
Heuristic Symmetry Reduction for Invariant Verification

William Hung Adnan Aziz Ken McMillan
Electrical and Computer Engineering Cadence Berkeley Labs

The University of Texas Cadence
Austin TX Berkeley CA

Abstract

We describe techniques that use symmetry to perform effi-
cient invariant checking. We start by developing the the-
ory needed to exploit symmetry for designs specified at the
gate level. This is followed by a proof of the inadequacy
of BDD based methods for highly symmetric designs; this
motivates the use of explicit state enumeration. Exact sym-
metry reduction has been conjectured to be computationally
intractable; we propose fast heuristic reduction procedures.
Experiments with these routines demonstrate their effective-
ness in practice; we also compare running times with a BDD
based tool.

1 Introduction

A common problem in formal verification of hardware de-
signs is to determine if every state reachable from the reset
state lies in a set of “good states”; this is sometimes referred
to asinvariant checking. This can be achieved either by ex-
plicit state enumeration or by symbolic methods.

Invariant checking can be performed by reachability anal-
ysis. Starting from the set of reset states, we traverse the
state transition graph and check whether all reachable states
belong to the invariant. This approach leads to the state ex-
plosion problem — for a design withn latches, there may
be as many as2n reachable states. In practice, many de-
signs are well structured, and this can be exploited to devise
heuristic procedures which perform well on specific classes
of designs.

A large set of designs incorporate symmetry. For certain
classes of properties, verification of the invariant at a partic-
ular state ensures its correctness at all symmetrically equiv-
alent states. Various researchers have exploited this fact to
reduce the complexity of verification [1, 2, 3].

In this paper, we prove the existence of an exponential
lower bound on the size of BDDs needed to represent the
reached state sets of completely symmetric systems; this pro-
vides theoretical justification for using explicit state enumer-
ation. We also developed heuristic symmetry reduction pro-
cedures (the need for such procedures was stressed by Clarke
et al. [1]). Another (minor) contribution is the interpretation
of the theory of symmetries for designs specified as netlists.
We have implemented the procedures described in this pa-
per, and experimented with examples incorporating various
degrees of symmetry. We also compared explicit and sym-
bolic (BDD based) verification.

2 Formal Models for Hardware

We use two formalisms for expressing designs, namely finite
state machines and netlists. Hopcroft and Ullman described
the theoretical aspects of FSMs in [4]. A netlist is a repre-
sentation of a design at thestructural level. It is closer to the
actual implementation of the design than FSMs, which can
be viewed as behavioral level descriptions of the design [5].
Precise descriptions of finite state machines and netlists are
given in [6].

3 Lower Bounding the Complexity of BDD Based
Invariant Checking

We show that there is no variable ordering under which a
polynomial sized Reduced Ordered Binary Decision Dia-
gram can be built for the characteristic function of the set of
permutations; this implies that a straightforward implemen-
tation of a BDD based invariant check will fail for designs
with highly symmetric reached state sets.

The Characteristic Function for Permutations

The characteristic function of the set of permutations onf0; 1; : : : ; N�1g is the Boolean functionfN : 2N �logN ! 2
defined as follows: (heren = logN for convenience)fN (�00; �01; : : : ; �0(n�1); �10; �11; : : : ; �(N�1)(n�1)) = 1
if and only if (a0; a1; : : : ; aN�1) (whereai is the integer
derived by viewing�i0�i1 � � ��i(n�1)) as the binary repre-
sentation of an integer) is a permutation off0; 1; : : : ; N�1g,
that is for eachp 2 f0; 1; : : : ; N � 1g, there is ak so thatp = ak.

Lower Bounding the BDD Size

Theorem 3.1 The BDD forfN has at least2N=2 nodes, un-
der any variable ordering.

The proof is available in [6].
This suggests that BDDs are not a good data structure

for reachability analysis for highly symmetric systems. An
example for BDD explosion is a multiprocessor network,
where each processor has multiple memory units, shown in
Figure 1. For many randomized routing protocols, the set of
states this network can get into will be an arbitrary permuta-
tion of the values in memory.

4 Exploiting Symmetry

Explicit state enumeration suffers from the state explosion
problem. However, much of the state space search can be
“pruned” for symmetric systems.

4.1 Symmetries

We develop the basic terminology for symmetries. Arm-
strong [7] is a good general reference to symmetries.

Proc 1

Mem 11 Mem 12 Mem 13

Proc 2

Mem 21 Mem 22 Mem 23

Proc 3

Mem 31 Mem 32 Mem 33

Network

Figure 1: Multiprocessor network with groups of symmetry.

