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•Faster
•Safer
•More 

comfortable

•More efficient
•More reliable
•More capable
•…

• Modern cars are:

• Unsurprisingly, most drivers today drive 
modern cars
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as “portable assembler”
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•Higher-level
•Feature rich
•Type safe
•Memory safe

•Less error prone
•Well-designed
•Well-defined
•…

• Modern programming languages are:

• Surprisingly, most systems programmers 
today are still using C …

C is great … what more could you want?
• Programming in C gives systems developers:

• Good (usually predictable) performance characteristics

• Low-level access to hardware when needed

• A familiar and well-established notation for writing 
imperative programs that will get the job done

• What can you do in modern languages that you can’t already 
do with C?

• Do you really need the fancy features of newer object-
oriented or functional languages?

• Are there any downsides to programming in C?
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Could a different language 
make it impossible to 

write programs with errors 
like these ?



The Habit programming language
• “a dialect of Haskell that is designed to meet the needs of 

high assurance systems programming”

Habit = Haskell + bits

• Habit, like Haskell, is a functional programming language

• For people trained in using C, the syntax and features of 
Habit may be unfamiliar

• I won’t assume familiarity with functional programming here

• We’ll focus on how Habit uses types to detect and 
prevent common types of programming errors
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Division
• You can divide an integer by an integer to get an integer result

• In Habit:

div :: Int ⟶ Int ⟶ Int

• This is a lie!

• Correction: You can divide an integer by a non-zero 
integer to get an integer result

• In Habit:

div :: Int ⟶ NonZero Int ⟶ Int

• But where do   NonZero Int   values come from?

7

1st arg 2nd arg result“has type”

Where do NonZero values come from?
• Option 1: Integer literals - numbers like 1, 7, 63, and 128 

are clearly all NonZero integers

• Option 2: By checking at runtime

nonzero :: Int ⟶ Maybe (NonZero Int)

• These are the only two ways to get a NonZero Int!

• NonZero is an abstract datatype
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Values of type Maybe t are either:
• Nothing
• Just x for some x of type t

Examples using NonZero values
• Calculating the average of two values:

ave    :: Int ⟶ Int ⟶ Int  
ave n m = (n + m) `div` 2

• Calculating the average of a list of integers:

average :: List Int ⟶ Maybe Int  
average nums  
   = case nonzero (length nums) of  
       Just d  ⟶  Just (sum nums `div` d)  
       Nothing ⟶  Nothing

• Key point: If you forget the check, your code will not compile!
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a non zero literal

checked!



Null pointer dereferences
• In C, a value of type T* is a pointer to an object of type T

• But this may be a lie!

• A null pointer has type T*, but does NOT point to an 
object of type T

• Attempting to read or write the value pointed to by a null 
pointer is called a “null pointer dereference” and often 
results in system crashes, vulnerabilities, or memory 
corruption

• Described by Tony Hoare (who introduced null pointers in 
the ALGOL W language in 1965) as his “billion dollar mistake”
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Pointers and reference types
• Lesson learned: we should distinguish between

• References (of type Ref a): guaranteed to point to values 
of type a

• Pointers (of type Ptr a): either a reference or a null

• These types are not the same:  Ptr a = Maybe (Ref a)

• You can only read or write values via a reference

• Code that tries to read from a pointer will fail to compile!

• Goodbye null pointer dereferences!
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• Arrays are collections of values stored in contiguous locations 
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• If i is not a valid index (an “out of bounds index”), then an 
attempt to access a[i] could lead to a system crash, memory 
corruption, …

• A common path to “arbitrary code execution”

• Arrays are collections of values stored in contiguous locations 
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• If i is not a valid index (an “out of bounds index”), then an 
attempt to access a[i] could lead to a system crash, memory 
corruption, buffer overflows, …

• Arrays are collections of values stored in contiguous locations 
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• Arrays are collections of values stored in contiguous locations 
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … 

Arrays and out of bounds indexes:
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pointer to start 
of array a

offset i

Array bounds checking
• The designers of C knew that this was a potential problem … 

but chose not to address it in the language design:

• We would need to store a length field in every array

• We would need to check for valid indexes at runtime

• The designers of Java knew that this was a potential problem 
… and chose to address it in the language design:

• Store a length field in every array

• Check for valid indexes at runtime

• Performance OR Safety … pick one!
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Arrays in Habit
• Key idea: make array size part of the array type, do not allow 

arbitrary indexes:

 (@) :: Ref (Array n t) ⟶ Ix n ⟶ Ref t

• Fast, no need for a runtime check, no need for a stored length

• Ix n is another abstract type:

maybeIx :: Int ⟶ Maybe (Ix n)  
modIx   :: Int ⟶ Ix n  
incIx   :: Ix n ⟶ Maybe (Ix n)
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start address index element address

a[i] is written 
as a@i in Habit

guaranteed to be 
≥ 0 and < n

array length, as 
part of the type

• Given two 32 bit input values:

• base:

• limit:

• Calculate a 64 bit descriptor:

• Needed for the calculation of “Global Descriptor Table 
(GDT) entries” on the x86

Bit twiddling
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0 0 0

lowhigh

5 3 2

Each box is one nibble (4 bits), 
least significant bits on the right

In assembly

low
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movl    base, %eax
movl    limit, %ebx

mov     %eax, %edx
shl     $16, %eax
mov     %bx, %ax
movl    %eax, low

shr     $16, %edx
mov     %edx, %ecx
andl    $0xff, %ecx
xorl    %ecx, %edx
shl     $16,%edx
orl     %ecx, %edx
andl    $0xf0000, %ebx
orl     %ebx, %edx
orl     $0x503200, %edx
movl    %edx, high

%edx

mov 0 0 0 0

shl 16  
%eax

movw%eax

0 0 0 0 0 0 0

and 0xf0000

%ebx

0 0 0 0

shr 16  %edx %ecx

0 0 0 0
mov

0 0 0 0 0 0

and 0xff%ecx

0 0 0 0 0 0

shl 16 %edx

0 0 0 0

or%edx

%eax mov

0 0 0
%ebx mov

high

base limit

0 0 0

0 0 0 0 0 0

xor%edx

low

high 5 3 2

0 0 0

or%edx

5 3 2

or 0x503200%edx

In C
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low  = (base << 16)          // purple
     | (limit & 0xffff);     // blue
high = (base & 0xff000000)   // pink
     | (limit & 0xf0000)     // green
     | ((base >> 16) & 0xff) // yellow
     | 0x503200;             // white

limit

0 0 0
base

lowhigh

5 3 2

• Examples like this show why we use high-level languages 
instead of assembly!

• But let’s hope we don’t get those offsets and masks wrong …

• And there is no safety net if we get the types wrong …



In Habit
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limit

0 0 0
base

lowhigh

5 3 2

• Compiler tracks types and automatically figures out 
appropriate offsets and masks:

bitdata GDT  
  = GDT [ pink   :: Bit 8 | 0x5  :: Bit 4  
        | green  :: Bit 4 | 0x32 :: Bit 8  
        | yellow :: Bit 8 | purple, blue :: Bit 16 ]

makeGDT :: Unsigned ⟶ Unsigned ⟶ GDT  
makeGDT (pink # yellow # purple)  -- base  
        (0 # green # blue)        -- limit  
   = GDT [pink|green|yellow|purple|blue]

silly    :: GDT ⟶ Bit 8  
silly gdt = gdt.pink + gdt.yellow 

• Programmer describes layout in a type definition:

Additional examples
• Layout and initialization of memory-based tables and data 

structures

• Distinguishing physical and virtual addresses

• Tracking (and limiting) side effects

• ensuring some sections of code are “read only”

• identifying/limiting code that uses privileged operations

• preventing code that sleeps while holding a lock

• …

• Reusable methods for concise and consistent input 
validation…

• …
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Chipping away ...
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HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

based on seL4

HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Chipping away ...
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based on Haskell



HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Using types …
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based on Haskell

HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Using functional programming ...
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based on Haskell

The CEMLaBS Project
• Three technical questions:

• Feasibility: Is it possible to build an inherently “unsafe” 
system like seL4 in a “safe” language like Habit?

• Benefit: What benefits might this have, for example, in 
reducing development or verification costs?

• Performance: Is it possible to meet reasonable 
performance goals for this kind of system?

• A social question:

• Can we persuade developers to try new languages?

• Maybe there is a role for modern programming languages …!?
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