
Focus is on abstraction they provide…

(Take CS 485/585 for how they work)

Cryptographic Primitives Used in

Blockchains

Public-key, Private-key cryptography

But first, symmetric encryption

 Three main algorithms:
k = Keygen(n)

C = Encrypt(k, M)

M = Decrypt(k, C)

 Use the same (secret) key to encrypt and decrypt
 Secret key shared between sender and receiver

 If you can encrypt, then you can also decrypt

 Fast, easy to accelerate, good for large amounts of data
 But, has a key distribution problem

 Examples:
 Block ciphers: AES (Advanced Encryption Standard)

 Stream ciphers: Salsa20/ChaCha

Portland State University CS 410/510 Blockchain Development & Security

Asymmetric encryption (Public Key, Private Key)

 Also has three main algorithms
 Key generation

 Encryption

 Decryption

 Plus more (later)

 Uses different keys to encrypt and decrypt (“asymmetric” crypto)
 Anyone can encrypt a message with the public key

 Only the owner of the private key can decrypt

 Slow, hard to accelerate, good for only small amounts of data
 But, easy to distribute public keys (on a blockchain, it's simply your

wallet address!)

 Examples:
 RSA

 ECDSA

Portland State University CS 410/510 Blockchain Development & Security

Figure definitions

 Public key

 Private key (kept secret)

 Plaintext

 Ciphertext

Asymmetric encryption

 Bob uses key generation algorithm to generate keys
 Bob's public key

 Bob's private key

 Bob publishes

 Alice encrypts her message with and sends it to Bob

 Only Bob can decrypt Alice's message with

Portland State University CS 410/510 Blockchain Development & Security

Enc Dec

Digital signatures

 Public-key also supports digital signing and verification algorithms
 Used to generate signatures to authenticate data (non-repudiation)

 Bob with a message to withdraw $1 from Bank of Alice
 Bob signs message using private key
 Sends message with signature to Alice
 Alice uses Bob's public key to verify only Bob could have signed message
 Debits Bob's account $1 and sends him $1

Portland State University CS 410/510 Blockchain Development & Security

Verify Sign

Digital signatures in practice

 Wallet addresses == that nodes use to validate signatures

 Q: Where are places that digital signatures are used in practice?
 Certificate authority store

 Web site certificates

 Software signing keys (apt, Windows updates)

Portland State University CS 410/510 Blockchain Development & Security

Typically, hash of message signed due to

performance issues

Portland State University CS 410/510 Blockchain Development & Security

Demo (play along)

 Go to https://bc.oregonctf.org/keys
 Set private-key, public-key pair

 Keep tab open for subsequent demos

 Go to https://bc.oregonctf.org/signatures
 Use private key to sign message

"transfer $20 to instructor"

 Copy signature

 Go to "Verify" tab

(/signatures#verify)
 Paste signature and Verify

 Modify message to transfer $200
 Verify again

 Every signature of every transaction in a block

must be validated in this manner (see next demo)

Portland State University CS 410/510 Blockchain Development & Security

https://bc.oregonctf.org/keys
https://bc.oregonctf.org/signatures

Demo (play along)

 Visit https://bc.oregonctf.org/keys to see key pair

 Visit https://bc.oregonctf.org/transaction
 See the public key (e.g. wallet address) used in transfer "From:" field

 See the private key used to sign transaction

 Use the private key to sign the transfer for the "From:" address

 Copy signature

 Go to "Verify" tab (/transaction#verify)
 Paste signature and Verify

 Modify amount
 Verify again

Portland State University CS 410/510 Blockchain Development & Security

https://bc.oregonctf.org/keys
https://bc.oregonctf.org/transaction

Private key

 *Must* be generated securely
 What happens if the generation code is faulty?

 Guess the private key easily and grab all the ETH
 Sneaky thieves "ethercombing" (4/2019)

 "The thieves seemed to have a vast, pre-generated list of keys, and were scanning them with
inhuman, automated speed."

 Or what if generation code is maliciously written?
 Get the private key as it's being generated!

 Phishing sites for key generation
 Spell-checker used on key generation step

Portland State University CS 410/510 Blockchain Development & Security

https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/#:~:text=A%20'Blockchain%20Bandit'%20Is%20Guessing%20Private%20Keys%20and%20Scoring%20Millions,-The%20larger%20lesson&text=To%20Bednarek's%20surprise%2C%20he%20found,that%20records%20all%20Ethereum%20transactions.

 *Must* be kept accessible

 What happens if you lose yours?

 "out of the 21 million Bitcoins that will ever exist, between 2.8–4

million (14–20% of the total supply) have already been lost."