Let Jp be the set of integersf1; 2; : : : ; pg. A bijective
mapping� : Jp ! Jp is called apermutationof the integers
from 1 to p. The set of all permutations onJp is denoted
asSp. For any�1; �2 2 Sp, the composition�1 � �2 is a
mappingJp ! Jp such thati 7! �1(�2(i)). A subset� �Sp is said to beclosed under inversionif (8� 2 �) ��1 2 �,
closed under compositionif (8�1; �2 2 �) �1 ��2 2 �. The
set� is referred as asubgroupof Sp if it is closed under both
inversion and composition.

Given a subsetT = f�1; �2; : : : ; �kg of Sp, define the
subgroupgeneratedby T to be the smallest subgroup ofSp
containingT . We will denote the closure ofT by [[T]]. The
elements ofT will be referred to as thegeneratorsof [[T]].

Given ann-dimensional vector~v = (v1; v2; : : : ; vp),
and a permutation� 2 Sp the vector �(~v) =(v�(1); v�(2); : : : ; v�(p)) will sometimes be referred to as the
actionof � on~v. Given a set of vectorsV = f~v1; ~v2; : : : ; ~vlg,
and a subsetT = f�1; �2; : : : ; �kg � Sp, we haveT � V =f~vj~v = �i(~v0) for �i 2 T and~v0 2 V g. We will refer toT � V as theactionof T onV .

A subgroup� of Sp gives rise to a natural equivalence
relationE� on bit-strings of lengthp, i.e., on elements off0; 1gp. The equivalence is(�; �) 2 E� exactly when(9� 2�)(� = �(�)).

The equivalence classes ofE� are referred to as itsor-
bits. The setf0; 1gp can be totally ordered by thelexico-
graphic order relation�lex. The canonical representative�̂� of an orbit is the largest element of the orbit containing� 2 f0; 1gp under the relation�lex. The subsetA � f0; 1gp
is invariantunder� when� � A = A.

The following lemma is easily proved:

Lemma 4.1 When � is generated from the set� =f�1; �2; : : : ; �kg, the subsetA is invariant under[[�]] iff A is
invariant underf�ig for every�i 2 [[�]].
The power of this lemma is that we can check if a given set of
states is invariant under[[�]] simply by computing the action
of each� 2 � onA; the latter can be done using BDDs by
reordering the present state variables.

4.2 State Space Reduction

Let � be a netlist withn latches denoted by the vector~x = x1; x2; : : : ; xn and k inputs denoted by the vector~u = u1; u2; : : : ; uk. Let the next state functions of the
latches be~F� = (f1; f2; : : : ; fn). Given a state~� =

(�1; �2; : : : ; �n) 2 2n and an input~� = (�1; �2; : : : ; �k) 22k, the next state of the design will be~F�(~�;~�).
LetG � S� = 2n be an invariant to be checked. LetQ be

a subset ofSn�Sk, i.e., a set of ordered pairs where the first
component is a permutation fromSn and the second fromSk. LetT be the projection ofQ to the first component, i.e.,
the set of all permutations� in Sn so that there exists some�
in Sk such that(�; �) 2 Q; similarly, letR be the projection
of Q to the second component.

SupposeG is invariant under[[T]]. Furthermore, suppose
every(�; �) in Q satisfies the following:�(~F (~x; ~u)) = ~F (�(~x); �(~u)) (1)

Then the following lemma holds:

Lemma 4.2 Let s be a state andu an input; taket =~F�(s; u). Then for everys0 in [[T]] � fsg there is an inputu0 so thatt0 = ~F�(s0; u0) is in [[T]] � ftg.

The proof is available in [6].
SinceG is invariant under[[T]] it has the property that if

it contains a states, it contains every state in the orbit ofs under[[T]]. Coupling this fact with Lemma 4.2, we can
immediately infer the following:

Corollary 4.3 SupposeG is invariant under[[T]]; then a states can reach a state outsideG if and only if its canonical rep-
resentativês can reach a state outsideG.

4.3 Symmetry Reduction

The result of Corollary 4.3 suggests the following strategy
for reducing the complexity of invariant checking: (1) Have
the designer suggest permutations forQ � Sn � Sk .
(2) Check that the permutations in� satisfy the condition
of Equation 1. (3) Traverse the STG of the design, while
“canonicalizing” states, i.e., mapping states to the canonical
representatives elements of their orbits.

Q

Q’

D

Q

Q’

D

Q

Q’

D

U1 U2

X1

X2

X3

CLK

000

100 010

111

101110

001

011

00

11 0110

11 1101 1010 01

01 11 10

orbit 3

orbit 2

orbit 1

orbit 0

10,00,0110,11,00 00,11,01

00,1110,00 00,01

000

100

110

111

orbit 0

orbit 1

orbit 2

orbit 3

STG (orbits are grouped)Symmetric Netlist Reduced STG

Figure 2: A symmetric netlist, its STG, and reduced STG.
The orbits are the circled sets of states.

