Heuristic Symmetry Reduction for Invariant Verification

William Hung Adnan Aziz Ken McMillan
Electrical and Computer Engineering Cadence Berkeley Labs
The University of Texas Cadence
Austin TX Berkeley CA
Abstract 2 Formal Models for Hardware

We describe techniques that use symmetry to perform effi-We use two formalisms for expressing designs, namely finite
cient invariant checking. We start by developing the the- State machines and netlists. Hopcroft and Ullman described
ory needed to exploit symmetry for designs specified at thethe th(_aoretlcal aspects of FSMs in [4]. A_netllst is a repre-
gate level. This is followed by a proof of the inadequacy Sentation of a design at tiseructural level Itis closer to the

of BDD based methods for highly symmetric designs; this &ctual implementation of the design than FSMs, which can
motivates the use of explicit state enumeration. Exact Sym_be viewed as behavioral level descriptions of the design [5].
metry reduction has been conjectured to be computationally Precise descriptions of finite state machines and netlists are
intractable; we propose fast heuristic reduction procedures. given in [6].

Experiments with these routines demonstrate their effective-3 Lower Bounding the Complexity of BDD Based
ness in practice; we also compare running times with a BDD Invariant Checking

based tool. We show that there is no variable ordering under which a

1 Introduction polynomial size_d Reduced Order(_ed_ Binary_ Decision Dia-
_ - gram can be built for the characteristic function of the set of
A common problem in formal verification of hardware de- permutations; this implies that a straightforward implemen-
signs is to determine if every state reachable from the resettation of a BDD based invariant check will fail for designs
state lies in a set of “good states”; this is sometimes referredwith highly symmetric reached state sets.
to asinvariant checking This can be achieved either by ex- The Characteristic Function for Permutations
plicit state enumeration or by symbolic methods. o)]
. . . The characteristic function of the set of permutations on
Invariant checking can be performed by reachability anal-) . N-log N
. : {0,1,...,N—1}isthe Boolean functioffiy : 2V "8 — 2
ysis. Starting from the set of reset states, we traverse thedeﬁneol as follows: (hene = log N for convenience)
state transition graph and check whether all reachable states ' =08
belong to the invariant. This approach leads to the state ex- fx (ago, o1, - - -, Xo(n—1)> ¥10, X1, - - -, A(N—1)(n—1)) = 1
plosion problem — for a design with latches, there may
be as many ag” reachable states. In practice, many de-
signs are well structured, and this can be exploited to devise
heuristic procedures which perform well on specific classes
of designs.

A large set of designs incorporate symmetry. For certain . .
classes of properties, verification of the invariant at a partic- LOWer Bounding the BDD Size
ular state ensures its correctness at all symmetrically equiv-Theorem 3.1 The BDD forfx has at leas’V/2 nodes, un-
alent states. Various researchers have exploited this fact tader any variable ordering.
reduce the complexity of verification [1, 2, 3]. . . .
plexity [| The proofis available in [6].

In this paper, we prove the existence of an exponential This suggests that BDDs are not a good data structure

Iowerr] bdound on thefS|ze Olf BIIDDS neede_d to repre.sint thefor reachability analysis for highly symmetric systems. An
reached state sets of completely symmetric systems; this pro'example for BDD explosion is a multiprocessor network,

vu_jes t\r;\?orelztlc?jljust“flcag(;]n fo'f using explicit sta(;[e ENUMEr \ here each processor has multiple memory units, shown in
ation. We also developed heuristic symmetry reduction pro- Figure 1. For many randomized routing protocols, the set of

cedures (the need for_s uch procgdures was str essed by .Clarkgtates this network can get into will be an arbitrary permuta-
et al. [1]). Another (minor) contribution is the interpretation tion of the values in memory,

of the theory of symmetries for designs specified as netlists. i,
We have implemented the procedures described in this pa-4 Exploiting Symmetry

per, and experimented with examples incorporating various Explicit state enumeration suffers from the state explosion
degrees of symmetry. We also compared explicit and sym- problem. However, much of the state space search can be
bolic (BDD based) verification. “pruned” for symmetric systems.

if and only if (ag,a1,...,an—1) (Whereq; is the integer
derived by viewinguo;; - - - a,—1)) @s the binary repre-
sentation of an integer) is a permutatiod6f1,..., N —1},
that is for eaclp € {0,1,...,N — 1}, there is ak so that
p = ak.

