
Portland State University CS 410/510 Blockchain Development & Security

Bitcoin

Portland State University CS 410/510 Blockchain Development & Security

Precursor #1: Ledgers

Portland State University CS 410/510 Blockchain Development & Security

Ledgers

 At the beginning of written history (~3000 BC, Mesapotamia)
 Believed to be used to record barley transactions, and payments

 Reduces errors to make system more trustworthy

 Recorded on papyrus scrolls or clay

Portland State University CS 410/510 Blockchain Development & Security

Double-entry book-keeping

 Managing accounts so that any debit has an equal and offsetting credit amount.
 Pacioli, da Vinci circa 1494 as monetary systems begin to take hold in Europe
 Ensures integrity of ledger and keeps it from an invalid state

 Parts
 Original records (transactions)
 Classification (organized per account and placed into a single ledger)
 Summary (profit and loss)

 Modern example
 A company's balance sheet

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

But…

 Ledger is centralized

 Implicit trust in the person managing it

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

 Enron, Arthur Andersen 2001

 Lehman Brothers 2008

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Centralized book-keeping and trust

 If developed nations can't get it right, how can anyone else?

 Even if book-keeper is trustworthy, what if the ledger is hacked or

deleted?
 Adversaries or disgruntled insiders tampering with the ledger

 Motivates the need for a ledger that is…
 Shared (for transparency)

 Replicated and managed in a decentralized manner (for availability)

 Authenticated, append-only, and tamper-resistant (for integrity)

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Precursor #2: Currencies

Portland State University CS 410/510 Blockchain Development & Security

Currency

 Direct settlement via untraceable exchange of money for

goods/services

 ~3,000 B.C. in Egypt
 Revolves around precious metals (e.g. gold) and agricultural products

(barley)

 Adopted by many ancient civilizations (e.g. Greek)

 In the US, gold/silver made into legal tender via Mint and Coinage

Act of 1792
 Establishes fixed price between gold and US dollar

 US Mint buys and sells gold and silver at a value of 15:1

 In 1862, unable to pay debts using gold/silver, US adopts paper

money as legal tender
 Establishes a "fiat" currency for the first time in the US

 e.g. not convertible on demand at a fixed rate

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

 In 1900, gold standard established and paper dollars issued to

represent US gold reserves

 Extended internationally with Bretton Woods Agreements (1944)
 WW II wreaks havoc on gold standard

 Create gold exchange standard where price of gold fixed to the US

dollar ($35 for ounce of gold)

 Helps make US a global superpower

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Issues with currencies

 Gold standard provides stability in monetary supply via scarcity of

gold
 But perhaps not flexibility to react to problematic economic situations

since supply of currency unchanged (John Maynard Keynes)

 Nixon 1971
 Drops gold standard in financial fallout of Vietnam war

 Government can now control supply of currency to manipulate value

 Many believe this was problematic

 Contributed to double-digit inflationary period in late 1970s

Portland State University CS 410/510 Introduction to Blockchain

Portland State University CS 410/510 Blockchain Development & Security

Digicash (1982)

 Secure, anonymous digital cash proposed by David Chaum
 Want the benefits of on-line transactions without the drawback of

transactions being traceable

 Credit card transactions provide a paper-trail

 Model
 Users obtain digital currency from bank

 Spend it in a manner not traceable by bank

 Done via blind signatures
 http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindS

igForPayment.1982.PDF

http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF

Portland State University CS 410/510 Blockchain Development & Security

High-level operation

 Bank uses its private key s' to sign anything
 Anything signed is worth $1

 Payer with an account at the bank creates a single $1 note, blinds it,

gets it signed by the bank who debits payer $1

 Payer gets back blind and signed note, unblinds it, and provides it to

the payee.

 Payee (also with an account at the bank) sends note to bank who

validates its signature and updates the Payee's balance. Bank has no

idea that the note is from Payer

Portland State University CS 410/510 Blockchain Development & Security

Cryptographic primitives

 s' is the signing function of the bank (e.g. its private key)
 s is the inverse of s' such that s(s'(x)) = x

 Special commuting (blinding) function c the payer applies
 c'(s'(c(x))) = s'(x)

 Redundancy check r for ensuring x has been chosen with specific

properties..
 r is used to effectively check the integrity of c

 Checks for sufficient redundancy in x to make search for valid

signatures impractical in c

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Digicash mechanism

 Payer randomly chooses x s.t. r(x) holds for c(x)
 Gives c(x) to the bank to sign
 Bank signs c(x) and returns s'(c(x)) to payer

 Debits payer's account $1
 Payer can not lose s'(c(x)) since it's a live $1 note!

