(B&O Ch. 2.1, K&R Chapter 2.9)
Write a single C expression that swaps both 16-bit halves of an integer i.
int 1i;

(B&O Ch. 3.4, Problem 3.1)
Consider the following values stored at the indicated memory addresses and registers:

Address | Value Register | Value
0x100 0x89 Trax 0x108
0x108 OxAB srdx 0x2
0x110 0xCD

0x118 OxXEF

What are the values for the following source operands when used with a movl
instruction? (i.e. What does %rbx contain after executing “movqg S, $rbx” when
S is each of the operands below?)

a) $0x110

b) 0x110

C) (%rax)

d) -8 (%rax)

e) -8(%rax,%rdx,8)

f) If the value in the $rcx register is 8, then what is the hexadecimal value in $rax
after this instruction: leaqg 4(,%rcx, 4), %rax

(B&O Chapter 3.4, Problem 3.5)
Consider the following assembly routine
dx:
movqg %$rdx, $rax
subg %$rsi, S%rax
movqg %rax, (%$rdi)
retqg
Fill in the missing lines of the following C function. Include the return value.

long dx(long* xp, long y, long z) {

}

(B&O Chapter 3.4, Problem 3.5)
Consider the following assembly routine

fx:
movqg srdi, S%rax
imulg $rsi, %rax
addqg $5, %rax
retqg

Fill in the the corresponding C function. Only one statement is required.

long fx(long x, long y) {

}

(B&O Ch. 3.5, Problem 3.6)
Suppose $rax contains x and $rcx contains y at the beginning of each instruction
below. What would %rdx contain after each instruction is executed?

a) leag -8 (%rax), %rdx
b) leag (%rax, %rcx, 4), %$rdx
C) leaqg 4 (%rax, %rcx, 2), %rdx

d) leag 0xA(,%rcx,2), %rdx

(B&O Ch. 3.5, Problem 3.10, 3.58)

Consider the assembly code implemention of a C function:

arith:
subqg
addg
leag
addg
addg
retqg

$rdx,
$rdx,

$rdi
$rsi

(%rsi,%rsi,4), %rax

$rax,
$rdi,

$rax
$rax

.
4

.
’

.
’

tl
t2

t3
t4

The C it was generated from is listed below with the expressions that are calculated
replaced by blanks. Based on the assembly code, fill in these blanks:
long arith(long x,

long tl
long t2
long t3
long t4
return

}

(B&O 3.6, Problem 3.18)
Consider the assembly code implemention of a C function:

iffy:
leaqg
cmpgq
jge
leaq
retqg

.L2:
subqg
retqg

long

Y

.
14

(%rdi, $rsi),
S5, %rax

L2

4 (3rdx,

srdx,

$rax

long z)

Srax

$rax), %rax

{

.
14

4

4

result
if

then

else

The C it was generated from is listed below with the expressions that are calculated
replaced by blanks. Based on the assembly code, fill in these blanks:
long iffy(long x,

long result

if |

long vy,

long z)

4

else

return result;

(B&O Ch. 3.6, Problem 3.28)

Consider the following assembly routine that takes two input parameters x and vy.
Recall that the cmpgq instruction (cmpg S:, S») Sets the condition flags by performing
S»-S:1

forloop:
xXorqg ¥rax, %srax
xXorq rdx, %rdx
addqg $rsi, %rdi
Jmp .L2
.L3:
addqg $rdi, S%Srax
addg $1, %rdx
.L2:
cmpg $31, %Srdx
jl L3
ret

Fill in the 3 missing statements in the C code below that was used to generate this
assembly code. Do not use local variables.

long forloop(long a, long b) {
long 1i;
long result=0;

for (; ;i) |

}

return result;

(B&O Chapter 3.7, Problem 3.35)
The assembly routine below implements a recursive function:

rfun:
testqg rdi, %rdi
Jje .L3
subqg $8, %rsp
subg $1, %rdi
call rfun
addg $1, %rax
Jmp .L2

