
Smart contracts, Ethereum

Motivation

 Bitcoin
 Distributed ledger of financial transactions (currency transfers)

 Provides secure, immutable, global ordering of financial transactions

 What if a "transaction" were the execution of CPU instructions

instead?

 What if the blockchain were treated as an execution record for a

computer that includes its programs and their processes?

Portland State University CS 410/510 Blockchain Development & Security

Goal

 Extend blockchain to create a replicated, distributed, state machine

that can…
 Store arbitrary data

 Store persistent programs and their execution states

 Support function calls from users to these programs and have results

globally visible and agreed upon

Portland State University CS 410/510 Blockchain Development & Security

Smart contract definitions

 Also known as "persistent scripts" or "stored procedures"

 #1: A computer program executed in a secure environment that
directly controls digital assets

 #2: Computer program that digitally facilitates, verifies, or enforces
the performance of a contract and its transactions in a trackable and
irreversible manner without a third party

 Model
 Programs first committed to blockchain
 Receive authenticated inputs via other programs or users on the

blockchain
 Produce state changes and output based on program execution
 Execution is duplicated and replicated across all participating nodes to

maintain single global state

Portland State University CS 410/510 Blockchain Development & Security

Operating paradigm

 Begin with "genesis state" (similar to CoinBase)

 Use distributed consensus to implement shared state machine
 Blockchain executes transactions to move states

 Abstraction
 Single, shared machine

 Single shared, persistent memory storing code, execution state, and data

for smart contract (akin to a persistent process)

 Abstraction of a single, global computer with shared-state?
 Mainframe computing model

 Proof that everything old is new again! ☺

Portland State University CS 410/510 Blockchain Development & Security

 Credit: LinuxFoundationX: LFS171x

Portland State University CS 410/510 Blockchain Development & Security

Used to implement DApps

(Distributed Applications)

BUT..

Immutability

 Contract code is immutable!
 Code is there to stay, permanently, on the blockchain and can never be

modified or updated again once deployed
 Code is law

 No mechanism to patch (e.g. the opposite of CI/CD)

 Motivates…

Portland State University CS 410/510 Blockchain Development & Security

Security

 Konstantopoulous

 "In a potential future where whole organizations are governed by

smart contract code, there is an immense need for proper security.
 Must ensure your contract has no vulnerabilities *before* deployment

 Why code audits on smart contracts matter!

 Why program analysis and symbolic execution matter!

 Fixes to vulnerable code require completely new contract to be

deployed and users moved over to new contract address (if possible)

 Kill switches and safety valves sometimes built into contracts
 But, this protects contract owner at the expense of users.

 Tension between trusting code or trusting owner of the contract

 Buyer beware!

Portland State University CS 410/510 Blockchain Development & Security

Classes of DApps

 Automate or streamline operation of a trusted third party (trust is

expensive)

 Automate transaction processing

 Implement legal contracts with unambiguous terms that can be

expressed in code of program

 Create scarcity in digital domain (e.g. currencies, coins/stock,

collectibles)

Portland State University CS 410/510 Blockchain Development & Security

Sports betting

Portland State University CS 410/510 Blockchain Development & Security

if TrailBlazersWinChampionship2021() is true:

party_A.transfer(3000*bet_amount)

if TigerWoodsWinsMasters2019() is true:

party_A.transfer(14*bet_amount)

https://www.sportsbettingdime.com/nba/championship-odds/

https://www.sportsbettingdime.com/nba/championship-odds/

Legal contracts

 Trust fund

 Digital will
 Dead man's switch that executes code to transfer digital assets upon

owner dying

 Private key of coroner's office signs a transaction that triggers

execution of the will

Portland State University CS 410/510 Blockchain Development & Security

if current_year() > 2040:

child_A.transfer(fund.balance())

Escrow contracts

 Trustworthy asset exchange
 A transfers X amount to E (escrow contract)
 B transfers asset Y (e.g. digital deed) to A
 E automatically transfers X to B upon seeing Y being transferred to A
 If B refuses to transfer asset Y

 E returns X amount to A after specified timeout
 Can be done via 20 LoC, avoid paying thousands of dollars

Portland State University CS 410/510 Blockchain Development & Security

Multi-signature, multi-party asset transfers

 Require approval of a set of individuals before executing a transfer
 Example: Sale of a company approved by majority of stakeholders

signing shares to trigger transfer

Portland State University CS 410/510 Blockchain Development & Security

Decentralized finance applications

 Initial Coin Offerings selling ERC-20 tokens (more later)
 Virtual version of IPOs selling shares of a company

