Why Modern Programming Languages Matter

Mark P Jones, Portland State University

Winter 2017

A short history of the automobile

W@T‘ Power '
ili ' . Electric
Utility E o
Capacity " Speed
1900 1920 1940 1960 1980 2000 2020

Comfort

Fi

Luxury

=
o
i - f‘g
g
ST Y—

" s Recreation
n PR

DeLoresn DMC-12 (1581)

Time
Travel

Compact

(Images via Wikipedia, subject to Creative Commons and Public Domain licenses)

2

A short history of the automobile

Luxury = Hybrid
* Modern cars are:
* Faster * More efficient '
* Safer * More reliable
*More * More capable
comfortable .
* Unsurprisingly, most drivers today drive a-.
modern cars =
actric
Capacity e Speed
1900 1920 1940 1960 1980 2000 2020

(Images via Wikipedia, subject to Creative Commons and Public Domain licenses) 2

A short history of programming languages

Lisp

[]
Fortran

COBOL

BASIC

® Simula

. Smalltalk

il

An early systems programming
language, sometimes described
as “portable assembler”

1955

1965

1975

1985 1995 2005

2015

A short history of programming languages

o ¢ Simula Java o
Lisp , Smalltalk * Clojure
[] [)
BASIC Still the most widely used ust
[] .
C— systems programming language,
Fortran ¢ \L 45 years later!)
7 Swift
[]
COB.OL ¢ It’s as if everyone
Pascal . is still driving a .G
Ford Model T! o
A
. PHP F#
1955 1965 1975 1985 1995 2005 201 5>

A short history of programming languages

o ¢ Simula Java .
Lisg) e
* Modern programming languages are:
. Higher—leyel *Less error prone ust
° * Feature rich * Well-designed
Fortra .7ype safe * Well-defined
 Memory safe ... Swift
COBC ¢
e| *Surprisingly, most systems programmers
today are still using C ... Eo
‘—~ [) LN — H
1955 1965 1975 1985 1995 2005 201 5>

C is great ... what more could you want!?

* Programming in C gives systems developers:

* Good (usually predictable) performance characteristics

* Low-level access to hardware when needed

* A familiar and well-established notation for writing
imperative programs that will get the job done

* What can you do in modern languages that you can’t already
do with C?

* Do you really need the fancy features of newer object-
oriented or functional languages?

* Are there any downsides to programming in C?

Impact: An application may be able to execute arbitrary code with kernel privileges

Description: Multiplelmemory corruption issueslwere addressed through improved
input validation.

Impact: An application may be able to execl .
Could a different language

vescriion: T Tjosiewasasd ol i Impossible to

management. . g
write programs with errors

like these ?

Description:Alnull pointer dereferencelwas—-w g TP O Ve U T ert——
validation.

Impact: An application may be able to execl

Impact: A local user may be able to gain root privileges

Description: Altype confusionjissue was addressed through improved memory

handling.

Impact: An application may be able to execute arbitrary code

Description: Anfout-of-bounds writefissue was addressed by removing the
vulnerable code.

The Habit programming language

¢

* “a dialect of Haskell that is designed to meet the needs of
high assurance systems programming”

Habit = Haslell + bits
* Habit, like Haskell, is a functional programming language

* For people trained in using C, the syntax and features of
Habit may be unfamiliar

* | won’t assume familiarity with functional programming here

* We'll focus on how Habit uses types to detect and
prevent common types of programming errors

Division
* You can divide an integer by an integer to get an integer result

* In Habit: “has type” | | Itarg | (2™ arg| |result

c: Int — Int — Int

* This is a lie!

» Correction:You can divide an integer by a nhon-zero
integer to get an integer result

* |n Habit:
div :: Int — NonZero Int — Int

* But where do NonZero Int values come from?

Where do NonZero values come from?

* Option |:Integer literals - numbers like 1,7,63,and 128
are clearly all NonZero integers

* Option 2: By checking at runtime

nonzero :: Int — Maybe (NonZero Int)

Values of type Maybe t are either:

* Nothing
e Just x for some x of type t

* These are the only two ways to get a NonZero Int!

*NonZero is an abstract datatype

Examples using NonZero values

* Calculating the average of two values:

ave ¢:: Int — Int — Int
ave nm = (n + m) “div~ 2

a non zero Iiteral]

* Calculating the average of a list of integers:

average :: List Int — Maybe Int
average nums
= case nonzero (length nums) of
Just d — Just (sum nums “div~ d)

Nothing — ©Nothing .E

* Key point: If you forget the check, your code will not compile!

Null pointer dereferences

In C,a value of type T is a pointer to an object of type T
* But this may be a lie!

* A null pointer has type T*, but does NOT point to an
object of type T

 Attempting to read or write the value pointed to by a null
pointer is called a “null pointer dereference” and often
results in system crashes, vulnerabilities, or memory
corruption

* Described by Tony Hoare (who introduced null pointers in
the ALGOL W language in 1965) as his “billion dollar mistake”

Pointers and reference types

* Lesson learned: we should distinguish between

* References (of type Ref a): guaranteed to point to values
of type a

* Pointers (of type Ptr a):either a reference or a null

* These types are not the same: Ptr a = Maybe (Ref a)
* You can only read or write values via a reference
* Code that tries to read from a pointer will fail to compile!

