
Distributed Consensus

Motivation

 A rogue blockchain
 Consider Peer B wishing to tamper with Block #3

 https://anders.com/blockchain/distributed

 Modifies data, then re-calculates hashes

 How can you pick between two valid blockchains?
 With a consensus protocol!

 Algorithm for supporting consensus is a fundamental design choice for

any blockchain

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/distributed

Consensus

 Distributed agreement on state (including ordering of events) in the

absence of a trusted, central authority
 One of the hardest problems in CS

 Consensus protocol for achieving it needs two properties
 Safety (consistency and correctness)

 Each node is guaranteed the same state

 Algorithm must behave identically to a single node system that executes each

transaction atomically one at a time

 Liveness
 Each non-faulty node will eventually receive every submitted transaction, assuming

that communication does not fail.

Portland State University CS 410/510 Blockchain Development & Security

Lamport (1978)

 Leslie Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", CACM, July 1978
 Seminal paper on causal ordering, synchronized clocks

 Strict consistency (e.g. total ordering of events) requires absolute

global time (impossible to implement)

 Causal consistency
 Achieve a looser event ordering

 Writes that are causally related must be seen by all processes in the same order

 Writes that are not causally related can occur in any order

 How?
 Use communication events to causally order events between processes

 Logical timestamps on events determine partial ordering in a distributed system

 Easier to achieve

 Paper describes how to get causally consistent consensus in an

asynchronous system (e.g. no synchronized clocks)
 Assumes an absence of faults

Portland State University CS 410/510 Blockchain Development & Security

http://research.microsoft.com/users/lamport/pubs/time-clocks.pdf

Other kinds of consistency

 Sequential consistency
 Result of any execution is the same as if all operations on data store

were executed in some sequential order

 Eventual consistency
 If no new updates, after some window, all accesses will return last

updated value (DNS)

Portland State University CS 410/510 Blockchain Development & Security

FLP impossibility result (1985)

 Fischer, Lynch, Paterson, "Impossibility of Distributed Consensus

with One Faulty Process", JACM 1985
 Governs all solutions to distributed consensus protocols

"Consensus impossible in asynchronous network (i.e. unbounded

message delays) with a deterministic protocol"

 Inherent trade-off between liveness and consistency (can not have both)

when attempting to achieve consensus in the presence of failures

 Note: From cloud class, directly related to the CAP theorem

(consistency, availability, partition-tolerance) for distributed,

replicated databases
 You can only support 2 out of the 3

Portland State University CS 410/510 Blockchain Development & Security

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

Non-byzantine consensus

Paxos, Raft

Motivation

 From distributed computing systems
 "Can you implement a distributed database that can tolerate the failure

of any number of its processes (possibly all of them) without losing

consistency, and that will resume normal behavior when more than half

the processes are again working properly?"

 Essential problem that must be solved in horizontally scalable databases

Portland State University CS 410/510 Blockchain Development & Security

Paxos (1989)

 Lamport's "The Part-Time Parliament", ACM Transactions on

Computer Systems, May 1998, p. 133-169.
 Replication protocol for distributed systems

 Fictional Greek island called Paxos with a part-time parliament
 Lawmakers come and go frequently on vacation

 A consistent, replicated ledger containing all laws that have been passed

must be kept

 If a majority of the legislators present for a sufficient time period, then

any decree proposed by a legislator in the Chamber is passed

 Every decree that has been passed should eventually appear in the ledger

of every legislator in the Chamber.

Portland State University CS 410/510 Blockchain Development & Security

http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos

 Written in 1989, submitted in 1990, published in 1998 (!)

"I submitted the paper to TOCS in 1990. All three referees said that the paper was

mildly interesting, though not very important, but that all the Paxos stuff had to be

removed. I was quite annoyed at how humorless everyone working in the field seemed

to be, so I did nothing with the paper."

Portland State University CS 410/510 Blockchain Development & Security

Paxos characteristics

 Strong consistency in the presence of crash faults
 All state changes are seen by all distributed processes in the same order

(sequentially)

 Uses a consensus protocol to avoid blocking in the presence of an

arbitrary single failure

 Provably correct if N processes want to agree on a value, when fewer

than F crash faults occur in a window, if N > 2F+1 processes (e.g.

majority)

 Paxos and FLP
 Chooses consistency over liveness (availability) in an asynchronous

environment (network partition)
 e.g. progress is blocked until a majority is present

 "In an asynchronous environment that admits crash failures, no consensus

protocol can guarantee termination, and the Synod protocol is no exception."