4.1 Symmetries

We develop the basic terminology for symmetries. Arm-
strong [7] is a good general reference to symmetries.

Network

Figure 1: Multiprocessor network with groups of symmetry.

Let J, be the set of integer§l,2,...,p}. A bijective
mapping : J, — J, is called gpermutationof the integers
from 1 to p. The set of all permutations o#, is denoted
asS,. For anyoi,02 € S, the compositiorr; o o3 is a
mappingJ, — J, such that + o;(o2(i)). A subsetl C
S, is said to beclosed under inversioifi (Vo € IT) 01 € 11,
closed under compositidh (Vo , 02 € II) 010042 € II. The
setll is referred as aubgroupof S,, if it is closed under both
inversion and composition.

Given a subsef” = {o1,02,...,01} of S, define the
subgroupenerateddy T' to be the smallest subgroup 8§
containing?’. We will denote the closure df by [T']. The
elements of” will be referred to as thgeneratorof [T7].

Given ann-dimensional vectolt = (vi,v2,...,0p),
and a permutationc € S, the vector o(v) =
(Vo (1), Vo (2), - - - » Vo(p)) Will SOmetimes be referred to as the
actionof o onv. Given a setof vectof§ = {¢, th, ..., 01},
and a subsef’ = {0y,03,...,0t} C Sp, we havel -V =
{07 = 0,'(17) foro; € T andv’ € V}. We will refer to
T -V as theactionof T onV'.

A subgroupll of S, gives rise to a natural equivalence
relation &y on bit-strings of lengtlp, i.e., on elements of
{0,1}?. The equivalence i§y, 3) € &y exactly whendo €
(8 = o(a)).

The equivalence classes 6f; are referred to as iter-
bits. The set{0,1}? can be totally ordered by tHexico-
graphic order relation<;.,. The canonical representative
aq of an orbit is the largest element of the orbit containing
a € {0, 1}? under the relatior,.,.. The subsett C {0,1}?
is invariantunderIl whenlIl - A = A.

The following lemma is easily proved:

Lemma 4.1 When II is generated from the sefl =
{01,092, ...,01}, the subset is invariant undefII] iff A is
invariant under{c; } for everys; € [II].

(1,a9,...,a,) € 2" and an input’ = (i1, to, - . -
2%, the next state of the design will tﬁn(o‘[, D).
LetG C S, = 2" be an invariant to be checked. L@tbe
a subset 0F,, x S, i.e., a set of ordered pairs where the first
component is a permutation fro§), and the second from
Sk. LetT be the projection of) to the first component, i.e.,
the set of all permutationsin S,, so that there exists some
in Sy such thai(s, 7) € Q; similarly, let R be the projection
of () to the second component.
Supposé& is invariant undefT']. Furthermore, suppose
every(o,7) in @ satisfies the following:

7[/k) S

— —

o(F(Z,d) = F(o(Z),7(d)) 1)

Then the following lemma holds:

Lemma 4.2 Let s be a state and: an input; taket =
F,(s,u). Therl for everys’ in [T7] - {s} there is an input
u’ sothat’ = F,(s',u') isin[T] - {t}.

The proof is available in [6].

SinceG is invariant undefT’] it has the property that if
it contains a state, it contains every state in the orbit of
s under[T]. Coupling this fact with Lemma 4.2, we can
immediately infer the following:

Corollary 4.3 Supposé& is invariantundefT]; then a state
s can reach a state outsideif and only if its canonical rep-
resentatives can reach a state outside

4.3 Symmetry Reduction

The result of Corollary 4.3 suggests the following strategy
for reducing the complexity of invariant checking: (1) Have
the designer suggest permutations fr C S, x Si .