 Payer computes c'(s'(c(x))) to yield s'(x)
 Payer checks that s'(x) is valid by applying bank's public key to get x

back via s(s'(x))
 Payer makes a payment to payee by providing s'(x)
 Payee forms r(s(s'(x)) and stops if false
 Payee forwards s'(x) to bank

 Note that the bank has never seen x before since it was given as c(x) so it
does not know the payer involved! (This is the magic)

 Bank forms r(s(s'(x)) and stops if false
 Bank checks note against a comprehensive list of cleared notes and stops if

it is a double-spend, otherwise adds note to list
 Bank adds $1 to payee

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Hashcash (1997)

 Defense against email spam and DoS attacks developed by Adam Back
 Computational digital postage on e-mail messages

 Solution to a difficult proof-of-work puzzle used as postage
 Find any x where SHA(x || message) < Y

 Effectively the proof-of-work function used in Bitcoin

 Leverages pre-image resistance, avalanche effect of hash function

Portland State University CS 410/510 Blockchain Development & Security

Precursor #3: Decentralized

networks

Portland State University CS 410/510 Blockchain Development & Security

Napster (1999)

 P2P file sharing system developed by Shawn Fanning
 One of the first decentralized applications on the Internet where users

participate in system

 Central registry maintains metadata on peers and files they have

 Peers store actual copies of files

 But, centralization of registry makes "censorship" trivial

Portland State University CS 410/510 Blockchain Development & Security

Gnutella (2000)

 Alternative to centralized registry
 Peers form an overlay network and are largely equal to each other

 Queries broadcast throughout network (hop-limited)

 Can not be shut down
 Unless one does a wholesale block of its ports (which can be easily moved to 80)

 Both protocol and source code are open-source

Portland State University CS 410/510 Blockchain Development & Security

BitTorrent (2001)

 File-sharing application for large files written by Bram Cohen
 Creates a P2P network on-demand per file being distributed

 Nodes with entire copy of file called "seeds"
 Altruistically allow others to copy parts of file

 Nodes downloading a file allow others to download parts it already has
 Eliminates free-loading, creates much higher transfer rates

 Censorship-resistant
 Difficult to shut down all seeds once a torrent is established

 Results in MPAA going after search-engines for finding torrents instead of

individuals holding seeds (e.g. PirateBay)

Portland State University CS 410/510 Blockchain Development & Security

Blockchains and cryptocurrencies

Portland State University CS 410/510 Blockchain Development & Security

Goals

 Decentralized trust

 Tamper-resistant ledger of transactions
 (e.g. append-only, ordered log of authentic immutable transfers)

 Highly available and replicated

 Low overhead
 Computational resources

 Network bandwidth

 Transaction latency

 Transaction costs

 Anonymity (?)

Portland State University CS 410/510 Blockchain Development & Security

BitGold (1998)

 Proposal for first decentralized blockchain for digital currency by

Nick Szabo (never implemented)
 Mechanics

 Participant solves cryptographic puzzle to generate currency

 Solution is sent to a byzantine fault-tolerant registry for acceptance

 Registry assigns solution/currency to the public-key of solver

 Accepted solution becomes part of the next puzzle (creating a chain)

 Majority of parties in registry must accept new solution before next puzzle can be

undertaken (limits inflation)

 System does not depend on a trusted central authority to generate currency

 Trivia: Szabo eventually coined the term "smart contract"

Portland State University CS 410/510 Blockchain Development & Security

RPOW (1999)

 Re-usable Proof-of-Work developed by Hal Finney similar to

BitGold, but implemented
 https://github.com/NakamotoInstitute/RPOW

 Mechanics
 Participant solves puzzle of a given difficulty and signs solution (referred to as a

token) with private key

 Publishes token to a server that registers it to public-key of participant

 Participant can then transfer token to another participant by signing a transfer order

to the recipient's public key

 Server then registers token to public-key of recipient

 Trusted third party prevents double-spending

 Trivia
 Finney the receiver of the first Bitcoin transaction from Satoshi

 Lived for 10 years in a town where a Dorian Satoshi Nakamoto lived.