Portland State University CS 410/510 Blockchain Development & Security

Paxos 2-phase commit protocol

 Similar to marriage protocol
 Do you?

 I do

 I now pronounce you, Kiss the bride

Portland State University CS 410/510 Blockchain Development & Security

Leader
Acceptors

Acceptors
Acceptors

PREPARE

READY

COMMIT

ACK

Client

WRITE

ACK

All prepared?

All ack’d?

 Run election protocol to define leader and acceptor groups (view change)
 Clients propose values to replicas
 Leader uses two-phase commit protocol with acceptors for writes from

replicas proposing values
 Acceptors monitor leader for liveness and execute view change to elect

new leader on failure

Algorithm

What about failures?

 If an acceptor fails:

 If the leader fails?

 What's the algorithm for picking a new leader?
 Need to make sure everybody agrees on leader!

 Need to make sure that “group” is known

 What happens when the leader election fails?

 Extremely complex due to corner cases…

 But…

Portland State University CS 410/510 Blockchain Development & Security

Impact

 Underlies many distributed storage and database systems driving

search, maps, gaming (http://paxos.systems/)
 Used by Google in Spanner, BigTable

 Used by Apache Hadoop FS, AWS ECS

Portland State University CS 410/510 Blockchain Development & Security

http://paxos.systems/

Raft (2013)

 Alternative to Paxos by Engardo, Ousterhout
 Built for understandability

 https://raft.github.io/

 Formally verified for safety
 https://verdi.uwplse.org/raft-proof.pdf

 As with Paxos
 Quorum must exist to make progress

 Leaders elected to coordinate consensus

 Election occurs when a leader crashes

 Underlies etcd (Kubernetes)

Portland State University CS 410/510 Blockchain Development & Security

https://raft.github.io/
https://verdi.uwplse.org/raft-proof.pdf

Issues with Paxos, Raft

 Only handles crash-failures!
 Faults consist of nodes that disconnect, can be declared dead, and are

replaced

 Appropriate for cloud environments with trusted participants

 Does not handle malicious nodes intentionally attempting to subvert

state
 What if a malicious node is elected leader?

 Can a malicious node corrupt the election process indefinitely?

 Inappropriate for public environments with untrusted participants

(especially when $ involved!!)

 Typically used for private and/or permissioned backends

Portland State University CS 410/510 Blockchain Development & Security

Byzantine consensus with strong

consistency

Byzantine Generals Problem (1982)

 “The Byzantine Generals Problem,” L. Lamport, R. Shostak, and M.

Pease. ACM Transactions on Programming Languages and Systems,

Vol. 4, No. 3 (July 1982)

 Classic problem in distributed systems

 Collection of lieutenant generals surrounding Rome
 Some generals loyal

 Some generals traitorous

 Need to coordinate attack or retreat through a series of messages

delivered to each other by messengers

 All loyal generals should perform the desired action

 Problem is easy with the use of public-key cryptography and an

authority (commanding general)

Portland State University CS 410/510 Blockchain Development & Security

http://research.microsoft.com/users/lamport/pubs/pubs.html#byz

Problem

 More difficult with co-equal generals (e.g. distributed consensus in
a public blockchain)
 Each general has a vote to determine whether to attack or not
 Majority vote determines action
 Conditions to meet

 Every loyal general must obtain the same value for all other loyal generals
 If a general is loyal, the value she sends must be used by every loyal general

Portland State University CS 410/510 Blockchain Development & Security

Non-malicious generals

 G1 attack or retreat?

 Trivial agreement when all are loyal

Portland State University CS 410/510 Blockchain Development & Security

Everyone attacks

G1= Attack G1= Attack

G1

G2 G3

Malicious general

 Can convince disagreement between non-malicious generals

Portland State University CS 410/510 Blockchain Development & Security

One attacks, one does not

G1= Attack G1= Retreat

G1

G2 G3

Malicious general

 Extra message exchange can detect presence of malicious actor

 Can G2 determine who is being malicious based on two messages it gets?

Portland State University CS 410/510 Blockchain Development & Security

G1= Attack G1= Retreat

G1= Retreat

G1

G2 G3

Differing messages indicates

presence of a malicious actor

Malicious general

 No.
 Looks the same to G2 as before!

