
Smart contracts, Ethereum

Motivation

 Bitcoin
 Distributed ledger of financial transactions (currency transfers)

 Provides secure, immutable, global ordering of financial transactions

 What if a "transaction" were the execution of CPU instructions

instead?

 What if the blockchain were treated as an execution record for a

computer that includes its programs and their processes?

Portland State University CS 410/510 Blockchain Development & Security

Goal

 Extend blockchain to create a replicated, distributed, state machine

that can…
 Store arbitrary data

 Store persistent programs and their execution states

 Support function calls from users to these programs and have results

globally visible and agreed upon

Portland State University CS 410/510 Blockchain Development & Security

Smart contract definitions

 Also known as "persistent scripts" or "stored procedures"

 #1: A computer program executed in a secure environment that
directly controls digital assets

 #2: Computer program that digitally facilitates, verifies, or enforces
the performance of a contract and its transactions in a trackable and
irreversible manner without a third party

 Model
 Programs first committed to blockchain
 Receive authenticated inputs via other programs or users on the

blockchain
 Produce state changes and output based on program execution
 Execution is duplicated and replicated across all participating nodes to

maintain single global state

Portland State University CS 410/510 Blockchain Development & Security

Operating paradigm

 Begin with "genesis state" (similar to CoinBase)

 Use distributed consensus to implement shared state machine
 Blockchain executes transactions to move states

 Abstraction
 Single, shared machine

 Single shared, persistent memory storing code, execution state, and data

for smart contract (akin to a persistent process)

 Abstraction of a single, global computer with shared-state?
 Mainframe computing model

 Proof that everything old is new again! ☺

Portland State University CS 410/510 Blockchain Development & Security

 Credit: LinuxFoundationX: LFS171x

Portland State University CS 410/510 Blockchain Development & Security

Used to implement DApps

(Distributed Applications)

BUT..

Immutability

 Contract code is immutable!
 Code is there to stay, permanently, on the blockchain and can never be

modified or updated again once deployed
 Code is law

 No mechanism to patch (e.g. the opposite of CI/CD)

 Motivates…

Portland State University CS 410/510 Blockchain Development & Security

Security

 Konstantopoulous

 "In a potential future where whole organizations are governed by

smart contract code, there is an immense need for proper security.
 Must ensure your contract has no vulnerabilities *before* deployment

 Why code audits on smart contracts matter!

 Why program analysis and symbolic execution matter!

 Fixes to vulnerable code require completely new contract to be

deployed and users moved over to new contract address (if possible)

 Kill switches and safety valves sometimes built into contracts
 But, this protects contract owner at the expense of users.

 Tension between trusting code or trusting owner of the contract

 Buyer beware!

Portland State University CS 410/510 Blockchain Development & Security

Classes of DApps

 Automate or streamline operation of a trusted third party (trust is

expensive)

 Automate transaction processing

 Implement legal contracts with unambiguous terms that can be

expressed in code of program

 Create scarcity in digital domain (e.g. currencies, coins/stock,

collectibles)

Portland State University CS 410/510 Blockchain Development & Security

Sports betting

Portland State University CS 410/510 Blockchain Development & Security

if TrailBlazersWinChampionship2021() is true:

party_A.transfer(3000*bet_amount)

if TigerWoodsWinsMasters2019() is true:

party_A.transfer(14*bet_amount)

https://www.sportsbettingdime.com/nba/championship-odds/

https://www.sportsbettingdime.com/nba/championship-odds/

Legal contracts

 Trust fund

 Digital will
 Dead man's switch that executes code to transfer digital assets upon

owner dying

 Private key of coroner's office signs a transaction that triggers

execution of the will

Portland State University CS 410/510 Blockchain Development & Security

if current_year() > 2040:

child_A.transfer(fund.balance())

Escrow contracts

 Trustworthy asset exchange
 A transfers X amount to E (escrow contract)
 B transfers asset Y (e.g. digital deed) to A
 E automatically transfers X to B upon seeing Y being transferred to A
 If B refuses to transfer asset Y

 E returns X amount to A after specified timeout
 Can be done via 20 LoC, avoid paying thousands of dollars

Portland State University CS 410/510 Blockchain Development & Security

Multi-signature, multi-party asset transfers

 Require approval of a set of individuals before executing a transfer
 Example: Sale of a company approved by majority of stakeholders

signing shares to trigger transfer

Portland State University CS 410/510 Blockchain Development & Security

Decentralized finance applications

 Initial Coin Offerings selling ERC-20 tokens (more later)
 Virtual version of IPOs selling shares of a company

