Solidity Pt. 1

@ Portland State
& Computer Science /

e
Solidity

® Javascript-like programming language for writing programs that run
on the Ethereum Virtual Machine

® Domain—specific language that supports abstractions required for
operation of smart contracts

e.g. contracts, addresses, ownership, payments, hash functions, block

information

* Will incrementally learn language using lessons from a guided, on-

line Solidity CTF

6 lessons

Portland State University CS 410/ 510 Blockchain Development & Security

Lesson 1-2

Basic language features, modifiers, special functions, Web3 events

Mappings, msg object, inheritance, importing code, asserts, exceptions,
custom modifiers, storage/memory, calling other contracts

e
Contract setup

® pragma statement to identity compiler version
Note that the syntax of Solidity has changed significantly over time
Language is a moving target
Will learn the version used in the CTFs

pragma solidity 70.4.24;
e contract keyword specifies contract code

contract HelloWorld {

}

Portland State University CS 410/ 510 Blockchain Development & Security

e
Data types

® Boolean (bool)
* Signed integers of various widths
int = 256 bits
Can also use smaller versions (to save gas)
int8,1ntl6 ... etc.
* Unsigned integers of various widths
ulint = 256 bits
Can also use smaller versions (to save gas)
uint8,uintlo ... etc.

pragma solidity 70.4.24;

contract ZombieFactory {
bool myBool = true;
uint my256BitUnsignedInteger
uint8 my8BitUnsignedInteger =

-

100;
55

® Note: Contract state variables stored on blockchain!

Portland State Universitv CS 410/510 Blockchain Develooment & Security

Aside: Typecasting and coercison between integers
Must understand the rules for correctness

Implicit cast to higher precision when types mixed

uint8 a =

uint b = 6;
// Type of a * b ?

Throws an error when types not compatible
® Product returnsa ulnt notaulint8

// throws an error
uint8 ¢ = a * b;

Must perform explicit cast to make work

uint8 ¢ = a * uint8(b);

Portland State University CS 410/ 510 Blockchain Development & Security

//Obytes

Dynamic array of bytes

Individual bytes accessed via [] indexing
e string

Array of characters
* address

20 byte Ethereum address used to send and receive Ether (in units of
Wei)

pragma solidity 70.4.24;

contract ZombieFactory {

bytes bytearray = OxFFFFFFFF;
string myName = "Wu-chang Feng";
address myWalletAddr = @xe9e7034AeD5CE7f5b@D281CFE347B8a5c2c53504;

Portland State University CS 410/ 510 Blockchain Development & Security

e

° Arrays
Fixed arrays of typed objects

// Fixed array of 2 unsigned integers
uint[2] uintArray;

// Fixed Array of 5 strings:
string[5] stringArray;

Dynamic arrays of typed objects

// Dynamic array of unsigned integers (can keep growing)
uint[] dynamicArray;

Add via Array's built-in push () method

dynamicArray.push(5);
dynamicArray.push(10);

dynamicArray.push(15);

Portland State University CS 410/ 510 Blockchain Development & Security

e
Arithmetic operators

+ —~ * / % ** (exponentiation)

pragma solidity 70.4.24;

contract ZombieFactory {

uint numberl 10000;

uint number?2 16;

uint resultl 0;

uint result?2 0;

resultl = (numberl + number2) * (numberl - number2);
result2 = 2 ** 3 ;

Bitwise operators

& | A ~ << >>

Portland State University CS 410/ 510 Blockchain Development & Security

N
Logical operators

® Boolean results
® Negation, AND, OR
1 && | |
* Equality and inequality
—— 1=
® Magnitude comparisons
<= >= < >

Portland State University CS 410/ 510 Blockchain Development & Security

s
Conditionals

e Common control flow
1f, else, while, do, for, break, continue,
return

function eatBLT(bool 1ikeBLT, uint numBLT) {
if (1likeBLT && (numBLT > 0)) {
numBLT--;
eat();

if (coin_balance[userId] > 100000000) {
// You're rich!!!

} else {
// You're poor!l!!

}

Portland State University CS 410/ 510 Blockchain Development & Security

e

o Example for loop for creating an array of even numbers

uint[] evens = new uint[](5);

uint counter 0;

for (uint 1 = 1; 1 <= 10; i++) {
if (1% 2 9) {

evens|[counter] = i;
counter++;

Portland State University CS 410/ 510 Blockchain Development & Security

e

Functions, parameters, and return values

® Declared with statically typed parameters & return values

Return value specified in function definition via returns keyword

function sum(uint _inputl, uint _input2) returns (uint){

return(_inputl + _input2);

}

Portland State University CS 410/ 510 Blockchain Development & Security

Inheritance and polymorphism

e is keyword to specify inheritance

® Derive specialized contracts from a more generic one

contract BasicToken {
uint totalSupply;
function balanceOf(address who) returns (uint);
function transfer(address to, uint value) returns (bool);