Portland State University CS 410/510 Blockchain Development & Security

G1= Attack G1= Attack

G1= Retreat

Differing messages indicates

presence of a malicious actor

G1

G2 G3

Lamport's result and algorithm

 Assumptions
 Messages are not signed

 Communication is synchronous (i.e. with bounded delays)
 No solution if message delivery times unbounded

 Consensus achieved using a deterministic algorithm in a

synchronous network (i.e. bounded delays on messages) iff

 n = 3t + 1 participants (n = # of generals, t = # of traitors)

 i.e. 2/3 of generals must be non-malicious to solve the problem

 Consensus in poly(n) steps

Portland State University CS 410/510 Blockchain Development & Security

Intuition

 4 general solution (G4 determining G1's vote with malicious G3)
 Majority vote to determine consensus action

Portland State University CS 410/510 Blockchain Development & Security

G1= Attack

G1= Retreat

G1

G4 G3

G1= Attack

G2

G1= Attack
G1= Attack

 4 general solution (G4 determining G1's vote with malicious G1)
 Majority vote to determine consensus action

Portland State University CS 410/510 Blockchain Development & Security

G1= Retreat

G1= Attack

G1

G4

G1= Attack

G2

G1= Attack
G1= Attack

G3

Achieves strong consistency

 BFT-based protocols always maintain a single, consistent, global state
 Always correct, no inconsistencies (even temporarily)

 Done as rounds of consensus on state followed by state commitment
 Often made hierarchical (in order to scale)

 BFT-based approaches being used by many fintech blockchains (IBM,

JPMorgan, Tendermint) as a result
 Consistency paramount!

 Protocols choose consistency over liveness in presence of partition

Portland State University CS 410/510 Blockchain Development & Security

BFT approaches

 Practical Byzantine Fault-Tolerance (PBFT) (1999)
 OSDI 1999 (Miguel Castro and Barbara Liskov)

 Works in loosely asynchronous environments (i.e. Internet) via

replicated message passing and voting

 Widely used now (but not until after Bitcoin)
 ByzCoin (public), Hyperledger Fabric, Hyperledger Iroha (Sumeragi) (private,

permissioned)

 Docker Compose and parts of Kubernetes

Portland State University CS 410/510 Blockchain Development & Security

 "Blockchain Consensus Protocols in the Wild",

https://arxiv.org/abs/1707.01873v2
 Tangaroa (Byzantine Fault Tolerant Raft)

 http://www.scs.stanford.edu/17au-cs244b/labs/projects/wang_tai_an.pdf

 Adds randomization in election of leadership to address Byzantine actors

 Redundant Byzantine Fault-Tolerance (RBFT)

 Tendermint https://tendermint.com/intro/consensus-overview

 Ripple Protocol consensus algorithm https://ripple.com/consensus-

whitepaper/

Portland State University CS 410/510 Blockchain Development & Security

https://arxiv.org/abs/1707.01873v2
http://www.scs.stanford.edu/17au-cs244b/labs/projects/wang_tai_an.pdf
https://tendermint.com/intro/consensus-overview
https://ripple.com/consensus-whitepaper/

Byzantine faults in the real-world

 Byzantine Fault Tolerant airplanes
 Airbus, Boeing implement ARINC 659 SAFEbus

network

 Duplicate transmitters sending through two bus pairs

 Recipient nodes each receive four copies and only

record a message if all 4 are the same
 Airbus A380 with 13k pounds of wiring for 611,000 pound

plane

Portland State University CS 410/510 Blockchain Development & Security

https://elaineou.com/wp-content/uploads/2017/02/safebus.pdf

BFT issues

 Sybils
 Add malicious participants until you subvert system

 https://cryptoinsider.21mil.com/byzantine-fault-tolerance-blockchain-systems/

 "Generally, membership in Byzantine agreement systems is set by a central

authority or closed negotiation."

 Makes BFT protocols difficult to use for public blockchains

 Complexity of protocol
 Implementation

 Message exchanges

 Deterministic protocol that assumes synchrony to achieve consensus

Portland State University CS 410/510 Blockchain Development & Security

https://cryptoinsider.21mil.com/byzantine-fault-tolerance-blockchain-systems/

Randomized distributed consensus

 Recall FLP impossibility
 "Consensus impossible in asynchronous network (i.e. unbounded

message delays) with a deterministic protocol"

 Solve consensus in an asynchronous network using a non-

deterministic protocol with probability close to 1
 Coin flipping or common coin approach gives consensus with high

probability in the presence of failures

 Observation: Tiny fraction of bad executions in FLP result in loss of

liveness
 Use random coin flips to make them less probable and make eventual progress on

consensus

 Converges to agreement within a fixed, small expected number of rounds

 Keep in mind for Bitcoin…

Portland State University CS 410/510 Blockchain Development & Security

Intuition behind randomized algorithms

 2 pedestrians passing each other in hallway
 Deterministic algorithm

 If both on left, go right.

