
Mark P Jones, Portland State University

Winter 2017

Why Modern Programming Languages Matter

1

A short history of the automobile

2

1900 1920 1940 1960 1980 2000 2020

Ford Model T

Ford Model T Pickup (1922)

Utility

Ford Model A Deluxe (1931)

Comfort

Volkswagen Type 2 (1949)

Capacity

Ford Thunderbird (1955)

Luxury

Cadillac Eldorado Seville (1959)

Fins

Morris Mini (1959)

Compact

Ford Mustang Coupe (1965)

Power

Dodge D200 Camper (1974)

Recreation

DeLorean DMC-12 (1981)

Time  
Travel

Ferrari 348 (1989)

Speed

Toyota Prius (1997)

Hybrid

Volkswagen Beetle (2002)

Personality

Tesla Model S (2012)

Electric

(Images via Wikipedia, subject to Creative Commons and Public Domain licenses)

A short history of the automobile

2

1900 1920 1940 1960 1980 2000 2020

Ford Model T

Ford Model T Pickup (1922)

Utility

Ford Model A Deluxe (1931)

Comfort

Volkswagen Type 2 (1949)

Capacity

Ford Thunderbird (1955)

Luxury

Cadillac Eldorado Seville (1959)

Fins

Morris Mini (1959)

Compact

Ford Mustang Coupe (1965)

Power

Dodge D200 Camper (1974)

Recreation

DeLorean DMC-12 (1981)

Time  
Travel

Ferrari 348 (1989)

Speed

Toyota Prius (1997)

Hybrid

Volkswagen Beetle (2002)

Personality

Tesla Model S (2012)

Electric

•Faster
•Safer
•More

comfortable

•More efficient
•More reliable
•More capable
•…

• Modern cars are:

• Unsurprisingly, most drivers today drive
modern cars

(Images via Wikipedia, subject to Creative Commons and Public Domain licenses)

A short history of programming languages

3

1955 1965 1975 1985 1995 2005 2015

Lisp

Fortran

COBOL

BASIC

Pascal

C

Simula

Smalltalk

An early systems programming
language, sometimes described

as “portable assembler”

A short history of programming languages

3

1955 1965 1975 1985 1995 2005 2015

Lisp Clojure

F#

Haskell Scala

Fortran

COBOL

BASIC

Pascal

C

Ada

Simula

C++

Java

C#Python

JavaScript

PHP

Smalltalk

Swift

Go

RustStill the most widely used
systems programming language,

45 years later!

It’s as if everyone
is still driving a
Ford Model T!

A short history of programming languages

3

1955 1965 1975 1985 1995 2005 2015

Lisp Clojure

F#

Haskell Scala

Fortran

COBOL

BASIC

Pascal

C

Ada

Simula

C++

Java

C#Python

JavaScript

PHP

Smalltalk

Swift

Go

RustStill the most widely used
systems programming language,

45 years later!

It’s as if everyone
is still driving a
Ford Model T!

•Higher-level
•Feature rich
•Type safe
•Memory safe

•Less error prone
•Well-designed
•Well-defined
•…

• Modern programming languages are:

• Surprisingly, most systems programmers
today are still using C …

C is great … what more could you want?
• Programming in C gives systems developers:

• Good (usually predictable) performance characteristics

• Low-level access to hardware when needed

• A familiar and well-established notation for writing
imperative programs that will get the job done

• What can you do in modern languages that you can’t already
do with C?

• Do you really need the fancy features of newer object-
oriented or functional languages?

• Are there any downsides to programming in C?

4 5

Could a different language
make it impossible to

write programs with errors
like these ?

The Habit programming language
• “a dialect of Haskell that is designed to meet the needs of

high assurance systems programming”

Habit = Haskell + bits

• Habit, like Haskell, is a functional programming language

• For people trained in using C, the syntax and features of
Habit may be unfamiliar

• I won’t assume familiarity with functional programming here

• We’ll focus on how Habit uses types to detect and
prevent common types of programming errors

6

Division
• You can divide an integer by an integer to get an integer result

• In Habit:

div :: Int ⟶ Int ⟶ Int

• This is a lie!

• Correction: You can divide an integer by a non-zero
integer to get an integer result

• In Habit:

div :: Int ⟶ NonZero Int ⟶ Int

• But where do NonZero Int values come from?

7

1st arg 2nd arg result“has type”

Where do NonZero values come from?
• Option 1: Integer literals - numbers like 1, 7, 63, and 128

are clearly all NonZero integers

• Option 2: By checking at runtime

nonzero :: Int ⟶ Maybe (NonZero Int)

• These are the only two ways to get a NonZero Int!

• NonZero is an abstract datatype

8

Values of type Maybe t are either:
• Nothing
• Just x for some x of type t

Examples using NonZero values
• Calculating the average of two values:

ave :: Int ⟶ Int ⟶ Int  
ave n m = (n + m) `div` 2

• Calculating the average of a list of integers:

average :: List Int ⟶ Maybe Int  
average nums  
 = case nonzero (length nums) of  
 Just d ⟶ Just (sum nums `div` d)  
 Nothing ⟶ Nothing

• Key point: If you forget the check, your code will not compile!

9

a non zero literal

checked!

Null pointer dereferences
• In C, a value of type T* is a pointer to an object of type T

• But this may be a lie!