• Option contracts
• Allow a buy/sell transaction to be triggered based on date or condition

(e.g. strike price) being hit
• Executes itself according to coded terms
• Contract can be made between parties potentially unknown to each

other
• Would afford regulators greater transparency to view and audit

transactions for abuse

Portland State University CS 410/510 Blockchain Development & Security

Decentralized finance applications

 Bootstrapping alternate networks (EOS, Tron)
 Shares purchased via ETH

 Shares exchanged for EOS or Tron when launched

 https://etherscan.io/address/0x86fa049857e0209aa7d9e616f7eb3b3

b78ecfdb0

 Virtual crowd-source funding (Kickstarter)
 OmiseGO

https://etherscan.io/address/0xd26114cd6ee289accf82350c8d8487f

edb8a0c07

 To implement "stable coins"
 Coins pegged to real $

 Similar to Digicash

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0
https://etherscan.io/address/0xd26114cd6ee289accf82350c8d8487fedb8a0c07

Centralized exchanges

 Exchanges that hold user assets directly
 Users deposit, withdraw, and trade ETH and ERC-20 tokens all within

central contract (e.g. like E*Trade)

 Bittrex, Polonex
 Buy, sell, trade over 100 supported ERC-20 tokens

 https://etherscan.io/address/0x209c4784ab1e8183cf58ca33cb740efbf3fc18ef

 What if the exchange is hacked?

 https://blockonomi.com/mt-gox-hack/
 The victim of a massive hack, Mt. Gox lost about 740,000 bitcoins (6% of all

bitcoin in existence at the time), valued at the equivalent of €460 million at the time

and over $3 billion at October 2017 prices.

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x209c4784ab1e8183cf58ca33cb740efbf3fc18ef
https://blockonomi.com/mt-gox-hack/

Decentralized exchanges

 Exchange contract does not

hold user assets but instead

facilitates exchange

 Users buy and sell crypto

assets without an

intermediary storing the

assets via their private keys

 Trading ETH and ERC-20

tokens
 EtherDelta

 IDEX: Market making done

off-chain, commit to chain

via exchange

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819

 Name to address lookups (Ethereum Name Service)
 Can see when domain is registered! (TLS certificate transparency)

data domains[](owner, ip)

def register(name):
if not self.domains[name].owner:

self.domains[name].owner = msg.sender

def set_ip(name, ip):
if self.domains[name].owner == msg.sender:

self.domains[name].ip = ip

def get_ip(name):
if self.domains[name]:

return self.domains[name].ip
else:

return None

DNS

Portland State University CS 410/510 Blockchain Development & Security

Private

Storage

Ensure only owner

can set

Collectibles

 Smart contracts for implementing ERC-721 tokens (more later)
 Non-fungible, unique tokens that live in perpetuity (CryptoKitties)

 Smart contract generates unique tokens that are transferred to users

 No centralized authority to duplicate or steal kitty away

 https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8

e7a266d

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d

Statistics (10/2018)

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Ethereum

History of Ethereum - Timeline

 Proposed by Vitalik Buterin in 2013 to build decentralized applications
 Deployed in 2016

 First blockchain to support smart contracts

 Has a notion of storing actual state (e.g. account balance) vs. Bitcoin's UTXO

where one must scan blockchain to find out balance

Portland State University CS 410/510 Blockchain Development & Security

https://ethereum.org

https://ethereum.org/

Why not Bitcoin?

 Bitcoin with simple stack based scripts for validating properties of

transfers/assets (UTXOs)

Portland State University CS 410/510 Blockchain Development & Security

Source: MetaMask's Dan Finlay, https://github.com/MetaMask/IPFS-Ethereum-

Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains

https://github.com/MetaMask/IPFS-Ethereum-Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains

Ethereum VM (EVM)

 Turing complete run-time for computation
 Requires a much higher transaction rate than Bitcoin as a result

 Also requires a state-based approach for validating transactions (versus a history-based

one of replaying transactions)

 Done by adding storage to the blockchain (similar to git commits)

Portland State University CS 410/510 Blockchain Development & Security

Code execution

 Every (full) node on the blockchain processes every transaction and

stores entire copy of blockchain
 e.g. the state of all contracts and accounts

 Contract executions are redundantly performed across all nodes

 Node implemented using a secure, memory-safe language
 e.g. Rust or Go

Portland State University CS 410/510 Blockchain Development & Security

Accounts

 Wallets (similar to Bitcoin)
 a.k.a. Individual user accounts, Externally Owned

Account (EOA)
 Wallet address managed with private keys

 Can keep a balance of ETH and send and receive it
 Can create transactions to call code