 Died of ALS in 2014

https://github.com/NakamotoInstitute/RPOW

Portland State University CS 410/510 Blockchain Development & Security

Bitcoin (2009)

Portland State University CS 410/510 Blockchain Development & Security

Genesis block on Jan 3 2009 from Satoshi Nakamoto

(an alias)

• Public dataset available in GCP BigQuery

• ~$500,000 block reward 10/2020

https://www.blockchain.com/btc/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b?show_adv=true

Portland State University CS 410/510 Blockchain Development & Security

Basic model

 Takes ideas from…
 Decentralized systems (no central

authority)

 BitGold (hash-chains)

 RPOW (ownership transfer via public-key

crypto)

 Builds a consistent, distributed, P2P

ledger of transactions

Portland State University CS 410/510 Blockchain Development & Security

Main innovations

 Add Nakamoto distributed consensus
 Consensus based on majority of participants accepting the longest chain

of blocks

 Constructing chain requires CPU resources

 Add restriction on amount of currency
 Like gold standard

 Supply fixed via cryptographic properties

 Unlike fiat currency whose supply is controlled by central authority

Portland State University CS 410/510 Blockchain Development & Security

Nakamoto consensus and FLP/CAP

 "Consensus impossible in asynchronous network with deterministic

protocol"
 "Support eventual consistency in a mostly synchronous network with a

randomized protocol"

 Tight synchrony ensures strong consistency

 Upon partition, compromise consistency temporarily to support

availability. (CAP theorem)
 Partition causes the blockchain to fork

 Multiple chains created from forking point

 Reconciled on reconnection by invalidating shorter chains

 Longest-chain is always accepted by Bitcoin nodes

 Valid, accepted transactions on shorter chain become invalid (e.g. fall off the

ledger)

 Not acceptable for many financial institutions who would rather lose

availability rather than consistency in a partition (recall CAP theorem)

Portland State University CS 410/510 Blockchain Development & Security

1. Transaction model

 https://anders.com/blockchain/tokens

 Transactions recorded, but not balances
 Must replay transaction log to determine if a user can spend $ in a

transactions

 Notion of Unspent transaction outputs (UTXOs)

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/tokens

Portland State University CS 410/510 Blockchain Development & Security

Mechanics

 Wallets with public-key as an address
 Don't hold "Bitcoin" as in other digital cash systems, but rather

corresponding private key to sign transactions

 Have access to unspent currencies for corresponding public-key

addresses indicated in Bitcoin ledger

Portland State University CS 410/510 Blockchain Development & Security

 New transactions created by wallet, signed by private key and

sent into network for execution

 All nodes use wallet addresses (e.g. public-key of sender) to verify

signature on transaction

 Creating a transaction
 Private key and public key of sender

 Public key of recipient

 Use to sign transaction (Send X amount from to)

 Broadcast to full nodes for inclusion in ledger

 Full nodes use to validate transaction as a candidate to be included

in next block
 Must validate via UTXOs before accepting (e.g. unspent transaction outputs

where is the recipient address)

SS

R

S S R

S

S

S

S

Portland State University CS 410/510 Blockchain Development & Security

 B uses private key to sign transaction to C
 Indicates public key from which UTXOs are transferred from

 Indicates public key for C where UTXOs are to be transferred to

 All nodes verify B's signature on transaction

 Examine ledger for prior UTXO sent to B to validate B has access

 If so, add to transaction pool for inclusion

Portland State University CS 410/510 Blockchain Development & Security

Bitcoin public/private keys

 BIP39-HD Wallets (Bitcoin Improvement Plan) standard
 Library of 2048 short words

 24 words randomly selected to generate private key

 2048^24 = 2^264 to brute-force

 Words hashed to create root private key

 ECDSA produces public key

 Public key is your address

Portland State University CS 410/510 Blockchain Development & Security

2. Transaction processing

 Transactions sent to a "Mempool" within full-nodes

 Miners examine Mempool to select transactions for candidate

block and validate each

 Construct proposed block and begins solving the proof-of-work

puzzle

Portland State University CS 410/510 Blockchain Development & Security

 Mempool can grow large and has a 2 week timeout

(blockchain.info)
 Transactions eventually time out and are dropped if not included in a

block within 2 weeks

 Not ideal for financial transactions!