 If both on right, go left

 Leads to starvation!

 Randomized algorithm avoids starvation probabilistically

 Papers from Ben-Or, Rabin, Aspnes, Attiya for theoretical

underpinnings applied to Byzantine agreement protocols
 Linked from course site

Portland State University CS 410/510 Blockchain Development & Security

DLS consensus (1988)

 Tweak FLP impossibility
 "Consensus impossible in asynchronous network (i.e. unbounded message

delays) with a deterministic protocol"

 Cynthia Dwork, Nancy Lynch, Larry Stockmeyer "Consensus in the

Presence of Partial Synchrony", JACM v. 35, no. 2, p. 288-323, April

1988.
 Partial synchrony allows one to make some guarantees on consistency

and liveness via a deterministic protocol

Portland State University CS 410/510 Blockchain Development & Security

https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf

 Two cases
 Upper-bound on delay exists, but not known a priori (protocol

takes it into account automatically)

 Known upper-bound on delay will eventually be achieved at some

point in the future to make progress

Portland State University CS 410/510 Blockchain Development & Security

XFT

 Take DLS approach and tweak asynchrony assumption of FLP

 Byzantine fault-tolerant Paxos
 Provides safety and liveness as long as a majority of replicas are correct and

can communicate with each other synchronously (a minority of the replicas are

Byzantine-faulty, or partitioned due to a network fault)

 In return it uses only the same number of resources (replicas) as

asynchronous crash fault-tolerant systems

Portland State University CS 410/510 Blockchain Development & Security

Byzantine consensus with weak

consistency

Nakamoto consensus

 Tweak FLP impossibility
 "Consensus impossible in asynchronous network with deterministic

protocol"

 Nakamoto consensus cleverly tweaks both parts to get consensus
 https://bitcoin.org/bitcoin.pdf

 Make a strong synchrony assumption
 Replicas with tight relay links to broadcast new blocks in order to

maintain consistency

 Delay in propagating new blocks (10 sec) must be an order of magnitude

less than the time between creation of new blocks (10 min)

 Hedge the failure of that assumption using randomized protocol
 Govern the time for creation of new blocks by randomized proof-of-

work hash puzzle (partial hash collision)

 Difficulty adapts as technology improves

Portland State University CS 410/510 Blockchain Development & Security

https://bitcoin.org/bitcoin.pdf

Non-determinism via Proof of work

 Bounded asynchrony
 Make the time to create next block much larger than the propagation

time for broadcasting a newly accepted block

 Find a solution to a public puzzle that is hard to solve, but easy to

verify

 Get a majority of nodes to accept it as valid

 Typically used for public "trustless" block-chains

Portland State University CS 410/510 Blockchain Development & Security

What if?

 Synchrony assumption fails?
 Individual partitions continue to run!

 Transactions validated and added to both chains

 How does one reconcile the chain upon reconnection?
 Longest-chain "wins" and is always the one that miners will choose

 Invalidates the transactions on shorter chain that were added after

partition

 Randomization governs progress made and which state is accepted

Portland State University CS 410/510 Blockchain Development & Security

Issue #1: Proof-of-work power consumption

 Number of tera-hashes (trillions) per second being performed on

Bitcoin network

Portland State University CS 410/510 Blockchain Development & Security

6*1019 hashes per second!

 Mining operations

Portland State University CS 410/510 Blockchain Development & Security

 Leads to an environmental disaster…

https://digiconomist.net/bitcoin-energy-consumption/

 An environmental disaster…

 Alternatives?

Portland State University CS 410/510 Blockchain Development & Security

https://digiconomist.net/bitcoin-energy-consumption/

Issue #2: Hashrate distribution

 Centralization based on hardware resources for solving puzzle
 Bitcoin mining pools https://www.blockchain.com/pools

Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/pools

 Ethereum mining pools
 https://miningpoolstats.stream/ethereum

Portland State University CS 410/510 Blockchain Development & Security

https://miningpoolstats.stream/ethereum

 Monero
 Proof-of-work algorithm that resists parallelization

 Allows any computer to potentially find a solution

 Cryptojacking on the rise…

Portland State University CS 410/510 Blockchain Development & Security

 Cryptojacking replacing ransomware for prevalence

 (When cryptocurrency prices skyrocketed to record levels), what was once an

outlier in the malware scene had suddenly become the most common form of

malware.