 Motivates cold-wallets stored in bank safe deposit boxes

Portland State University CS 410/510 Blockchain Development & Security

 *Must* be kept secret

 What happens if you get yours stolen?
 Binance $40 million loss (5/2019)

 https://www.blockchain.com/btc/tx/e8b406091959700dbffcff30a60

b190133721e5c39e89bb5fe23c5a554ab05ea

 Do we really want the ledger to be immutable and reward this behavior?

 What would it take to roll back? (more later)
Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/btc/tx/e8b406091959700dbffcff30a60b190133721e5c39e89bb5fe23c5a554ab05ea

Multisignature schemes

 Problem
 Compromise of a single set of private-keys can cost you all of your $

 Multisignatures
 Require m-of-n signers to authorize a transaction

 Loss of a private-key or an adversary compromising a private-key doesn't

allow for funds to be lost

 Used to manage larger amounts of cryptocurrency balances

 Can be done with code and single signatures
 Examples: BTC's P2SH (Pay-to-Script-Hash)

 Can be done with cryptographic schemes natively

Portland State University CS 410/510 Blockchain Development & Security

Native multisignature schemes

 https://blockchainatberkeley.blog/alternative-signatures-schemes-

14a563d9d562

 Threshold ECDSA (Keep Network, Kzen)

 Threshold Ed25519 (Kzen), Schnorr (Bitcoin)

Portland State University CS 410/510 Blockchain Development & Security

https://blockchainatberkeley.blog/alternative-signatures-schemes-14a563d9d562

Cryptographic hash functions

(Immutability)

Cryptographic hash functions

 One way functions that take arbitrary-sized input and generates a

random-looking, fixed-length output

 Hash function H, Input x, hash function output h
H(x)=h

Portland State University CS 410/510 Blockchain Development & Security

Merkle-Damgard Hash Construction

 Repeated use of a “compression function”
 Maps m bits of input to n bits of output (m > n)

Portland State University CS 410/510 Blockchain Development & Security

m-bit input

n-bit outputn-bit input

Merkle-Damgard Hash Construction

Portland State University CS 410/510 Blockchain Development & Security

Initialization Vector Output

Input Padding

Block 1 Block 2 Block 3

Cryptographic hash functions

 Desired properties
 Deterministic: For the same input, you will always get the same

output

 Efficient: Quickly computed

 Preimage resistance – Infeasible to determine input from output (e.g.

for a given h, it is hard to find x)

 Second preimage resistance (basis for immutability in blocks) – for

a given input x1, it is hard to find a different input x2 such that

H(x1)=H(x2)

 Collision resistance – it is hard to find any pair x1, x2 such that

H(x1)=H(x2)

 Avalanche effect (basis for proof-of-work in mining) – a 1-bit change

in input x causes each output bit in h to flip with probability ½

(sometimes called a pseudo-random function)

Portland State University CS 410/510 Blockchain Development & Security

Beware of broken schemes

 MD5 (1992) – Merkle Damgard
 Collision resistance broken since 2004
 Second pre-image resistance broken since 2010

 Example from:
https://web.archive.org/web/20100327141611/http://th.informatik.uni-
mannheim.de/people/lucks/HashCollisions/

Portland State University CS 410/510 Blockchain Development & Security

https://web.archive.org/web/20100327141611/http:/th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

Other broken schemes

 SHA (1993) – Broken, don’t use

 SHA-1 (1995) – Fixes SHA, but collisions have been found (2017)
 Don’t use for new projects

 Replaced by …

Portland State University CS 410/510 Blockchain Development & Security

SHA-2

 Secure Hash Algorithm 2
 Designed by NSA

 Published in 2001

 Digest size 224, 256, 384, or 512 bits

 Current cryptanalysis: Pretty good; OK for now

 Used in Bitcoin
H(x) = SHA256(SHA256(x))

Portland State University CS 410/510 Blockchain Development & Security

keccak

 Winner of the SHA-3 competition sponsored by NIST to replace

SHA-1 and SHA-2
 https://keccak.team/keccak.html

 Competition started in 2007

 Ended in 2012 (after Bitcoin deployed)

 Sponge function that generates hashes of arbitrary length
 https://keccak.team/sponge_duplex.html

 Basis of various NIST-approved SHA-3 implementations
 e.g. SHA3-224, SHA3-256, SHA3-384, SHA-512

 Used in Ethereum

Portland State University CS 410/510 Blockchain Development & Security

https://keccak.team/keccak.html
https://keccak.team/sponge_duplex.html

Two uses for hashes in a blockchain

 Use #1: Ensure integrity of a block
 Hash signature changes if data changes

 Second pre-image resistance makes it difficult to find another input x2

that maps to the same hash value as original input x1

Portland State University CS 410/510 Blockchain Development & Security

Demo

 https://anders.com/blockchain/hash

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/hash

Two uses for hashes in a blockchain

 Use #2: Mining blocks
 Implement rate-limits

 On number of blocks added to a blockchain (to avoid double-spending problem and

to bound the size of the ledger)

 On amount of currency (to restrict supply and reduce inflation)

 New currency (coinbase) only issued to miners via a block reward

 Recall definitions from last class
 ….consistent storage system secured by economic incentive

 Specific example
 A valid block must come with a nonce, when combined with the block data, results

in a hash with a certain number of leading 0s

 Hash function treated as a random function!