 Smart contract account
 Can do everything a wallet can do

 Can hold funds (i.e. keep a balance of ETH)
 Can send currency (ETH) to other accounts

 But can also contain code
 Code of smart contract stored publicly on blockchain
 Can contain functions that may be called from wallet accounts
 Can contain functions that may be called from other smart

contracts

 And can also store data
 Persistent storage on blockchain that is both readable and

writeable (not just UTXO)

Portland State University CS 410/510 Blockchain Development & Security

Smart contracts can not…

 Create ETH (only mined blocks can do so)

 Query an external API (since one can not guarantee same result to

all)

 Sleep (no halting of blockchain)

 Can not asynchronously call other contracts

Portland State University CS 410/510 Blockchain Development & Security

Modes of use

Portland State University CS 410/510 Blockchain Development & Security

Account addresses

 Wallet addresses and smart-contract addresses share same

format

 Private key similar to Bitcoin

 ECDSA to digitally sign hashes of transactions/messages

 Public key (mapped directly from private)

 Last 40 characters of the keccak-256 hash of public key
0xA6fA5e50da698F6E4128994a4c1ED345E98Df50

 Note case-sensitivity
 Done as a built-in checksum for addresses (more later)

 https://ethsum.netlify.com/

Portland State University CS 410/510 Blockchain Development & Security

https://ethsum.netlify.com/

EVM bytecode

 Each node has an EVM that executes EVM bytecode
 Contracts compile down from higher-level language into EVM

bytecode
 Contracts typically small ~100 LoC
 Contract compiled and executed
 Contract can store and modify state on EVM

Portland State University CS 410/510 Blockchain Development & Security

Example

Portland State University CS 410/510 Blockchain Development & Security

6060604052604051610250380

380610250833981016040528..

......

PUSH 60

PUSH 40

MSTORE

PUSH 0

CALLDATALOAD

.....

What you write

What others see on

the blockchain

What people get from

the disassembler

Multiple language alternatives

 Like LLVM, multiple languages can produce EVM bytecode
 Must be aware of what a language provides to determine which to use

 Initially Serpent

 But now, most are done in Solidity

 Vyper to potentially replace Solidity? (More later in course)

Portland State University CS 410/510 Blockchain Development & Security

Ethereum VM

Bytecode

Stack Language

Serpent

Solidity

Types, invariants,

looks like JavascriptLooks like python

Vyper

Issue

 Halting problem
 What if I have an infinite loop in my smart contract?

 e.g. what if a malicious account sends my EVM this program as part of

a DoS attack?

 Can one tell whether or not a program will run infinitely a priori?

 How can one limit this behavior?

Portland State University CS 410/510 Blockchain Development & Security

uint i = 1;
while (i++ > 0) {

donothing();
}

Solution #1

 No loops
 More later…

Portland State University CS 410/510 Blockchain Development & Security

Solution #2: Gas

 Force user to supply currency (ETH) in order to execute programs

and store data on EVM
 User calling smart contract must supply $ from wallet to execute!

 Fee charged per computational step (called “gas”)

 Fee charged per operation taking up storage

 Limits resource consumption to what sender pays for
 Fees above paid to miners

 Transactions specified with Gas Limit and Gas Price to estimate how

much computation will cost

 Wallet can automatically estimate both when transaction submitted

 Creates an incentive not to use the blockchain for computation and

storage that can be done off chain

Portland State University CS 410/510 Blockchain Development & Security

Example gas charges

Portland State University CS 410/510 Blockchain Development & Security

Sender pays for gas

 gasprice: amount of ether per unit gas
 https://ethgasstation.info/

 gaslimit or startgas: maximum gas consumable for

transaction
 What if gaslimit is less than needed?

 Out of gas exception, revert the state as if the TX has never happened

 Sender still pays all the gas

 transaction_fee: total cost of transaction

 gasprice * consumed_gas
 Block Gas Limit

 Similar to block size limit in Bitcoin

 Total gas spent by all transactions in a block < Block Gas Limit

Portland State University CS 410/510 Blockchain Development & Security

https://ethgasstation.info/

Ethereum currency denominations

 Requires fine-grained currency
 Ethereum currency units

 http://eth-converter.com/extended-
converter.html

 Wei (Dai) – author of b-money paper
 (Nick) Szabo – BitGold
 (Hal) Finney - RPOW

Portland State University CS 410/510 Blockchain Development & Security

https://etherconverter.online/

Transactions

 Request to modify the state of the blockchain
 Signed by originating account (either wallet or smart-contract)