• Option contracts
• Allow a buy/sell transaction to be triggered based on date or condition

(e.g. strike price) being hit
• Executes itself according to coded terms
• Contract can be made between parties potentially unknown to each

other
• Would afford regulators greater transparency to view and audit

transactions for abuse

Portland State University CS 410/510 Blockchain Development & Security

Decentralized finance applications

 Bootstrapping alternate networks (EOS, Tron)
 Shares purchased via ETH

 Shares exchanged for EOS or Tron when launched

 https://etherscan.io/address/0x86fa049857e0209aa7d9e616f7eb3b3

b78ecfdb0

 Virtual crowd-source funding (Kickstarter)
 OmiseGO

https://etherscan.io/address/0xd26114cd6ee289accf82350c8d8487f

edb8a0c07

 To implement "stable coins"
 Coins pegged to real $

 Similar to Digicash

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0
https://etherscan.io/address/0xd26114cd6ee289accf82350c8d8487fedb8a0c07

Centralized exchanges

 Exchanges that hold user assets directly
 Users deposit, withdraw, and trade ETH and ERC-20 tokens all within

central contract (e.g. like E*Trade)

 Bittrex, Polonex
 Buy, sell, trade over 100 supported ERC-20 tokens

 https://etherscan.io/address/0x209c4784ab1e8183cf58ca33cb740efbf3fc18ef

 What if the exchange is hacked?

 https://blockonomi.com/mt-gox-hack/
 The victim of a massive hack, Mt. Gox lost about 740,000 bitcoins (6% of all

bitcoin in existence at the time), valued at the equivalent of €460 million at the time

and over $3 billion at October 2017 prices.

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x209c4784ab1e8183cf58ca33cb740efbf3fc18ef
https://blockonomi.com/mt-gox-hack/

Decentralized exchanges

 Exchange contract does not

hold user assets but instead

facilitates exchange

 Users buy and sell crypto

assets without an

intermediary storing the

assets via their private keys

 Trading ETH and ERC-20

tokens
 EtherDelta

 IDEX: Market making done

off-chain, commit to chain

via exchange

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819

 Name to address lookups (Ethereum Name Service)
 Can see when domain is registered! (TLS certificate transparency)

data domains[](owner, ip)

def register(name):
if not self.domains[name].owner:

self.domains[name].owner = msg.sender

def set_ip(name, ip):
if self.domains[name].owner == msg.sender:

self.domains[name].ip = ip

def get_ip(name):
if self.domains[name]:

return self.domains[name].ip
else:

return None

DNS

Portland State University CS 410/510 Blockchain Development & Security

Private

Storage

Ensure only owner

can set

Collectibles

 Smart contracts for implementing ERC-721 tokens (more later)
 Non-fungible, unique tokens that live in perpetuity (CryptoKitties)

 Smart contract generates unique tokens that are transferred to users

 No centralized authority to duplicate or steal kitty away

 https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8

e7a266d

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d

Statistics (10/2018)

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Ethereum

History of Ethereum - Timeline

 Proposed by Vitalik Buterin in 2013 to build decentralized applications
 Deployed in 2016

 First blockchain to support smart contracts

 Has a notion of storing actual state (e.g. account balance) vs. Bitcoin's UTXO

where one must scan blockchain to find out balance

Portland State University CS 410/510 Blockchain Development & Security

https://ethereum.org

https://ethereum.org/

Why not Bitcoin?

 Bitcoin with simple stack based scripts for validating properties of

transfers/assets (UTXOs)

Portland State University CS 410/510 Blockchain Development & Security

Source: MetaMask's Dan Finlay, https://github.com/MetaMask/IPFS-Ethereum-

Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains

https://github.com/MetaMask/IPFS-Ethereum-Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains

Ethereum VM (EVM)

 Turing complete run-time for computation
 Requires a much higher transaction rate than Bitcoin as a result

 Also requires a state-based approach for validating transactions (versus a history-based

one of replaying transactions)

 Done by adding storage to the blockchain (similar to git commits)

Portland State University CS 410/510 Blockchain Development & Security

Code execution

 Every (full) node on the blockchain processes every transaction and

stores entire copy of blockchain
 e.g. the state of all contracts and accounts

 Contract executions are redundantly performed across all nodes

 Node implemented using a secure, memory-safe language
 e.g. Rust or Go

Portland State University CS 410/510 Blockchain Development & Security

Accounts

 Wallets (similar to Bitcoin)
 a.k.a. Individual user accounts, Externally Owned

Account (EOA)
 Wallet address managed with private keys

 Can keep a balance of ETH and send and receive it
 Can create transactions to call code

