
Focus is on abstraction they provide…

(Take CS 485/585 for how they work)

Cryptographic Primitives Used in

Blockchains

Public-key, Private-key cryptography

But first, symmetric encryption

 Three main algorithms:
k = Keygen(n)

C = Encrypt(k, M)

M = Decrypt(k, C)

 Use the same (secret) key to encrypt and decrypt
 Secret key shared between sender and receiver

 If you can encrypt, then you can also decrypt

 Fast, easy to accelerate, good for large amounts of data
 But, has a key distribution problem

 Examples:
 Block ciphers: AES (Advanced Encryption Standard)

 Stream ciphers: Salsa20/ChaCha

Portland State University CS 410/510 Blockchain Development & Security

Asymmetric encryption (Public Key, Private Key)

 Also has three main algorithms
 Key generation

 Encryption

 Decryption

 Plus more (later)

 Uses different keys to encrypt and decrypt (“asymmetric” crypto)
 Anyone can encrypt a message with the public key

 Only the owner of the private key can decrypt

 Slow, hard to accelerate, good for only small amounts of data
 But, easy to distribute public keys (on a blockchain, it's simply your

wallet address!)

 Examples:
 RSA

 ECDSA

Portland State University CS 410/510 Blockchain Development & Security

Figure definitions

 Public key

 Private key (kept secret)

 Plaintext

 Ciphertext

Asymmetric encryption

 Bob uses key generation algorithm to generate keys
 Bob's public key

 Bob's private key

 Bob publishes

 Alice encrypts her message with and sends it to Bob

 Only Bob can decrypt Alice's message with

Portland State University CS 410/510 Blockchain Development & Security

Enc Dec

Digital signatures

 Public-key also supports digital signing and verification algorithms
 Used to generate signatures to authenticate data (non-repudiation)

 Bob with a message to withdraw $1 from Bank of Alice
 Bob signs message using private key
 Sends message with signature to Alice
 Alice uses Bob's public key to verify only Bob could have signed message
 Debits Bob's account $1 and sends him $1

Portland State University CS 410/510 Blockchain Development & Security

Verify Sign

Digital signatures in practice

 Wallet addresses == that nodes use to validate signatures

 Q: Where are places that digital signatures are used in practice?
 Certificate authority store

 Web site certificates

 Software signing keys (apt, Windows updates)

Portland State University CS 410/510 Blockchain Development & Security

Typically, hash of message signed due to

performance issues

Portland State University CS 410/510 Blockchain Development & Security

Demo (play along)

 Go to https://bc.oregonctf.org/keys
 Set private-key, public-key pair

 Keep tab open for subsequent demos

 Go to https://bc.oregonctf.org/signatures
 Use private key to sign message

"transfer $20 to instructor"

 Copy signature

 Go to "Verify" tab

(/signatures#verify)
 Paste signature and Verify

 Modify message to transfer $200
 Verify again

 Every signature of every transaction in a block

must be validated in this manner (see next demo)

Portland State University CS 410/510 Blockchain Development & Security

https://bc.oregonctf.org/keys
https://bc.oregonctf.org/signatures

Demo (play along)

 Visit https://bc.oregonctf.org/keys to see key pair

 Visit https://bc.oregonctf.org/transaction
 See the public key (e.g. wallet address) used in transfer "From:" field

 See the private key used to sign transaction

 Use the private key to sign the transfer for the "From:" address

 Copy signature

 Go to "Verify" tab (/transaction#verify)
 Paste signature and Verify

 Modify amount
 Verify again

Portland State University CS 410/510 Blockchain Development & Security

https://bc.oregonctf.org/keys
https://bc.oregonctf.org/transaction

Private key

 Must be generated securely
 What happens if the generation code is faulty?

 Guess the private key easily and grab all the ETH
 Sneaky thieves "ethercombing" (4/2019)

 "The thieves seemed to have a vast, pre-generated list of keys, and were scanning them with
inhuman, automated speed."

 Or what if generation code is maliciously written?
 Get the private key as it's being generated!

 Phishing sites for key generation
 Spell-checker used on key generation step

Portland State University CS 410/510 Blockchain Development & Security

https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/#:~:text=A%20'Blockchain%20Bandit'%20Is%20Guessing%20Private%20Keys%20and%20Scoring%20Millions,-The%20larger%20lesson&text=To%20Bednarek's%20surprise%2C%20he%20found,that%20records%20all%20Ethereum%20transactions.

 Must be kept accessible

 What happens if you lose yours?

 "out of the 21 million Bitcoins that will ever exist, between 2.8–4

million (14–20% of the total supply) have already been lost."