https://www.blockchain.com/charts/mempool-

count?timespan=60days

 How are transactions selected? (next)

https://www.blockchain.com/charts/mempool-count?timespan=60days

Portland State University CS 410/510 Blockchain Development & Security

3. Miner incentives: Fees

 Miner gets all transaction fees in block (specified as unallocated

UTXOs in transaction)
 Users include fees in a "bid" to get included in the next block

 Wallet uses algorithm to guess optimal transaction fee before submitting

 Fees automatically assigned to miner address upon successful mined

block

 Example

Portland State University CS 410/510 Blockchain Development & Security

 Leads to spikes in fees when demand is high
 https://www.blockchain.com/charts/transaction-fees?timespan=2years

Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/charts/transaction-fees?timespan=2years

Portland State University CS 410/510 Blockchain Development & Security

Miner incentives: Coinbase

 Miner gets block reward as first transaction in block (called the

Coinbase transaction for the BTC)
 Reward initially 50 BTC (shown in output for Block #0 earlier)

 Halved every 210,000 blocks (~4 years) to cap supply

 Runs out after 2147 (must rely on transaction fees afterwards)

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

 See https://www.blockchain.com/explorer

Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/explorer

Portland State University CS 410/510 Blockchain Development & Security

Demo

 No coinbase to determine Block #1 transactions valid!
 https://anders.com/blockchain/tokens

 Coinbase given to miner who successfully mines Block #1 (anders)
 https://anders.com/blockchain/coinbase

 Initially anders, who then kicks off transactions

 Later sophia

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/tokens
https://anders.com/blockchain/coinbase

Portland State University CS 410/510 Blockchain Development & Security

3. Mining details

 Miners (often organized as a
pool) solve a PoW puzzle based
on
 Hash of prior block
 Hash of proposed block

containing transactions selected
 Finds the nonce that results in a

partial hash collision with
difficulty specified
algorithmically

 As soon as a miner solves the
puzzle for a proposed block, it is
broadcast
 All full nodes validate block and

its solution
 Immediately accept it and move

onto next block

Portland State University CS 410/510 Blockchain Development & Security

Mining details

 Blocks with invalid transactions or bad hashes rejected (along with
reward)
 Miners responsible for verifying transactions before solving puzzle
 Blocks must obey rules of the game (protocol)

 Longest chain wins
 Can only profit by mining off of latest block!
 Orphan blocks fall off chain (as do their coinbase!)
 No one wants to mine a block that falls off the chain, so miners always

mine on longest chain

Portland State University CS 410/510 Blockchain Development & Security

 Leads to the notion of "confirmations" and "block depth"
 Number of blocks that have reconfirmed your block as part of chain

 Versus block height (# of blocks from genesis block)

 Typically must wait 3-4 confirmations to ensure no orphans

 40 minute transaction delay!

Portland State University CS 410/510 Blockchain Development & Security

4. Design for decentralization

 Designed so anyone can participate (like BitTorrent/Gnutella)
 1 block (1 MB) every 10 minutes

 Reason #1: Size of full-node grows linearly
 Currently around 300GB and can be stored on a Raspberry Pi!

 https://www.blockchain.com/charts/blocks-size

https://www.blockchain.com/charts/blocks-size

Portland State University CS 410/510 Blockchain Development & Security

 But, limits transaction rate
 https://www.blockchain.com/charts/n-transactions?timespan=5years (per-day)

 Currently supports ~7 transactions per second

 Compare to Visa network of 2k transactions per second average and 50k

transactions per second peak

https://www.blockchain.com/charts/n-transactions?timespan=5years

Portland State University CS 410/510 Blockchain Development & Security

 Reason #2: Control rate that blocks are added to maintain consistency
 Propagation time for replicating blocks << Creation time between new blocks

 Solves double-spending problem by parameterizing proof-of-work difficulty to ~10-

minutes (Paremeter reset every 2 weeks based on averaging)

 Implemented via rule in software

 https://www.blockchain.com/charts/difficulty?timespan=all

What happened in 11/2018?