 Smart contract account
 Can do everything a wallet can do

 Can hold funds (i.e. keep a balance of ETH)
 Can send currency (ETH) to other accounts

 But can also contain code
 Code of smart contract stored publicly on blockchain
 Can contain functions that may be called from wallet accounts
 Can contain functions that may be called from other smart

contracts

 And can also store data
 Persistent storage on blockchain that is both readable and

writeable (not just UTXO)

Portland State University CS 410/510 Blockchain Development & Security

Smart contracts can not…

 Create ETH (only mined blocks can do so)

 Query an external API (since one can not guarantee same result to

all)

 Sleep (no halting of blockchain)

 Can not asynchronously call other contracts

Portland State University CS 410/510 Blockchain Development & Security

Modes of use

Portland State University CS 410/510 Blockchain Development & Security

Account addresses

 Wallet addresses and smart-contract addresses share same

format

 Private key similar to Bitcoin

 ECDSA to digitally sign hashes of transactions/messages

 Public key (mapped directly from private)

 Last 40 characters of the keccak-256 hash of public key
0xA6fA5e50da698F6E4128994a4c1ED345E98Df50

 Note case-sensitivity
 Done as a built-in checksum for addresses (more later)

 https://ethsum.netlify.com/

Portland State University CS 410/510 Blockchain Development & Security

https://ethsum.netlify.com/

EVM bytecode

 Each node has an EVM that executes EVM bytecode
 Contracts compile down from higher-level language into EVM

bytecode
 Contracts typically small ~100 LoC
 Contract compiled and executed
 Contract can store and modify state on EVM

Portland State University CS 410/510 Blockchain Development & Security

Example

Portland State University CS 410/510 Blockchain Development & Security

6060604052604051610250380

380610250833981016040528..

......

PUSH 60

PUSH 40

MSTORE

PUSH 0

CALLDATALOAD

.....

What you write

What others see on

the blockchain

What people get from

the disassembler

Multiple language alternatives

 Like LLVM, multiple languages can produce EVM bytecode
 Must be aware of what a language provides to determine which to use

 Initially Serpent

 But now, most are done in Solidity

 Vyper to potentially replace Solidity? (More later in course)

Portland State University CS 410/510 Blockchain Development & Security

Ethereum VM

Bytecode

Stack Language

Serpent

Solidity

Types, invariants,

looks like JavascriptLooks like python

Vyper

Issue

 Halting problem
 What if I have an infinite loop in my smart contract?

 e.g. what if a malicious account sends my EVM this program as part of

a DoS attack?

 Can one tell whether or not a program will run infinitely a priori?

 How can one limit this behavior?

Portland State University CS 410/510 Blockchain Development & Security

uint i = 1;
while (i++ > 0) {

donothing();
}

Solution #1

 No loops
 More later…

Portland State University CS 410/510 Blockchain Development & Security

Solution #2: Gas

 Force user to supply currency (ETH) in order to execute programs

and store data on EVM
 User calling smart contract must supply $ from wallet to execute!

 Fee charged per computational step (called “gas”)

 Fee charged per operation taking up storage

 Limits resource consumption to what sender pays for
 Fees above paid to miners

 Transactions specified with Gas Limit and Gas Price to estimate how

much computation will cost

 Wallet can automatically estimate both when transaction submitted

 Creates an incentive not to use the blockchain for computation and

storage that can be done off chain

Portland State University CS 410/510 Blockchain Development & Security

Example gas charges

Portland State University CS 410/510 Blockchain Development & Security

Sender pays for gas

 gasprice: amount of ether per unit gas
 https://ethgasstation.info/

 gaslimit or startgas: maximum gas consumable for

transaction
 What if gaslimit is less than needed?