* Goodbye null pointer dereferences!

Arrays and out of bounds indexes:

* Arrays are collections of values stored in contiguous locations

in memory p
offset i

pointer to start
of array a

* Address of a[i] = start address of a + i*(size of element)
* Simple, fast, ... and dangerous!

*If i is not a valid index (an “out of bounds index”), then an
attempt to access a[i] could lead to a system crash, memory
corruption, buffer overflows, ...

* A common path to “arbitrary code execution”

Array bounds checking

* The designers of C knew that this was a potential problem ...
but chose not to address it in the language design:

* We would need to store a length field in every array

* We would need to check for valid indexes at runtime

* The designers of Java knew that this was a potential problem
... and chose to address it in the language design:

* Store a length field in every array

e Check for valid indexes at runtime

* Performance OR Safety ... pick one!

Arrays in Habit

* Key idea: make array size part of the array type, do not allow
arbitrary indexes:

start address index element address

(@) :: Ref (Array n t) — Ix n — Ref t

guaranteed to be
= 0and<n

* Fast, no need for a runtime check, no need for a stored length

array length, as
part of the type

a[i] is written

as a@i in Habit

* Ix n is another abstract type:

maybeIx :: Int — Maybe (Ix n)
modIx ¢ Int — Ix n
incIx :: IXx n — Maybe (Ix n)

Bit twiddling

* Given two 32 bit input values:
ebase: [[[[TTTT]
* limit:

* Calculate a 64 bit descriptor:
LB TR LT

high low

Each box is one nibble (4 bits),
least significant bits on the right

* Needed for the calculation of “Global Descriptor Table
(GDT) entries” on the x86

base limit

In assembly nnn.....
seax {}mov @mov
[TTTTTTT] ﬂﬂlllll
Seax Shl 16
ﬁm llllnnﬂ
$edx Seax movw
LTI \\\\\\\\\\ > 1o
sedx @ shr 16 .
\\\\\\\\\:>\\\\\\\\\ and 020000
sedx @xor secx @and Oxff
[ofoJolo] [JoJo]<=[c]ofoJo[o[o]]
sedx @ shl 16
[[ofo[ofo]o]o]
$edx %ebx
movl %edx, high ([ololle \\ | [o]fo]o] \\ [o]o]
%edx J
o [T 11 Illllﬂﬂll

sedx or 0x503200

L[Is[a]] et nion

16

mion [[[s[a2 1]

base limit

In C [TTTITTT] [ofo[o T 11T

[TIBRIT] BT T
low = (base << 16) // purple
| (limit & Oxffff); // blue
high = (base & 0xff000000) // pink
| (1limit & 0x£f0000) // green
| ((base >> 16) & 0xff) // yellow
| 0x503200; // white

* Examples like this show why we use high-level languages
instead of assembly!

* But let’s hope we don’t get those offsets and masks wrong ...

* And there is no safety net if we get the types wrong ...

base limit

LT fofofol TTTT]

high low

LEBEERET) B

* Programmer describes layout in a type definition:
bitdata GDT

In Habit

= GDT [pink :: Bit 8 | 0x5 :: Bit 4
| green :: Bit 4 | 0x32 :: Bit 8
| yellow :: Bit 8 | purple, blue :: Bit 16]

* Compiler tracks types and automatically figures out
appropriate offsets and masks:

makeGDT :: Unsigned — Unsigned — GDT
makeGDT (pink # yellow # purple) -- base
(0 # green # blue) -- limit
= GDT [pink|green|yellow|purple|blue]

silly :: GDT — Bit 8
silly gdt = gdt.pink + gdt.yellow

Additional examples

* Layout and initialization of memory-based tables and data
structures

* Distinguishing physical and virtual addresses

* Tracking (and limiting) side effects
* ensuring some sections of code are “read only”
* identifying/limiting code that uses privileged operations
* preventing code that sleeps while holding a lock

* Reusable methods for concise and consistent input
validation...

Chipping away ...

based on selL.4

HalL4: A Capability-
Enhanced Microkernel

Implemented in Habit

20

Chipping away ...

HalL4:A Capability-
Enhanced Microkernel
Implemented in Habit

based on Haskell

21

Using types ...

HalL4:A Capability-

Enhanced Microkernel
Implemented in Habit

based on Haskell

22

Using functional programming ...

Hal4:A Capability-
Enhanced Microkernel

Implemented in Habit

based on Haskell

23

The CEMLaBS Project

* Three technical questions:

* Feasibility: Is it possible to build an inherently “unsafe”
system like seL4 in a “safe” language like Habit?

* Benefit:What benefits might this have, for example, in
reducing development or verification costs?

* Performance: s it possible to meet reasonable
performance goals for this kind of system?

* A social question:
* Can we persuade developers to try new languages?

* Maybe there is a role for modern programming languages ...!?

24