L3
movqg $rsi, %rax
retqg

L2

addg $8, %$rsp
retqg

Fill in the corresponding C function:

long rfun(long a, long b) {
if)

return

else

return

(B&O Chapter 3.6, Problem 3.31, 3.62, 3.63)
The assembly routine below implements a switch statement using a jump table
switcher:
movqg %$rdi, $rax
subg $30, %rax
cmpg $4,%rax
ja .L5
Jmp *.L7 (, %rax, 8)

L2
movqg $2,%rax
Jmp .L6

.L3
movqg $3,%rax
Jmp .L6

.L4
movqg $4,%rax
Jmp .L6

.L5
movqg $0,%rax

.L6
retqg

L
.long .L2
.long .L3
.long .L4
.long .L3
.long .L2

Write the corresponding C function for this routine including the appropriate types and
return values.

(B&O Chapter 3.8, Problem 3.36, 3.37)
Consider the following declaration

short S[15];

double *W[4];
a) What is the total size of the array S in bytes?

b) Assuming the address of s is stored in $rbx and i is stored in $rdx, write a single
movw Instruction using the scaled index memory mode that loads S[i] into $rax

c) What is the total size of the array W in bytes?

d) Assuming the address of w is stored in $rbx and i is stored in $rdx, write a single
movq instruction using the scaled index memory mode that loads W[i] into $rax

(B&O Ch. 3.8, Problem 3.38)
Consider the following C code, where M and N are constants declared with #define
long P[M] [N];
long QI[N] [M];
long sum element (long i, long j) {
return P[i][J] + Q[J][i];
}
In compiling this program, gcc generates the following:
sum element:

leaqg (%rdi, $rdi, 8), %rdx
addg $rsi, %Srdx

leag (%rsi,%rsi,2), %rax
addg srax, %Srdi

movqg Q(,%rdi,8), S%Srax
addg P(,%rdx,8), %rax
retqg

Use your reverse engineering skills to determine the values of M and N.

a) M =

b) N =

(B&O Ch. 3.9, Problem 3.41)
Consider the following declarations:
typedef struct {
int 1i;
double d;
char c;
} s t;
typedef union {
int 1i;
double d;
char c;
bu t;
s, *sp, sald>];

t
t u, *up, uvalb];

S
u

What are the size (in bytes) of the following variables?
a) s

b) sp

C) u

d) up

e) s.c

f) &s.c

Suppose the address of sa is 0x100 and the address of ua is 0x200. What are the
addresses in hex of the following?

g) &sal2].c

h) sual2].c

(B&O Chapter 3.8, 3.9, Problem 3.44)

Consider the following structure definitions on an x86-64 machine. Determine the total
size of each structure

a) struct P1 { long 1 ; char c; int i; char d };

b) struct P2 { float f ; char c; char d; long 1 };

C) struct P3 { short w[3]; int *c[3] };

(B&O Chapter 3.8, 3.9, Problem 3.45)
Reorganize this structure in the space next to it in order to minimize its size
struct rec {
short a;
char *b;
double c;
char d;
int e;

(B&O Chapter 3.4)
Consider the following code using embedded assembly
long myasm(long x, long y) {
long result;

asm("imulg %1,%2; xorqg $15,%2; movg %2,%0"
"=r" (result)
"r" (%), “r” (y)
);
return result;
}
main () {
long k;
k = myasm(8, 3);
printf ("$1d\n", k) ;
}
What is the output of the print f statement?

(B&O Chapter 3.9, 3.10)
a) For this union,
union {
long i;
char c;
}ous
What is sizeof (u) ?

b) For this structure,
struct S5 {
char *cl;
char c2;
int 1i;
}op
What is sizeof (p) ?

(B&O Chapter 5.4)
Assume that a and b are integer arrays. Use code motion and reimplement the
following loop in a more efficient manner.
int vsum(int n) {
int 1i,7;

for (1 = 0; i < n; i++)
for (jJ = 0; jJ < n; J++)
b[i][J] = ali*n+]J];

(B&O Chapter 5.6)
Reimplement the following routine so that it eliminates unneeded memory references.

int a[N];
void sum _a () {
al0] = 0;
for (i1i=1; 1i<N; i++)
al0] += alil;

(B&O Chapter 5.8, Problem 5.14)
Consider the following routine
int vsum(int n) {
int i, sum=0;
for (1 = 0; 1 < n; 1i++)
sum += al[i]*b[i];
return sum;
}
Assume that a and b are integer arrays and n is a multiple of 3. Rewrite this routine
using 3x1 loop unrolling.