Portland State University CS 410/510 Blockchain Development & Security

Proof of stake

 Address energy consumption to replace miners replaced by

validators in consensus protocol
 Moves to a BFT-style protocol

 Uses "stake" for admission into the validation protocol

 Mechanism
 Validators put up collateral (reputation or currency)

 Validators randomly elected via probabilistic election based on amount

of stake held to insert next block

 Validators validate and insert block to obtain a reward

 Collateral taken by network if anything incorrectly validated

 Must hold large percent of ETH to attack consensus

 First used in Peercoin (King 2012), b-money (Dai 1998)

Portland State University CS 410/510 Blockchain Development & Security

Example: Ethereum 2.0 (Beacon chain)

 Validators place 32 ETH into a ETH Foundation deposit contract
 Validation begins when 524,288 ETH across 16,384 validators staked

 Each proposed block has random committees of 128 validators attest to

it

 Require 2/3 agreement of validators to attest

 Probability that an attacker can own enough nodes to get elected at the

2/3 level extremely low!

 https://consensys.net/blog/blockchain-explained/what-is-proof-of-

stake/

 Issue
 Eventual plutocratic governance by insiders?

Portland State University CS 410/510 Blockchain Development & Security

https://consensys.net/blog/blockchain-explained/what-is-proof-of-stake/

Variants

 Delegated Proof-of-Stake (e.g. Congress)
 Real-time voting with a social system for reputation built-in

 Users vote for delegates (witnesses)

 Voting power increases proportionally to amount of tokens held

 Simply vote out a dishonest delegate

 Leased Proof-of-Stake (e.g. Mutual Funds)
 Lease coins to a node you trust without giving up ownership

 Financial reward from node validating blocks split with users whom

the node leased from

Portland State University CS 410/510 Blockchain Development & Security

Proof of elapsed time

 aka PoET

 For permissioned block-chains where nodes pre-selected by

enterprise
 Trusted hardware elects machine that will validate next block to insert

 Algorithm
 Each node assumed to contain a trusted execution environment (e.g.

Intel SGX)

 Trusted hardware generates a random elapsed time

 Node with the lowest time waits that amount, then adds next block

 Delay allows previous block to propagate

 Puts trust in Intel SGX
 Perhaps fine since control already centralized in permissioned model

 Examples: Hyperledger Sawtooth
 https://intelledger.github.io/introduction.html#proof-of-elapsed-time-poet

Portland State University CS 410/510 Blockchain Development & Security

https://intelledger.github.io/introduction.html#proof-of-elapsed-time-poet

Portland State University CS 410/510 Blockchain Development & SecurityPortland State University CS 410/510 Blockchain Development & Security

https://hackernoon.com/edenchain-is-creating-a-third-generation-smart-contract-blockchain-which-they-will-utilize-to-189cc648c8c9

Proof of capacity

 Probabilistically choose node to add next block based on hard drive

space
 Nodes store large data sets

 Those with more given higher probability

 e.g. proof of storage, proof of space

 Examples
 Burstcoin https://www.burst-coin.org/proof-of-capacity

Portland State University CS 410/510 Blockchain Development & Security

https://www.burst-coin.org/proof-of-capacity

Proof of Burn

 Miners with prior expenditures to unspendable addresses are

randomly selected to insert next block
 Amount burned < Block validation commission

 Used in Slim Coin http://slimco.in/proof-of-burn-guide/

 https://blockonomi.com/proof-of-burn/

Portland State University CS 410/510 Blockchain Development & Security

http://slimco.in/proof-of-burn-guide/
https://blockonomi.com/proof-of-burn/

Consensus protocols summary

 Consensus protocol you use typically driven by application
 Can run a custom one on each side-chain that then syncs up to main

network

 Synchronous vs. asynchronous
 Rounds between participants before progressing vs. no coordination

 Deterministic vs. probabilistic

 Crash-fault tolerance vs. Byzantine fault-tolerance
 Crash (fail-stop): handle node failures via majority voting

 Byzantine: handle actively malicous 'live' nodes tampering with voting

Portland State University CS 410/510 Blockchain Development & Security

Which to use for your blockchain?

 Voting-based algorithms (vulnerable to sybil attacks, but no forking

issue)
 Good for permissioned blockchains requiring strict consistency (fintech)

 Lottery-based algorithms (resistant to sybil attacks, but have forking

issue)
 Good for public blockchains

Portland State University CS 410/510 Blockchain Development & Security