}

contract AdvancedToken is BasicToken {

}

® Can inherit from multiple contracts

contract SatoshiNakamoto is NickSzabo, HalFinney {

¥

Portland State University CS 410/ 510 Blockchain Development & Security

e
Visibility modifiers

® Modfiers applied to functions and variables to annotate them with where
they can be accessed from
Software engineering (not a security) mechanism
e public
Similar to OO languages
Functions and variables can be accessed either internally or from any other
contract including those derived from it (e.g. from anywhere)

// Dynamic array of Person structs publicly readable
// (e.g. automatically have getter method and viewable

// externally)
Person[] public people;

e private
Function and variable access only to code within contract they are defined in
(and not in derived contracts)

Note: Do not confuse this with secrecy
Data resides on blockchain still!

Portland State University CS 410/ 510 Blockchain Development & Security

4 * If not specitfied, default public

Any user or contract can call addToArray

uint[] numbers;
function addToArray(uint _number) {

numbers.push(_number);

}

* Use private modifier after parameter declaration to make

:private

Only other functions within our contract can add to array of numbers

uint[] numbers;
function _addToArray(uint _number) private {

numbers.push(_number);

}

Array is still visible to a full node

Portland State University CS 410/ 510 Blockchain Development & Security

Additional visibility modifiers

* external
Declare as part of the contract interface that can be called
Used to construct its application binary interface (ABI)
Similar to publ1c, but function can *only* be called from outside of
the contract by other contracts and via transactions

Can not be called internally unless via "this" (e.g. this.f())
msqg . sender use contract's address vs address of initial caller

e 1internal
Similar to private, but allows access both to other code within

contract and contracts derived from it via inheritance

Akin to protected visibility of methods in OO languages

Portland State University CS 410/ 510 Blockchain Development & Security

* eatWithBacon () callable from anywhere, but eat ()

callable only from derived class

No way to eat a sandwich without bacon!

contract Sandwich {
uint private sandwichesEaten = 0;

function eat() internal {
sandwichesEaten++;

}
}

contract BLT is Sandwich {
uint private baconSandwichesEaten = 0©;

function eatWithBacon() public returns (string) {
baconSandwichesEaten++;
// We can call this here because it's 1internal
eat();

Portland State University CS 410/ 510 Blockchain Development & Security

4 N
Auditing visibility modifiers for security

* Improper setting of internal/external and
public/private are a common source of vulnerabilities

® Ensure all publicand external function calls are intended to
be called by anyone!

s
Modifiers

® Modifiers applied to functions to annotate them with whether they
access or modity state
e view
Does not modity any data in contract

string greeting = "What's up dog?";

function sayHello() external view returns (string) {
return greeting;

}

Called for free since transaction handled by a single node (light node)
Make external view functions whenever possible

e pure
Does not access any data in contract

function multiply(uint a, uint b) private pure returns (uint) {
return a * b;

}

Portland State University CS 410/ 510 Blockchain Development & Security

e

payable modifier

® LFunctions in contracts can accept Ether

Unique to Ethereum since money (ether) and contract code/data both
stored on blockchain
payable moditier specifies function that can receive payment

Examples
Charging caller § for execution of an API call!

Purchase an item in a smart contract

contract OnlineStore {
function buySomething() external payable {
if (msg.value == 0.001 ether)

transferThing(msg.sender);

Portland State University CS 410/ 510 Blockchain Development & Security

Constructor function

® Special function executed upon contract creation

Example: Initialize number of tokens in an ICO contract

contract ICO {
uint private _totalSupply;
constructor(uint totalSupply) {
_totalSupply = totalSupply;

}

Earlier versions specify it as function named after contract

contract ICO {
uint private _totalSupply;
ICO(uint totalSupply) {
_totalSupply = totalSupply;

}

1ite University CS 410/ 510 Blockchain Development & Security

Fallback functions

e (Contracts can declare precisely one unnamed function in its code that
takes no arguments and does not return anything

© Special function that is executed when. ..
Contract is called with a function that does not match any of the functions
Contract receives Ether without any data (e.g. an EOA just wants to send money to

contract)
To actually receive Ether, the fallback function must be marked as "payable"

* Part of the EVM design (not Solidity)

Often assumed to consume < 2300 gas and to always complete

A tenuous assumption when using one smart contract to pay another one

contract foo {

/** Accept any incoming payment. */

function () public payable {
}

Portland State University CS 410/ 510 Blockchain Development & Security

/keccak256()

* Native, built-in function for performing a version of SHA3
Maps input into a random 256-bit hexadecimal number

Slight change in input causes (on average) half of the bits in random

number to flip (avalanche effect)

//6e91lec6b618bb462ad4abee5aa2cb0e9ct30f7a052bb467bOba58b8748c00d2e5
keccak256(abi.encodePacked("aaaab"));

//bl1f07812689521424524de5321b339ab00408010b7cf0e6ed451514981e58aa9
keccak256(abi.encodePacked("aaaac"));

Note the returnisabytes32 objectnotaulnt256!