(B&O Chapter 5.8, Problem 5.14)
Consider the following routine
int vsum(int n) {
int i, sum=0;
for (i = 0; 1 < n; i++)
sum += al[i]*b[i];
return sum;
}
Assume that a and b are integer arrays and n is a multiple of 3. Rewrite this routine
using 3x3 loop unrolling (parallel accumulators).

(B&O Chapter 5.8, Problem 5.14)
Consider the following routine
int vsum(int n) {
int i, prod=1l;
for (1 = 0; 1 < n; 1i++)
prod *= al[i]l*b[i];
return prod;
}
Assume that a and b are integer arrays and n is a multiple of 8. Rewrite this routine
using 8x1a loop unrolling (reassociation with a single accumulator)

(B&O Chapter 6, Problem 6.12-6.15)
Consider the 2-way set associative cache below with (S,E,B,m) = (8,2,4,13). Cache lines
that are blank are invalid.

Set Tag Data0-3 Tag Data0-3

0 09 (86 30 3F 10 00

1 45 |60 4F EO 23 38 |00 BC OB 37
2 EB OB

3 06 32 (12 08 7B AD
4 C7 |06 78 07 C5 05 |40 67 C2 3B
5 71 (OB DE 18 4B 6E

6 91 |AO0 B7 26 2D FO

7 46 DE (12 CO 88 37

a) Consider an access to 0x037A

b) What is the block offset of this address in hex?
¢) What is the set index of this address in hex?

d) What is the cache tag of this address in hex?
e) Does this access hit or miss in the cache?

f) What value is returned if it is a hit?

(B&O Chapter 6, Problem 6.16)
Consider the 2-way set associative cache below with (S,E,B,m) = (8,2,4,13). Cache lines
that are blank are invalid. List all addresses that will hit in Set 0

Set Tag Data0-3 Tag Data0-3

0 09 (86 30 3F 10 00

1 45 |60 4F EO 23 38 |00 BC 0B 37
2 EB OB

3 06 32 |12 08 7B AD
4 C7 |06 78 07 C5 05 [40 67 C2 3B
5 71 (OB DE 18 4B 6E

o 91 |AO0 B7 26 2D FO

7 46 DE |12 CO 88 37

(B&O Chapter 8, Problem 8.2, 8.13)
Consider the code below. How many times is “Bye” printed when the program is
executed?

#include <stdio.h>
int main ()
{
if (fork() == 0) {
if (fork() == 0) {
fork();
}

}
printf ("Bye\n") ;

(B&O Chapter 8, Problem 8.4, 8.7, 8.21)

Consider the code below. What is the output of the program when executed?
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

int counter = 5;

void handler chld() {
int child status;
wait (&child status);
printf ("%d\n", counter) ;
exit (0);

}

int main() {
signal (SIGCHLD, handler chld);
if (fork ()==0) {
counter—--;
if (fork()==0) {
counter--;
printf ("%d\n", counter) ;
}
else
pause () ;
} else {
counter++;
pause () ;

(B&O Chapter 8, Problem 8.4, 8.7)
Consider the code below. What is the output of the program when executed?

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/wait.h>

void handler alrm() {
printf ("D\n") ;
exit (0);
}
void handler chld() {
int child status;
wait (&child status);
printf ("E: %d\n", WEXITSTATUS (child status));
exit (0);
}
int main() {
int child status;
int pid;
signal (SIGALRM, handler alrm);
signal (SIGCHLD, handler chld);

pid = fork();

if (pid == 0) {
pause () ;
printf ("A\n");

else {
kill (pid, SIGALRM) ;
pause () ;
printf ("B\n");

}

printf ("C\n");

exit (0);