 Out of gas exception, revert the state as if the TX has never happened

 Sender still pays all the gas

 transaction_fee: total cost of transaction

 gasprice * consumed_gas
 Block Gas Limit

 Similar to block size limit in Bitcoin

 Total gas spent by all transactions in a block < Block Gas Limit

Portland State University CS 410/510 Blockchain Development & Security

https://ethgasstation.info/

Ethereum currency denominations

 Requires fine-grained currency
 Ethereum currency units

 http://eth-converter.com/extended-
converter.html

 Wei (Dai) – author of b-money paper
 (Nick) Szabo – BitGold
 (Hal) Finney - RPOW

Portland State University CS 410/510 Blockchain Development & Security

https://etherconverter.online/

Transactions

 Request to modify the state of the blockchain
 Signed by originating account (either wallet or smart-contract)

 Can be of 3 types
 Send value from one account to another (e.g. same as Bitcoin)

 Create a smart-contract on blockchain

 Execute smart contract code stored on blockchain

Portland State University CS 410/510 Blockchain Development & Security

 Transactions include

 As well as nonce (to prevent replay)

Source: MetaMask's Dan Finlay, https://github.com/MetaMask/IPFS-Ethereum-Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains
Portland State University CS 410/510 Blockchain Development & Security

https://github.com/MetaMask/IPFS-Ethereum-Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains

Blocks

 Ethereum uses Merkle-Patricia tries
 3-branch tree vs. Merkle's 2-branches

 Flatter, wider trees requiring less hashes to validate

 Bitcoin uses SHA-256, Ethereum Keccak-256 (SHA-3) for hashes

Portland State University CS 410/510 Blockchain Development & Security

Tx-nTx-1

Miners

Tx-2

Block

A set of TXs

Previous block

New State Root

Receipt Root

Nonce

Verify transactions &

execute all code to update

the state

Mining details

 Proof-of-work algorithm EthHash also uses Keccak

 Difficulty adjusted every block (instead of every 2 weeks for BTC)

Portland State University CS 410/510 Blockchain Development & Security

Tx-nTx-1

Miners

Tx-2

Block

A set of TXs

Previous block

New State Root

Receipt Root

Nonce

keccak(Block) < D Broadcast

Block

EthHash and ASIC mining

 EthHash mining algorithm initially to discourage ASIC miners
 I/O limited PoW

 But, eventually an ASIC miner implemented

 Leads to…
 Threat to "brick" ASIC mining via algorithm

 Programmatic Proof-of-Work to democratize mining away from ASIC farms

 Algorithm changes wreck ASIC investment

 Threat of migration to Proof-of-Stake
 Remove computation altogether

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/okex-blog/ethereums-istanbul-upgrade-understanding-progpow-e5837adb9d6b

Mining details (current)

 Blocks faster than BTC (block time ~12 sec)

 Block size – (miner controlled)

 Block reward variable (inflationary) ~5 ETH

 Moved from longest-chain to a different reward protocol (GHOST)
 Miners can make a bit more by including blocks (1/32 of an ETH each)

up to maximum of two for work on side-chains eventually discarded

(uncles)

 Done to minimize mining centralization

Portland State University CS 410/510 Blockchain Development & Security

Ethereum size & archival nodes

 Archive node stores entire chain and its transactions ~4TB (4/2020)
 Very few "archival" nodes in operation (16,650 total archival and fast nodes)

 Many archival nodes run by companies (e.g. Infura) due to resource

constraints and management costs
 Centralized, single-point of failure

Portland State University CS 410/510 Blockchain Development & Security

Ethereum full nodes

 Full node ~500GB (10/2020)
 Discard unnecessary state
 Still requires a sizeable machine and network connection to run
 Lab 5.1

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/chartsync/chaindefault

Ethereum light nodes

 Light Node (or light client) that connects to full-nodes
 Contains all block headers (e.g. Merkle-Patricia roots) (~100MB of

storage to run, 7/2018)

 Can not execute write transactions as full-nodes do

 Pulls block data and submits requests to a full-node when necessary
 Requires more network resources, but less CPU/storage resources

 Implemented and deployed in 2018 for scalability

Portland State University CS 410/510 Blockchain Development & Security

Scheduled improvements

 ETH 2.0 (Serenity, Casper Proof-of-Stake)
 Put security in the hands of those with the most to lose if security

broken (e.g. stake-holders)
 Beacon chain with PoS to run alongside main PoW chain

 Eventual switchover from PoW chain if successful

 Support for sharding to obtain scalability
 Solve scalability via side blockchains whose state is hashed and committed to main

chain periodically

 https://media.consensys.net/the-roadmap-to-serenity-bc25d5807268

 https://hedgetrade.com/eth-2-0-serenity-roadmap-explained/

Portland State University CS 410/510 Blockchain Development & Security

https://media.consensys.net/the-roadmap-to-serenity-bc25d5807268
https://hedgetrade.com/eth-2-0-serenity-roadmap-explained/

A look at DApps on Ethereum

Portland State University CS 410/510 Blockchain Development & Security