Bytes are individually indexable in bytes32 while uint256 typically used for single
addresses, numbers, and balances

Portland State University CS 410/ 510 Blockchain Development & Security

/selfdestruct()

* Native, built-in function for destroying a contract and sending
its balance to a specitic address
Will be flagged as a potential vector for denial of service by
compiler
address beneficiary = 0x38Ela@d... ;

function collect() external {
// If called after April 14, 2019, send balance

// to beneficiary
if (now > 1555280607)
selfdestruct(beneficiary);

Portland State University CS 410/ 510 Blockchain Development & Security

e
Mappings

® Data type that implements a dictionary
Both keys and entries statically typed

Unlike Python dictionaries that can use multiple types for both keys and
entries

e Syntax similar to arravs for access
y y

// Balance of account for user's address
mapping (address => uint) public accountBalance;

// Return username based on userId
mapping (uint => string) userIdToName;

userIdToName[1l] = "Wu-chang Feng";

Portland State University CS 410/ 510 Blockchain Development & Security

s
msg

® Special object denoting what caller has sent to contract
Various parts of msg accessible within contract
msg .sender : address of caller

mapping (address => uint) favoriteNumber;

function setMyNumber(uint _myNumber) public {
favoriteNumber[msg.sender] = _myNumber;

}

function whatIsMyNumber() public view returns (uint) {
return favoriteNumber[msg.sender];

}

msg.value : amount Ether caller has sent in transaction

Portland State University CS 410/ 510 Blockchain Development & Security

e
import other code

® Done as source-code

© Typically located as relative path from current directory

import "./someothercontract.sol”;

contract newContract is SomeOtherContract {

}

Portland State University CS 410/ 510 Blockchain Development & Security

4 . .
assert/require exceptions

® Throw error, stop execution, and revert state if condition not met
Exceptions bubble up to caller and cannot be caught
requilre used to check externally provided input data
assert used to check for internal conditions that should not occur
function sayHiToVitalik(string _name) public returns (string) {

// See 1f _name 1s "VitaliR" via ReccakR256 hash
// Throws an error and exits 1if not true.

// No native string comparison in Solidity

require(keccak256(_name) == keccak256("Vitalik"));

// If i1t's true, proceed with the function:
return "Hi!";

requilre refunds user the rest of their gas when a function fails,
assert will not

Both call revert () to undo state and return an error string

Portland State University CS 410/ 510 Blockchain Development & Security

® Ensure contribute call has a minimum value

® Ensure withdraw is from owner

contract FundRaise {

uint public constant minimumContribution = 3 ether;
uint public weiRaised;
address public owner;

constructor() public {
owner = msg.sender;

}

function contribute() payable external {
require(msg.value >= minimumContribution);
weiRaised += msg.value;

}

function withdraw() external {
require(owner == msg.sender);
owner.transfer(this.balance);

e
Custom modifiers with require

e Often used to amend a function in-line
® Defined using modifier keyword

* Modifier must end with ; to call original function

modifier onlyOwner() {
require(owner == msg.sender);

-

}

function changePrice(uint256 _price) onlyOwner public {
price = price;

}
® Modifier onlyOwner executed when changePrice called
® Similar to Python function decorators (430P/530) and
detours/trampolines in Windows and x86 (492/592)

Portland State University CS 410/ 510 Blockchain Development & Security

® Modifier can take parameters

// A mapping to store a user's age indexed by userlId:
mapping (uint => uint) public age;

// Modifier to require user be older than a certain age:
modifier olderThan(uint _age, uint _userId) {
require(age[_userId] >= _age);

S J

}

function driveCar(uint _userId) public olderThan(16, _userId) {
// Some function Llogic
}

function canBarHop(uint _userId) public olderThan(21, _userld) {
// Some function Llogic
}

Portland State University CS 410/ 510 Blockchain Development & Security

Storage and memory

* Two types of variables
® Storage
Persistent storage on blockchain itself (survives between function
invocations)
Any state variables outside of function call are placed in storage
®* Memory
Temporary storage used within lifetime of a function execution

Any state variables within function calls are placed in temporary

memory
Disappear when function ends

* Similar to pass by reference (storage) and pass by value (memory)
Can specity with keywords memory and storage

function _doStuff(Zombie storage _zombie) internal {
// do stuff with _zombie

}

Portland State University CS 410/ 510 Blockchain Development & Security

® Sandwich on the blockchain accessed and changed (expensive)