 Brute-force search by incrementing nonce and checking block hash

 Probability of a bit in a hash flipping should be 50% if any bit is changed in the

block!

Portland State University CS 410/510 Blockchain Development & Security

Demo

 Manually find a nonce that produces a hash with one leading 0, given

data "mine me"
 https://anders.com/blockchain/block

 Change the nonce without clicking on "Mine"

 What is the smallest nonce that gives you a leading 0?

 Questions
 How many hashes on average would it take to find one with 2 leading 0s?

 How many hashes on average would it take to find one with 4 leading 0s?

 Use the "Mine" button to find one with 4 leading 0s
 Repeat on multiple distinct blocks to validate estimate

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/block

Exercise: Mining

 Visit https://anders.com/blockchain/block
 Set Block # = 20191002 (Today’s date)

 Set Data = “Blockchain” (without the quotes)

 Repeatedly change the nonce and "Mine" to try to find a nonce that

results in a hash which starts with 5 zeros

 Example
 Nonce = 2023497392383

 Hash = 000006cefee87....

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/block

Exercise: Current BTC work function

 Visit https://blockchain.com/explorer

 Find the current number of leading 0s that a successfully mined block

must have
 Tuned to a 10 minute block time with current hardware (mostly run in

China)

Portland State University CS 410/510 Blockchain Development & Security

https://blockchain.com/explorer

What is stored in the block?

 Currency transactions
 Bitcoin transfers from one address to another (Shared Ledger)

 Program execution state transitions
 EthereumVirtual Machine (Shared State Machine)

 Smart contracts running live, long-running programs

 Asset ownership

 Data itself (e.g. documents, images)
 Expensive!

 Hashes of data
 Factom, Bitcoin commitments to documents stored off-chain

 Stamp.io
 Place document hashes onto blockchain

 Produce actual content to prove ownership if required

 https://youtu.be/GkmHnc-5OyY

Portland State University CS 410/510 Blockchain Development & Security

https://youtu.be/GkmHnc-5OyY

But …

 Want to validate a single transaction in a block with thousands of

transactions
 Must go through all transactions to generate blockhash

 Slow if validation extended to many transactions (Bitcoin blockchain

currently > 200GB of data)

 Motivates different techniques to improve performance

Portland State University CS 410/510 Blockchain Development & Security

Merkle Tree

 Immutability of transactions within block

 Tree of hashes to verify one piece of data without verifying entire log
 Efficiently prove integrity and validity of K by checking from the root

HABCDEFGHIJKLMNOP => HABCDEFGH HIJKLMNOP
HIJKLMNOP => HIJKL HMNOP
HIJKL => HIJ HKL => HK
HKL => HK HL

 Second pre-image resistance property prevents replacement of K

Portland State University CS 410/510 Blockchain Development & Security

Chaining

 Immutability across blocks in "blockchain"
 Merkle-Damgard compression construction applied at block level

 Hash of previous block used as input to hash of the next one
 Tampering with Block n invalidates subsequent hashes

Portland State University CS 410/510 Blockchain Development & Security

Put together

 Merkle tree + hash chaining

Portland State University CS 410/510 Blockchain Development & Security

Demo

 https://anders.com/blockchain/blockchain
 Prev hash used to bind current block to preceding block

 Tampering with one block invalidates subsequent blocks in chain

 Adversary would need to re-mine all subsequent blocks to "modify"

the ledger

 Blocks deeper in the chain are harder to tamper with

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/blockchain

Explorers

 Rewriting history is *hard*

 Blocks effectively immutable

 Can navigate blockchain on a number of sites
 bitcoin.info, blockexplorer.com, etherscan.io, etherchain.org

Portland State University CS 410/510 Blockchain Development & Security

Demo: Putting things together (play along)

 https://bc.oregonctf.org/blockchain

 Modify transaction
 Invalidates blockhash as well as the signature of the transaction

 Fix hash chain
 Miners can mine block to fix hash chain

 But, can not fix broken signature

 Nodes programmed to reject all blocks with invalid signatures
 Miners would never mine a block with an invalid signature since they

would get no credit for it

 Provides the basis on which trust is built

Portland State University CS 410/510 Blockchain Development & Security

https://bc.oregonctf.org/blockchain