(2) Check that the permutations Iih satisfy the condition

of Equation 1. (3) Traverse the STG of the design, while
“canonicalizing” states, i.e., mapping states to the canonical
representatives elements of their orbits.

Reduced STG

Symmetric Netlist

STG (orbits are grouped)

Figure 2: A symmetric netlist, its STG, and reduced STG.

The power of this lemma is that we can check if a given set of The orbits are the circled sets of states.

states is invariant undé@fl] simply by computing the action
of eacho € II on A; the latter can be done using BDDs by
reordering the present state variables.

4.2 State Space Reduction

Let n be a netlist withn latches denoted by the vector
¥ = x1,%9,...,x, andk inputs denoted by the vector
i = wuy,us,...,u;. Letthe next state functions of the
latches beF, = (fi,fs,...,[.). Given a stated =

The advantage of this approach is that it is not necessary to
store all states — only canonical representatives are stored.
Additionally, many states may be avoided all together, since
they may not be reached by passing directly through canoni-
cal representatives. An example of this approach is shown in
Figure 2.

The check that the permutations satisfy Equation 1 is eas-
ily implemented using BDDs: it amounts to re-ordering [8],

and the resultant BDDs are exactly the same size as the origh.2 Greedy Algorithms for Reduction
inal BDDs (when the symmetries do satisfy Equation 1).

The problem with restricting traversal to canonical ele-
ments is that there is no known efficient method for taking
a set of permutation$’ and a states, and computing the
canonical representative sfunder[T"]. Indeed, Clarke et
al. [1] have shown that it is extremely unlikely that such a
method exists:

In this section we describe greedy reduction algorithms. We
first consider a simple procedure for finding the orbit of a
state which iteratively generates all the states derivable from
the specified states by successive applications of permuta-
tions inIl, i.e., in a breadth-first manner. The drawback of
this approach is that the size of the orbit can be very large.
Consider a modified procedure shown in Figure 3(a). Here
Theorem 4.4 Given states andt and a set of permutations ~ at each step, we continue exploring only from the lexico-
T, determining ifs and¢ lie in the same orbit is as hard as ~ graphically largest state seen at the current iteration. Note
the graph isomorphism problem. that it is not necessary to store all the visited states, since

. . . . only the lexicographically maximal state visited (shaded in
The graph isomorphism problem has been intensely studiedy,) is desired. The termination of the algorithm follows

by researchers in the field of computational complexity the- ¢.0 . the fact that thevhile loop continues only as long as

ory [9]. Itis conjectured that there is no polytime algorithm yhe hest state seen so far, increases. Since the state
for it; a consequence would be that there is no polytime pro- space is finite, this can not go on forever.

cedure for canonicalization.
5 Heuiristics for Canonicalization

Itis not necessary to find the lexicographically largest equiv- @ : "
alent state. In fact, any functiagt : S,, — S, which has the i K
property thaC'(s) € II- {s} can be used; the algorithm will o "@

continue to be correct, though it will traverse more states.
We will refer to such functions agduction functions

5.1 Exact Reduction Functions
There are several important sets of generators for which Figure 3: Greedy orbit traversal with (a) lookAhead 1, and

canonicalization can be performed in polynomial time. For (b) lookAhead 2 step 1.
example, fora sdil C Sy of permutations consisting solely

of transpositiongi.e., permutations which interchange a pair
of numbers and leave the remainder unchanged) and a vec
tor # € {0,1}¥, canonicalization off can be performed

by “bubble sorting” with respect to the transpositions in
I1[3]. Similarly, if IT consists of a single permutation (which
includes the special case mftational symmetry [II] will

have at mostV elements; hencfll] - {¢} can be exhaus-
tively searched.