* Copy of sandwich in memory (cheap)
Written back to storage (expensive

contract SandwichFactory {

struct Sandwich { string name; string status; }

Sandwich[] sandwiches;

function eatSandwich(uint _index) public {
// ~mySandwich™ 1s a pointer to sandwich in storage
Sandwich storage mySandwich = sandwiches[_index];
// Changes " sandwiches[1index] status on the blockchain.
mySandwich.status = "Eaten!"”;

// ~anotherSandwich™ 1is a temporary copy of sandwich
Sandwich memory anotherSandwich = sandwiches[_index + 1];

// Changing copy has no effect on storage
// of “sandwiches[index + 1] .
anotherSandwich.status = "Eaten!";

// Unless you copy the changes back into storage.
sandwiches[index + 1] = anotherSandwich;

e

® Note: § storage > $ computation on Ethereum
Must optimize to reduce modifications to storage
* Example
Keep a list of collectibles a contract has
[tems can be exchanged at anytime

Goal: Return a sorted list of items
Strategy #1: Sort in storage (requires significant updates to data on blockchain
each time an item is either added or removed)
* A common vector for bricking a contract
Strategy #2: Keep items unsorted, update in-place. Sort items via array in
memory

Strategy #3: Keep items unsorted, update in-place. Require front-end to sort

Portland State University CS 410/ 510 Blockchain Development & Security

e
Calling other contracts

® Done via defining contract's calling interface and address
Similar to C's " . h" and function linking mechanisms
Function call prototype (parameters, return values, and their types) with declaration

ending with a semi-colon

e Contract code

contract LuckyNumber {
mapping(address => uint) numbers;
function setNum(uint _num) public {
numbers[msg.sender] = _num;

}

function getNum(address _myAddr) public view returns (uint) {
return numbers|[_ myAddr];

}

® Interface to call contract

contract LuckyNumberInterface {
function getNum(address _myAddr) public view returns (uint);

}

Portland State University CS 410/ 510 Blockchain Development & Security

® Interface can now be used to call into LuckyNumber contract

contract LuckyNumberInterface {
function getNum(address _myAddr) public view returns (uint);

}

® Suppose LuckyNumber contract is at Oxab38.... and we wish to

call its getNum function from our contract (MyContract)

contract MyContract {
address LuckyNumberAddr = 0xab38...

// ~numberContract a pointer to LucRyNumber contract
LuckyNumberInterface numberContract =
LuckyNumberInterface(LuckyNumberAddr);

function someFunction() public {

// Can now call “getNum from that contract
uint num = numberContract.getNum(msg.sender);

// ...and do something with “num here

}

web3.js

4 I
web3.js

® Javascript library to interface Ethereum VM to a front-end web app
Provider typically points to a full-node (e.g. Infura), but can be set
If geth (Ethereum client written in Go) or Par1ty (Ethereum client
written in Rust) running locally, then

import Web3 from 'web3';
const web3 = new Web3('http://localhost:8545");
web3.js communicates directly to locally running node

* Also interfaces with a wallet (e.g. Metamask) to provide bridge

between user, wallet, browser, and blockchain

Portland State University CS 410/ 510 Blockchain Development & Security

e
web3. js example

® Recall purchasing function in on-line store

contract OnlineStore {
function buySomething() external payable {
if (msg.value == 0.001 ether)

transferThing(msg.sender);

JavaScript in web browser to trigger purchase via web3.js
web3.eth.defaultAccount to connect wallet

var abi = /* generated by the compiler */

var OnlineStoreContract = web3.eth.contract(abi)

var contractAddress = Ox1A3... /* contract address on Ethereum */
var OnlineStore = OnlineStoreContract.at(contractAddress)

OnlineStore.buySomething({from: web3.eth.defaultAccount, <
value: web3.utils.toWei(©.001)})

Portland State University CS 410/ 510 Blockchain Development & Security

: I
Events

® Used to invoke JavaScript callbacks to send Ethereum events to

browser
e.g. notify browser (via welb3 . J s) that something has happened on the
blockchain
® Defined via event keyword in Solidity
e.g. a transfer that has happened between two accounts on a tokenwill

emit...

event Transfer(address _from, address _to, uint256 _value);

Javascript via web 3. j s updates browser Ul to show transfer
Used to generate update Ul and generate Javascript popup in CTF

Portland State University CS 410/ 510 Blockchain Development & Security

///' Example N

Event notification in smart contract

// Declare event
event IntegersAdded(uint x, uint y, uint result);

function add(uint _x, uint _y) public {
uint result = x + _y;
// Notify app that function was called:
emit IntegersAdded(_x, _y, result);
return result;

Emit in function execution triggers JavaScript callback in browser
(more later)

YourContract.IntegersAdded(function(error, result) {

// Do something with result (e.g. update UI)

}

Portland State University CS 410/ 510 Blockchain Development & Security