• A null pointer has type T*, but does NOT point to an
object of type T

• Attempting to read or write the value pointed to by a null
pointer is called a “null pointer dereference” and often
results in system crashes, vulnerabilities, or memory
corruption

• Described by Tony Hoare (who introduced null pointers in
the ALGOL W language in 1965) as his “billion dollar mistake”

10

Pointers and reference types
• Lesson learned: we should distinguish between

• References (of type Ref a): guaranteed to point to values
of type a

• Pointers (of type Ptr a): either a reference or a null

• These types are not the same: Ptr a = Maybe (Ref a)

• You can only read or write values via a reference

• Code that tries to read from a pointer will fail to compile!

• Goodbye null pointer dereferences!

11

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• If i is not a valid index (an “out of bounds index”), then an
attempt to access a[i] could lead to a system crash, memory
corruption, …

• A common path to “arbitrary code execution”

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• If i is not a valid index (an “out of bounds index”), then an
attempt to access a[i] could lead to a system crash, memory
corruption, buffer overflows, …

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, …

Arrays and out of bounds indexes:

12

pointer to start 
of array a

offset i

Array bounds checking
• The designers of C knew that this was a potential problem …

but chose not to address it in the language design:

• We would need to store a length field in every array

• We would need to check for valid indexes at runtime

• The designers of Java knew that this was a potential problem
… and chose to address it in the language design:

• Store a length field in every array

• Check for valid indexes at runtime

• Performance OR Safety … pick one!

13

Arrays in Habit
• Key idea: make array size part of the array type, do not allow

arbitrary indexes:

 (@) :: Ref (Array n t) ⟶ Ix n ⟶ Ref t

• Fast, no need for a runtime check, no need for a stored length

• Ix n is another abstract type:

maybeIx :: Int ⟶ Maybe (Ix n)  
modIx :: Int ⟶ Ix n  
incIx :: Ix n ⟶ Maybe (Ix n)

14

start address index element address

a[i] is written
as a@i in Habit

guaranteed to be
≥ 0 and < n

array length, as
part of the type

• Given two 32 bit input values:

• base:

• limit:

• Calculate a 64 bit descriptor:

• Needed for the calculation of “Global Descriptor Table
(GDT) entries” on the x86

Bit twiddling

15

0 0 0

lowhigh

5 3 2

Each box is one nibble (4 bits),
least significant bits on the right

In assembly

low

16

movl base, %eax
movl limit, %ebx

mov %eax, %edx
shl $16, %eax
mov %bx, %ax
movl %eax, low

shr $16, %edx
mov %edx, %ecx
andl $0xff, %ecx
xorl %ecx, %edx
shl $16,%edx
orl %ecx, %edx
andl $0xf0000, %ebx
orl %ebx, %edx
orl $0x503200, %edx
movl %edx, high

%edx

mov 0 0 0 0

shl 16
%eax

movw%eax

0 0 0 0 0 0 0

and 0xf0000

%ebx

0 0 0 0

shr 16 %edx %ecx

0 0 0 0
mov

0 0 0 0 0 0

and 0xff%ecx

0 0 0 0 0 0

shl 16 %edx

0 0 0 0

or%edx

%eax mov

0 0 0
%ebx mov

high

base limit

0 0 0

0 0 0 0 0 0

xor%edx

low

high 5 3 2

0 0 0

or%edx

5 3 2

or 0x503200%edx

In C

17

low = (base << 16) // purple
 | (limit & 0xffff); // blue
high = (base & 0xff000000) // pink
 | (limit & 0xf0000) // green
 | ((base >> 16) & 0xff) // yellow
 | 0x503200; // white

limit

0 0 0
base

lowhigh

5 3 2

• Examples like this show why we use high-level languages
instead of assembly!

• But let’s hope we don’t get those offsets and masks wrong …

• And there is no safety net if we get the types wrong …

In Habit

18

limit

0 0 0
base

lowhigh

5 3 2

• Compiler tracks types and automatically figures out
appropriate offsets and masks:

bitdata GDT  
 = GDT [pink :: Bit 8 | 0x5 :: Bit 4  
 | green :: Bit 4 | 0x32 :: Bit 8  
 | yellow :: Bit 8 | purple, blue :: Bit 16]

makeGDT :: Unsigned ⟶ Unsigned ⟶ GDT  
makeGDT (pink # yellow # purple) -- base  
 (0 # green # blue) -- limit  
 = GDT [pink|green|yellow|purple|blue]

silly :: GDT ⟶ Bit 8  
silly gdt = gdt.pink + gdt.yellow

• Programmer describes layout in a type definition:

Additional examples
• Layout and initialization of memory-based tables and data

structures

• Distinguishing physical and virtual addresses

• Tracking (and limiting) side effects

• ensuring some sections of code are “read only”

• identifying/limiting code that uses privileged operations

• preventing code that sleeps while holding a lock

• …

• Reusable methods for concise and consistent input
validation…

• …

19

Chipping away ...

20

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

based on seL4

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Chipping away ...

21

based on Haskell

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Using types …

22

based on Haskell

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Using functional programming ...

23

based on Haskell

The CEMLaBS Project
• Three technical questions:

• Feasibility: Is it possible to build an inherently “unsafe”
system like seL4 in a “safe” language like Habit?

• Benefit: What benefits might this have, for example, in
reducing development or verification costs?

• Performance: Is it possible to meet reasonable
performance goals for this kind of system?

• A social question:

• Can we persuade developers to try new languages?

• Maybe there is a role for modern programming languages …!?

24