(@) (b)

The main problem with the algorithm in Figure 3(a) is that
being greedy it can get trapped in local minima. One way of
overcoming this is to add more “lookahead”. For example,
we could apply pairs of permutations to the current state, and
in this way determine the best state obtainable by iteratively
applying two permutations froid. A greedy technique that
has performed well in practice on a number of combinatorial
optimization problems uses a lookahead@ dut a “step” of
only 1 [5]. This algorithm is shown in Figure 3(b).

Consider a hierarchical design at two levels, where the Both th q q tined ab tibl
lower level has a number of replicated components. When oth the greedy procedures outlined above are susceptivie
to getting trapped in local minima [6]. In practice, it appears

there are symmetries on both the individual components, andth_ h v wh ted with a sindl N
at the higher level, between the components themselves, a IS happens mostly when presented with a singie permuta-

global state can be canonicalized by first individually canon- tion Wg'Ch representg a r&tag;%rgal Sé/g.]metﬁ/; I cant bt.e over-
icalizing the local state of the components, and then canon-C0Me DY pre-processing the y adding all permutations

e . . 7 form € II.
icalizing the global state keeping the relative order of local _
states unchanged. More technically, suppose that there are 6 Experimental Results

components, each wittw local states bits. Then the follow- we have implemented an enumerative state space traversal

ing lemma holds: routine with greedy symmetry reduction in VIS [10]. We ex-
Lemmab5.lletA=BUC, UC, U---UC, be aset perimented on examples which incorporate symmetry. The
of permutations frons,,.,,, S0 that every permutationin B 4Tr ee and8Tr ee designs are implementations of a tree-

preserves the relative ordering of the state bits local to each Structured mutual exclusion protocol; they are hierarchical
component, every permutatich acts only on the state bits ~and afford substantial reductioBCube and4Cube are hy-
local to component, and for everyi, C; is a shifted version percube topologies incorporating a simple randomized rout-

of Cy. ing protocol;Di st andSt ar are hybrid interconnection of
Then the canonical representative of a vectérom 27 processors, also incorporating a simple randomized routing
under [4] is the same as the statederived iteratively by ~ Protocol[11].Det Gare is included with VIS. All these ex-
setting: so = 8, $i11 = SAi[[]](Vi € J,), ands = sA[[] amples are essentially asynchronous, and have very few in-
. - 1 - Oi n) - n B .

puts (corresponding to nondeterministic scheduling and rout-
The complete proof is in [6]. ing).

Table 1: Results on Reachability Analysis (max. states, memory in biytesirt seconds).

[Benchmark | BDD implicit | explicit | lookAhead1 | lookAhead2stepl |
States Memory Time| States Memory Time| States Memory Time| States Memory Time

4Tree 8584 188760 9 8584 111592 38| 1073 13949 7| 1073 13949 9
8Tree 222570 153792 71 222570 3338550 1709 6381 95715 89| 6381 95715 131
3Cube 40320 2307336 144 40320 967680 95| 2400 57600 25| 1680 40320 241
4Cube 12870 4080768 60| 12870 411840 90| 2268 72576 27| 1638 52416 43
Dist 63349 38160 8| 63349 823537 230 1255 16315 10| 1255 16315 60

Star 60480 4221360 306 60480 612360 396| 7560 68040 97| 7560 68040 414
DetGame 181440 6255168 447 181440 1632960 35 45360 408240 14 45360 408240 27

We report results on reachability analysis for these exam- is using symmetry information to simplify BDD verification;
ples (this information could be used for deadlock detection, for example exploring the possibility of variable aliasing or
violation of mutual exclusion, etc.) in Table 1. The results projections through existential quantifications of some vari-
indicate that explicit state enumeration coupled with sym- ables.
metry reduction can be superior to BDD based analysis for References
these examples — sometimes dramatically so. (These ex- [1] E. M. Clarke, T. Filkorn, and S. Jha, “Exploiting Sym-
periments were conducted on a DEC Alpha with 1 GByte of metries in Temporal Logic Model Checking,” FProc.
main memory.) of the Computer Aided Verification Conf995.