 Can be of 3 types
 Send value from one account to another (e.g. same as Bitcoin)

 Create a smart-contract on blockchain

 Execute smart contract code stored on blockchain

Portland State University CS 410/510 Blockchain Development & Security

 Transactions include

 As well as nonce (to prevent replay)

Source: MetaMask's Dan Finlay, https://github.com/MetaMask/IPFS-Ethereum-Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains
Portland State University CS 410/510 Blockchain Development & Security

https://github.com/MetaMask/IPFS-Ethereum-Hackathon/tree/master/slides/01_DanFinlay_intro_to_ethereum_blockchains

Blocks

 Ethereum uses Merkle-Patricia tries
 3-branch tree vs. Merkle's 2-branches

 Flatter, wider trees requiring less hashes to validate

 Bitcoin uses SHA-256, Ethereum Keccak-256 (SHA-3) for hashes

Portland State University CS 410/510 Blockchain Development & Security

Tx-nTx-1

Miners

Tx-2

Block

A set of TXs

Previous block

New State Root

Receipt Root

Nonce

Verify transactions &

execute all code to update

the state

Mining details

 Proof-of-work algorithm EthHash also uses Keccak

 Difficulty adjusted every block (instead of every 2 weeks for BTC)

Portland State University CS 410/510 Blockchain Development & Security

Tx-nTx-1

Miners

Tx-2

Block

A set of TXs

Previous block

New State Root

Receipt Root

Nonce

keccak(Block) < D Broadcast

Block

EthHash and ASIC mining

 EthHash mining algorithm initially to discourage ASIC miners
 I/O limited PoW

 But, eventually an ASIC miner implemented

 Leads to…
 Threat to "brick" ASIC mining via algorithm

 Programmatic Proof-of-Work to democratize mining away from ASIC farms

 Algorithm changes wreck ASIC investment

 Threat of migration to Proof-of-Stake
 Remove computation altogether

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/okex-blog/ethereums-istanbul-upgrade-understanding-progpow-e5837adb9d6b

Mining details (current)

 Blocks faster than BTC (block time ~12 sec)

 Block size – (miner controlled)

 Block reward variable (inflationary) ~5 ETH

 Moved from longest-chain to a different reward protocol (GHOST)
 Miners can make a bit more by including blocks (1/32 of an ETH each)

up to maximum of two for work on side-chains eventually discarded

(uncles)

 Done to minimize mining centralization

Portland State University CS 410/510 Blockchain Development & Security

Ethereum size & archival nodes

 Archive node stores entire chain and its transactions ~4TB (4/2020)
 Very few "archival" nodes in operation (16,650 total archival and fast nodes)

 Many archival nodes run by companies (e.g. Infura) due to resource

constraints and management costs
 Centralized, single-point of failure

Portland State University CS 410/510 Blockchain Development & Security

Ethereum full nodes

 Full node ~500GB (10/2020)
 Discard unnecessary state
 Still requires a sizeable machine and network connection to run
 Lab 5.1

Portland State University CS 410/510 Blockchain Development & Security

https://etherscan.io/chartsync/chaindefault

Ethereum light nodes

 Light Node (or light client) that connects to full-nodes
 Contains all block headers (e.g. Merkle-Patricia roots) (~100MB of

storage to run, 7/2018)

 Can not execute write transactions as full-nodes do

 Pulls block data and submits requests to a full-node when necessary
 Requires more network resources, but less CPU/storage resources

 Implemented and deployed in 2018 for scalability

Portland State University CS 410/510 Blockchain Development & Security

Scheduled improvements

 ETH 2.0 (Serenity, Casper Proof-of-Stake)
 Put security in the hands of those with the most to lose if security

broken (e.g. stake-holders)
 Beacon chain with PoS to run alongside main PoW chain

 Eventual switchover from PoW chain if successful

 Support for sharding to obtain scalability
 Solve scalability via side blockchains whose state is hashed and committed to main

chain periodically

 https://media.consensys.net/the-roadmap-to-serenity-bc25d5807268

 https://hedgetrade.com/eth-2-0-serenity-roadmap-explained/

Portland State University CS 410/510 Blockchain Development & Security

https://media.consensys.net/the-roadmap-to-serenity-bc25d5807268
https://hedgetrade.com/eth-2-0-serenity-roadmap-explained/

A look at DApps on Ethereum

Portland State University CS 410/510 Blockchain Development & Security

