078126895a1424524de5321b339ab00408010b7cf0e6ed451514981e58aa9
keccak256(abi.encodePacked("aaaac"));

selfdestruct()

 Native, built-in function for destroying a contract and sending

its balance to a specific address
 Will be flagged as a potential vector for denial of service by

compiler

Portland State University CS 410/510 Blockchain Development & Security

address beneficiary = 0x38E1a0d... ;

function collect() external {
// If called after April 14, 2019, send balance
// to beneficiary
if (now > 1555280607)

selfdestruct(beneficiary);
}

Mappings

 Data type that implements a dictionary
 Both keys and entries statically typed

 Unlike Python dictionaries that can use multiple types for both keys and

entries

 Syntax similar to arrays for access

Portland State University CS 410/510 Blockchain Development & Security

// Balance of account for user's address
mapping (address => uint) public accountBalance;

// Return username based on userId
mapping (uint => string) userIdToName;

userIdToName[1] = "Wu-chang Feng";

msg

 Special object denoting what caller has sent to contract
 Various parts of msg accessible within contract

 msg.sender : address of caller

 msg.value : amount Ether caller has sent in transaction

Portland State University CS 410/510 Blockchain Development & Security

mapping (address => uint) favoriteNumber;

function setMyNumber(uint _myNumber) public {
favoriteNumber[msg.sender] = _myNumber;

}
function whatIsMyNumber() public view returns (uint) {

return favoriteNumber[msg.sender];
}

import other code

 Done as source-code

 Typically located as relative path from current directory

Portland State University CS 410/510 Blockchain Development & Security

import "./someothercontract.sol";

contract newContract is SomeOtherContract {
...

}

assert/require exceptions

 Throw error, stop execution, and revert state if condition not met
 Exceptions bubble up to caller and cannot be caught

 require used to check externally provided input data

 assert used to check for internal conditions that should not occur

 require refunds user the rest of their gas when a function fails,

assert will not
 Both call revert() to undo state and return an error string

Portland State University CS 410/510 Blockchain Development & Security

function sayHiToVitalik(string _name) public returns (string) {
// See if _name is "Vitalik" via keccak256 hash
// Throws an error and exits if not true.
// No native string comparison in Solidity
require(keccak256(_name) == keccak256("Vitalik"));
// If it's true, proceed with the function:
return "Hi!";

}

contract FundRaise {

uint public constant minimumContribution = 3 ether;
uint public weiRaised;
address public owner;

constructor() public {
owner = msg.sender;

}

function contribute() payable external {
require(msg.value >= minimumContribution);
weiRaised += msg.value;

}

function withdraw() external {
require(owner == msg.sender);
owner.transfer(this.balance);

}
}

 Ensure contribute call has a minimum value

 Ensure withdraw is from owner

Custom modifiers with require

 Often used to amend a function in-line

 Defined using modifier keyword

 Modifier must end with _; to call original function

 Modifier onlyOwner executed when changePrice called

 Similar to Python function decorators (430P/530) and

detours/trampolines in Windows and x86 (492/592)

Portland State University CS 410/510 Blockchain Development & Security

modifier onlyOwner() {
require(owner == msg.sender);
_;

}

function changePrice(uint256 _price) onlyOwner public {
price = _price;

}

 Modifier can take parameters

Portland State University CS 410/510 Blockchain Development & Security

// A mapping to store a user's age indexed by userId:
mapping (uint => uint) public age;

// Modifier to require user be older than a certain age:
modifier olderThan(uint _age, uint _userId) {

require(age[_userId] >= _age);
_;

}

function driveCar(uint _userId) public olderThan(16, _userId) {
// Some function logic

}

function canBarHop(uint _userId) public olderThan(21, _userId) {
// Some function logic

}

Storage and memory

 Two types of variables

 Storage
 Persistent storage on blockchain itself (survives between function

invocations)

 Any state variables outside of function call are placed in storage

 Memory
 Temporary storage used within lifetime of a function execution

 Any state variables within function calls are placed in temporary

memory

 Disappear when function ends

 Similar to pass by reference (storage) and pass by value (memory)
 Can specify with keywords memory and storage

Portland State University CS 410/510 Blockchain Development & Security

function _doStuff(Zombie storage _zombie) internal {
// do stuff with _zombie

}

contract SandwichFactory {
struct Sandwich { string name; string status; }
Sandwich[] sandwiches;
function eatSandwich(uint _index) public {

// `mySandwich` is a pointer to sandwich in storage
Sandwich storage mySandwich = sandwiches[_index];
// Changes `sandwiches[_index]` status on the blockchain.
mySandwich.status = "Eaten!";