Somewhat to our surprise, on most examples the greedy [2] E. A. Emerson and A. P. Sistla, “Symmetry and Model
reduction procedure with a lookaheadlqferformed as well Sgﬁ?kllré%glnProc. of the Computer Aided Verification
as the lookahead @f with a step ofl in terms of reduction; ’ L I
. o . . [3] N. Ip and D. Dill, “Better Verification Through Sym-
in terms_ of running time, it was always sut_)stannally fas_ter. metry,” in Proc. Intl. Symp. on Computer Hardware
We conjecture this was because the netlists had a simple Description Languages1993.

topology; the most complex symmetries are those on the hy- [4] J. E. Hopcroft and J. D. Ullmarintroduction to Au-

percube and it was on these examples kbalkahead2Stepl tomata Theory, Languages and Computatidddison-
was able to find more reductions thewkAhead1 Still, in- Wesley, 1979. _ S N
creased number of search moves maéekAhead2Stepih- [5] G. D. Micheli, Synthesis and Optimization of Digital

o ; Circuits. McGraw Hill, 1994.
f th okAheadhs th thod of ch '
erior, thus We propasmorahead as the method of choice [6] W. Hung, “Exploiting Symmetry for Formal Verifi-

for symmetry reduction.)) cation,” Master’s thesis, The University of Texas at
Note that we do not pack states into bit-arrays [3]. Instead, Austin, May 1997.

we pack multi-valued states into byte-arrays. So thereis sub- [7] M. A. Armstrong, Groups and Symmetry Springer-
stantial scope for reducing memory usage in the explicit col- Verlag, 1989.

umn. Instead of using compiled code execution model, we [8] R. Rudell, “Dynamic Variable Ordering for Binary De-
use fast cycle simulation techniques based on [12] and [13]. cision Diagrams,” inProc. Intl. Conf. on Computer-

Additionally, we report the largest memory used by BDD for Aided Designpp. 42—47, Nov. 1993.

state sets encountered during reachability. 9] tMéc?ébﬁi?;e\);vaﬂd F?éesrﬁ ;r?gﬂzoggmféggrs and In-

7 Summary [10] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-

; ; ; Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Ed-
To summarize, we have made theoretical and practical con- d . "4 ' '
tributions towards the use of symmetry in invariant verifi- \&Vé{gséfﬁjgnhastrl,S;}vl\fgrgmrc')g: 'SAhipP@rdg_’ Ssv'anrr?)(/j ea?r:’d
cation. We developed a theory for exploiting symmetry for T. Villa, “VIS: A system for Verification and Synthe-
designs specified at the gate level. We gave theoretical jus- sis,” in Proc. of the Computer Aided Verification Canf.
tification for the use of explicit data structures instead of July 1996.

BDDs. We suggested heuristic procedures for symmetry re-[11] R. Motwani and P. RaghavaRandomized Algorithms

duction, and presented experimental results on a number of Cambridge University Press, 1995.

. o . [12] P. Ashar and S. Malik, “Fast Functional Simulation
examples; the results are promising. In addition, these ex Using Branching Programs,” iroc. Intl. Conf. on

periments demonstrated that explicit methods coupled with Computer-Aided DesigiNov. 1995.

symmetry can be superior to BDDs N [13] P.McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-
One problem with symmetry reduction is that it is better Vincentelli, and P. Scaglia, “Fast Discrete Function

suited to asynchronous designs; when presented with a de- ~ Evaluation,” in Proc. Intl. Conf. on Computer-Aided

sign with a large number of inputs, simply iterating through Design Nov. 1995. _ o
C. C. Sims, Computation with Finitely Presented

. . . . [14]
the possible inputs becomes infeasible. We plan to study Groups vol. 48 ofEncyclopedia of mathematics and its

methods for dealing with this. Computational group the- applications New York: Cambridge University Press,
ory [14] has a long and rich history; we intend to study 1994.

the literature of this field, and see if there are any ideas we
can borrow for more efficient symmetry reduction. We also

plan to work on routines for enumerative state space traver-
sal available as an add-on to VIS. Another research problem