 Motivates cold-wallets stored in bank safe deposit boxes

Portland State University CS 410/510 Blockchain Development & Security

 Must be kept secret

 What happens if you get yours stolen?
 Binance $40 million loss (5/2019)

 https://www.blockchain.com/btc/tx/e8b406091959700dbffcff30a60

b190133721e5c39e89bb5fe23c5a554ab05ea

 Do we really want the ledger to be immutable and reward this behavior?

 What would it take to roll back? (more later)
Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/btc/tx/e8b406091959700dbffcff30a60b190133721e5c39e89bb5fe23c5a554ab05ea

Multisignature schemes

 Problem
 Compromise of a single set of private-keys can cost you all of your $

 Multisignatures
 Require m-of-n signers to authorize a transaction

 Loss of a private-key or an adversary compromising a private-key doesn't

allow for funds to be lost

 Used to manage larger amounts of cryptocurrency balances

 Can be done with code and single signatures
 Examples: BTC's P2SH (Pay-to-Script-Hash)

 Can be done with cryptographic schemes natively

Portland State University CS 410/510 Blockchain Development & Security

Native multisignature schemes

 https://blockchainatberkeley.blog/alternative-signatures-schemes-

14a563d9d562

 Threshold ECDSA (Keep Network, Kzen)

 Threshold Ed25519 (Kzen), Schnorr (Bitcoin)

Portland State University CS 410/510 Blockchain Development & Security

https://blockchainatberkeley.blog/alternative-signatures-schemes-14a563d9d562

Cryptographic hash functions

(Immutability)

Cryptographic hash functions

 One way functions that take arbitrary-sized input and generates a

random-looking, fixed-length output

 Hash function H, Input x, hash function output h
H(x)=h

Portland State University CS 410/510 Blockchain Development & Security

Merkle-Damgard Hash Construction

 Repeated use of a “compression function”
 Maps m bits of input to n bits of output (m > n)

Portland State University CS 410/510 Blockchain Development & Security

m-bit input

n-bit outputn-bit input

Merkle-Damgard Hash Construction

Portland State University CS 410/510 Blockchain Development & Security

Initialization Vector Output

Input Padding

Block 1 Block 2 Block 3

Cryptographic hash functions

 Desired properties
 Deterministic: For the same input, you will always get the same

output

 Efficient: Quickly computed

 Preimage resistance – Infeasible to determine input from output (e.g.

for a given h, it is hard to find x)

 Second preimage resistance (basis for immutability in blocks) – for

a given input x1, it is hard to find a different input x2 such that

H(x1)=H(x2)

 Collision resistance – it is hard to find any pair x1, x2 such that

H(x1)=H(x2)

 Avalanche effect (basis for proof-of-work in mining) – a 1-bit change

in input x causes each output bit in h to flip with probability ½

(sometimes called a pseudo-random function)

Portland State University CS 410/510 Blockchain Development & Security

Beware of broken schemes

 MD5 (1992) – Merkle Damgard
 Collision resistance broken since 2004
 Second pre-image resistance broken since 2010

 Example from:
https://web.archive.org/web/20100327141611/http://th.informatik.uni-
mannheim.de/people/lucks/HashCollisions/

Portland State University CS 410/510 Blockchain Development & Security

https://web.archive.org/web/20100327141611/http:/th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

Other broken schemes

 SHA (1993) – Broken, don’t use

 SHA-1 (1995) – Fixes SHA, but collisions have been found (2017)
 Don’t use for new projects

 Replaced by …

Portland State University CS 410/510 Blockchain Development & Security

SHA-2

 Secure Hash Algorithm 2
 Designed by NSA

 Published in 2001

 Digest size 224, 256, 384, or 512 bits

 Current cryptanalysis: Pretty good; OK for now

 Used in Bitcoin
H(x) = SHA256(SHA256(x))

Portland State University CS 410/510 Blockchain Development & Security

keccak

 Winner of the SHA-3 competition sponsored by NIST to replace

SHA-1 and SHA-2
 https://keccak.team/keccak.html

 Competition started in 2007

 Ended in 2012 (after Bitcoin deployed)

 Sponge function that generates hashes of arbitrary length
 https://keccak.team/sponge_duplex.html

 Basis of various NIST-approved SHA-3 implementations
 e.g. SHA3-224, SHA3-256, SHA3-384, SHA-512

 Used in Ethereum

Portland State University CS 410/510 Blockchain Development & Security

https://keccak.team/keccak.html
https://keccak.team/sponge_duplex.html

Two uses for hashes in a blockchain

 Use #1: Ensure integrity of a block
 Hash signature changes if data changes

 Second pre-image resistance makes it difficult to find another input x2

that maps to the same hash value as original input x1

Portland State University CS 410/510 Blockchain Development & Security

Demo

 https://anders.com/blockchain/hash

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/hash

Two uses for hashes in a blockchain

 Use #2: Mining blocks
 Implement rate-limits

 On number of blocks added to a blockchain (to avoid double-spending problem and

to bound the size of the ledger)

 On amount of currency (to restrict supply and reduce inflation)

 New currency (coinbase) only issued to miners via a block reward

 Recall definitions from last class
 ….consistent storage system secured by economic incentive

 Specific example
 A valid block must come with a nonce, when combined with the block data, results

in a hash with a certain number of leading 0s

 Hash function treated as a random function!