// `anotherSandwich` is a temporary copy of sandwich
Sandwich memory anotherSandwich = sandwiches[_index + 1];

// Changing copy has no effect on storage
// of `sandwiches[_index + 1]`.
anotherSandwich.status = "Eaten!";

// Unless you copy the changes back into storage.
sandwiches[_index + 1] = anotherSandwich;

}
}

 Sandwich on the blockchain accessed and changed (expensive)
 Copy of sandwich in memory (cheap)

 Written back to storage (expensive)

 Note: $ storage > $ computation on Ethereum
 Must optimize to reduce modifications to storage

 Example
 Keep a list of collectibles a contract has

 Items can be exchanged at anytime

 Goal: Return a sorted list of items
 Strategy #1: Sort in storage (requires significant updates to data on blockchain

each time an item is either added or removed)

 A common vector for bricking a contract

 Strategy #2: Keep items unsorted, update in-place. Sort items via array in

memory

 Strategy #3: Keep items unsorted, update in-place. Require front-end to sort

Portland State University CS 410/510 Blockchain Development & Security

Calling other contracts

 Done via defining contract's calling interface and address
 Similar to C's ".h" and function linking mechanisms

 Function call prototype (parameters, return values, and their types) with declaration

ending with a semi-colon

 Contract code

 Interface to call contract

Portland State University CS 410/510 Blockchain Development & Security

contract LuckyNumber {
mapping(address => uint) numbers;
function setNum(uint _num) public {

numbers[msg.sender] = _num;
}
function getNum(address _myAddr) public view returns (uint) {

return numbers[_myAddr];
}

}

contract LuckyNumberInterface {
function getNum(address _myAddr) public view returns (uint);

}

 Interface can now be used to call into LuckyNumber contract

 Suppose LuckyNumber contract is at 0xab38…. and we wish to

call its getNum function from our contract (MyContract)

contract LuckyNumberInterface {
function getNum(address _myAddr) public view returns (uint);

}

contract MyContract {
address LuckyNumberAddr = 0xab38...

// `numberContract` a pointer to LuckyNumber contract
LuckyNumberInterface numberContract =

LuckyNumberInterface(LuckyNumberAddr);

function someFunction() public {
// Can now call `getNum` from that contract

uint num = numberContract.getNum(msg.sender);
// ...and do something with `num` here
}

}

web3.js

web3.js

 Javascript library to interface Ethereum VM to a front-end web app
 Provider typically points to a full-node (e.g. Infura), but can be set

 If geth (Ethereum client written in Go) or Parity (Ethereum client

written in Rust) running locally, then

 web3.js communicates directly to locally running node

 Also interfaces with a wallet (e.g. Metamask) to provide bridge

between user, wallet, browser, and blockchain

Portland State University CS 410/510 Blockchain Development & Security

import Web3 from 'web3';
const web3 = new Web3('http://localhost:8545');

web3.js example

 Recall purchasing function in on-line store

 JavaScript in web browser to trigger purchase via web3.js
 web3.eth.defaultAccount to connect wallet

Portland State University CS 410/510 Blockchain Development & Security

contract OnlineStore {
function buySomething() external payable {

if (msg.value == 0.001 ether)
transferThing(msg.sender);

}
}

var abi = /* generated by the compiler */
var OnlineStoreContract = web3.eth.contract(abi)
var contractAddress = 0x1A3... /* contract address on Ethereum */
var OnlineStore = OnlineStoreContract.at(contractAddress)

OnlineStore.buySomething({from: web3.eth.defaultAccount,
value: web3.utils.toWei(0.001)})

Events

 Used to invoke JavaScript callbacks to send Ethereum events to

browser
 e.g. notify browser (via web3.js) that something has happened on the

blockchain

 Defined via event keyword in Solidity
 e.g. a transfer that has happened between two accounts on a tokenwill

emit…

 Javascript via web3.js updates browser UI to show transfer
 Used to generate update UI and generate Javascript popup in CTF

Portland State University CS 410/510 Blockchain Development & Security

event Transfer(address _from, address _to, uint256 _value);

 Example
 Event notification in smart contract

 Emit in function execution triggers JavaScript callback in browser

(more later)

Portland State University CS 410/510 Blockchain Development & Security

// Declare event
event IntegersAdded(uint x, uint y, uint result);

function add(uint _x, uint _y) public {
uint result = _x + _y;
// Notify app that function was called:
emit IntegersAdded(_x, _y, result);
return result;

}

YourContract.IntegersAdded(function(error, result) {
// Do something with result (e.g. update UI)

}