https://www.blockchain.com/charts/difficulty?timespan=all

Portland State University CS 410/510 Blockchain Development & Security

 Cryptocurrency winter sees profitability plummet

Portland State University CS 410/510 Blockchain Development & Security

 Mining profitability chart (late 2018)
 https://research.tradeblock.com/wp-

content/uploads/2018/12/20181206-Hash_Rate-Mining_Cost-1.png

https://research.tradeblock.com/wp-content/uploads/2018/12/20181206-Hash_Rate-Mining_Cost-1.png

Portland State University CS 410/510 Blockchain Development & Security

5. Security

 Authentication done via public-key cryptography with no trust

required between peers
 Accounts can not be disabled

 User must now be responsible for securing his/her private key
 Do you trust yourself to do this?

Portland State University CS 410/510 Blockchain Development & Security

 Pseudo-anonymous: can trace addresses by transactions through

blockchain
 Subsequent systems attempt to improve anonymity (Zcash)

 Many used for illegal activity (e.g. 90% of ZCash usage)

 Resists Sybil attack
 Adversary launching multiple identities to corrupt consensus protocol

 Ability to add blocks to blockchain determined by capacity to solve

Proof-of-Work puzzles

 Must own majority of CPU resources to subvert (51% attack..more

later)

Portland State University CS 410/510 Blockchain Development & Security

6. Scalability

 Current implementation difficult to use for small transactions

 Proposed alternatives
 Litecoin (2011)

 Code fork of Bitcoin

 Uses scrypt – sequential memory-hard puzzle (makes ASIC mining difficult)

 Block time = 2.5 min

 Block reward = 50 LTC halving every 4 years

 Block size = 1MB

 Bitcoin Cash (2017)
 Hard fork of Bitcoin

 Block size increased to 4MB and beyond to support lower transaction costs and

faster transactions

 No longer require that full-nodes run on embedded devices

 Eventually forked again…

Portland State University CS 410/510 Blockchain Development & Security

Side chains and transaction aggregation

 Transaction throughput small on Bitcoin (7 per second)

 Lightning network (2018) https://lightning.network/
 Layer a transaction aggregation system on top of blockchain to reduce

number of transactions (Layer 2 solutions)

 Like opening up a tab at a bar, opening tab and settlement at end are the

only things recorded

 Or create a side blockchain, then sync its blockhashes to main chain

(sharding)
 Create secondary payment network where transactions and balances

summarized and committed to Bitcoin blockchain periodically

 Reduces load on Bitcoin network, allows for higher transaction

throughput

 Hierarchical blockchains being proposed to scale transaction throughput

Portland State University CS 410/510 Blockchain Development & Security

https://lightning.network/

Portland State University CS 410/510 Blockchain Development & Security

Hyperledger

Portland State University CS 410/510 Blockchain Development & Security

Hyperledger

 Open-source implementations of permissioned blockchains (where
participants are trusted)
 Curated like Apache project
 Typically for the enterprise

 Allows enterprises to *see* code they rely upon
 Different projects for different styles of deployments

 Focused on adherence to regulatory compliance
 Not possible with Bitcoin or Ethereum

 Commonly used projects and their consensus protocols
 https://www.hyperledger.org/wp-

content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
 Fabric (IBM)

 Kafka + other consensus protocols
 Iroha (Soramitsu/Hitachi)

 Sumeragi
 Indy (Sovrin)

 RBFT
 Sawtooth (Intel)

 PoET

https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

Portland State University CS 410/510 Blockchain Development & Security

Component layers

 Consensus
 Manage distributed agreement and ensuring correctness

 Smart contract (validation)
 Executing code and business logic

 Communication
 Message transport between nodes

 Data store
 Backend storage

 Cryptography
 Algorithms used for confidentiality, non-repudiation, authentication,

etc.

 API
 Access to blockchain

Portland State University CS 410/510 Blockchain Development & Security

Comparison to public blockchains

Bitcoin Ethereum
Hyperledger

Frameworks

Cryptocurrency

based
Yes Yes No

Permissioned No No Yes (in general)*

Pseudo-anonymous Yes No No

Auditable Yes Yes Yes

Immutable ledger Yes Yes Yes

Modularity No No Yes

Smart contracts No Yes Yes

Consensus protocol PoW PoW Various**