 Brute-force search by incrementing nonce and checking block hash

 Probability of a bit in a hash flipping should be 50% if any bit is changed in the

block!

Portland State University CS 410/510 Blockchain Development & Security

Demo

 Manually find a nonce that produces a hash with one leading 0, given

data "mine me"
 https://anders.com/blockchain/block

 Change the nonce without clicking on "Mine"

 What is the smallest nonce that gives you a leading 0?

 Questions
 How many hashes on average would it take to find one with 2 leading 0s?

 How many hashes on average would it take to find one with 4 leading 0s?

 Use the "Mine" button to find one with 4 leading 0s
 Repeat on multiple distinct blocks to validate estimate

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/block

Exercise: Mining

 Visit https://anders.com/blockchain/block
 Set Block # = 20191002 (Today’s date)

 Set Data = “Blockchain” (without the quotes)

 Repeatedly change the nonce and "Mine" to try to find a nonce that

results in a hash which starts with 5 zeros

 Example
 Nonce = 2023497392383

 Hash = 000006cefee87....

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/block

Exercise: Current BTC work function

 Visit https://blockchain.com/explorer

 Find the current number of leading 0s that a successfully mined block

must have
 Tuned to a 10 minute block time with current hardware (mostly run in

China)

Portland State University CS 410/510 Blockchain Development & Security

https://blockchain.com/explorer

What is stored in the block?

 Currency transactions
 Bitcoin transfers from one address to another (Shared Ledger)

 Program execution state transitions
 EthereumVirtual Machine (Shared State Machine)

 Smart contracts running live, long-running programs

 Asset ownership

 Data itself (e.g. documents, images)
 Expensive!

 Hashes of data
 Factom, Bitcoin commitments to documents stored off-chain

 Stamp.io
 Place document hashes onto blockchain

 Produce actual content to prove ownership if required

 https://youtu.be/GkmHnc-5OyY

Portland State University CS 410/510 Blockchain Development & Security

https://youtu.be/GkmHnc-5OyY

But …

 Want to validate a single transaction in a block with thousands of

transactions
 Must go through all transactions to generate blockhash

 Slow if validation extended to many transactions (Bitcoin blockchain

currently > 200GB of data)

 Motivates different techniques to improve performance

Portland State University CS 410/510 Blockchain Development & Security

Merkle Tree

 Immutability of transactions within block

 Tree of hashes to verify one piece of data without verifying entire log
 Efficiently prove integrity and validity of K by checking from the root

HABCDEFGHIJKLMNOP => HABCDEFGH HIJKLMNOP
HIJKLMNOP => HIJKL HMNOP
HIJKL => HIJ HKL => HK
HKL => HK HL

 Second pre-image resistance property prevents replacement of K

Portland State University CS 410/510 Blockchain Development & Security

Chaining

 Immutability across blocks in "blockchain"
 Merkle-Damgard compression construction applied at block level

 Hash of previous block used as input to hash of the next one
 Tampering with Block n invalidates subsequent hashes

Portland State University CS 410/510 Blockchain Development & Security

Put together

 Merkle tree + hash chaining

Portland State University CS 410/510 Blockchain Development & Security

Demo

 https://anders.com/blockchain/blockchain
 Prev hash used to bind current block to preceding block

 Tampering with one block invalidates subsequent blocks in chain

 Adversary would need to re-mine all subsequent blocks to "modify"

the ledger

 Blocks deeper in the chain are harder to tamper with

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/blockchain

Explorers

 Rewriting history is *hard*

 Blocks effectively immutable

 Can navigate blockchain on a number of sites
 bitcoin.info, blockexplorer.com, etherscan.io, etherchain.org

Portland State University CS 410/510 Blockchain Development & Security

Demo: Putting things together (play along)

 https://bc.oregonctf.org/blockchain

 Modify transaction
 Invalidates blockhash as well as the signature of the transaction

 Fix hash chain
 Miners can mine block to fix hash chain

 But, can not fix broken signature

 Nodes programmed to reject all blocks with invalid signatures
 Miners would never mine a block with an invalid signature since they

would get no credit for it

 Provides the basis on which trust is built

Portland State University CS 410/510 Blockchain Development & Security

https://bc.oregonctf.org/blockchain