The advantage of this approach is that it is not necessary to
store all states — only canonical representatives are stored.
Additionally, many states may be avoided all together, since
they may not be reached by passing directly through canoni-
cal representatives. An example of this approach is shown in
Figure 2.

The check that the permutations satisfy Equation 1 is eas-
ily implemented using BDDs: it amounts to re-ordering [8],

and the resultant BDDs are exactly the same size as the orig-
inal BDDs (when the symmetries do satisfy Equation 1).

The problem with restricting traversal to canonical ele-
ments is that there is no known efficient method for taking
a set of permutationsT and a states, and computing the
canonical representative ofs under[[T]]. Indeed, Clarke et
al. [1] have shown that it is extremely unlikely that such a
method exists:

Theorem 4.4 Given statess andt and a set of permutationsT , determining ifs and t lie in the same orbit is as hard as
the graph isomorphism problem.

The graph isomorphism problem has been intensely studied
by researchers in the field of computational complexity the-
ory [9]. It is conjectured that there is no polytime algorithm
for it; a consequence would be that there is no polytime pro-
cedure for canonicalization.

5 Heuristics for Canonicalization

It is not necessary to find the lexicographically largest equiv-
alent state. In fact, any functionC : S� ! S� which has the
property thatC(s) 2 � � fsg can be used; the algorithm will
continue to be correct, though it will traverse more states.
We will refer to such functions asreduction functions.

5.1 Exact Reduction Functions

There are several important sets of generators for which
canonicalization can be performed in polynomial time. For
example, for a set� � SN of permutations consisting solely
of transpositions(i.e., permutations which interchange a pair
of numbers and leave the remainder unchanged) and a vec-
tor ~v 2 f0; 1gN , canonicalization of~v can be performed
by “bubble sorting”~v with respect to the transpositions in� [3]. Similarly, if � consists of a single permutation (which
includes the special case ofrotational symmetry), [[�]] will
have at mostN elements; hence[[�]] � f~vg can be exhaus-
tively searched.

Consider a hierarchical design at two levels, where the
lower level has a number of replicated components. When
there are symmetries on both the individual components, and
at the higher level, between the components themselves, a
global state can be canonicalized by first individually canon-
icalizing the local state of the components, and then canon-
icalizing the global state keeping the relative order of local
states unchanged. More technically, suppose that there aren
components, each withm local states bits. Then the follow-
ing lemma holds:

Lemma 5.1 LetA = B [C1 [C2 [� � � [Cn be a set
of permutations fromSn�m so that every permutation� in B
preserves the relative ordering of the state bits local to each
component, every permutationCi acts only on the state bits
local to componenti, and for everyi, Ci is a shifted version
ofC1.

Then the canonical representative of a vectors from2n�m
under [[A]] is the same as the state�s derived iteratively by
setting:s0 = s, si+1 = bsi[[Ci]](8i 2 Jn), and�s =csn[[B]].

The complete proof is in [6].

5.2 Greedy Algorithms for Reduction

In this section we describe greedy reduction algorithms. We
first consider a simple procedure for finding the orbit of a
state which iteratively generates all the states derivable from
the specified states by successive applications of permuta-
tions in�, i.e., in a breadth-first manner. The drawback of
this approach is that the size of the orbit can be very large.

Consider a modified procedure shown in Figure 3(a). Here
at each step, we continue exploring only from the lexico-
graphically largest state seen at the current iteration. Note
that it is not necessary to store all the visited states, since
only the lexicographically maximal state visited (shaded in
black) is desired. The termination of the algorithm follows
from the fact that thewhile loop continues only as long assmax, the best state seen so far, increases. Since the state
space is finite, this can not go on forever.

S1 Sn

S21 S2n

1 n

1 n

2

2

.

.S22

S2

S0

S1 Sn

1 n
2

S0

S2

2

S21 S2n

n1
2 n

1 1

2
n

S22S11 S12 S1n Sn1 Sn2 Snn

.

......

(b)(a)

Figure 3: Greedy orbit traversal with (a) lookAhead 1, and
(b) lookAhead 2 step 1.

The main problem with the algorithm in Figure 3(a) is that
being greedy it can get trapped in local minima. One way of
overcoming this is to add more “lookahead”. For example,
we could apply pairs of permutations to the current state, and
in this way determine the best state obtainable by iteratively
applying two permutations from�. A greedy technique that
has performed well in practice on a number of combinatorial
optimization problems uses a lookahead of2, but a “step” of
only 1 [5]. This algorithm is shown in Figure 3(b).

Both the greedy procedures outlined above are susceptible
to getting trapped in local minima [6]. In practice, it appears
this happens mostly when presented with a single permuta-
tion which represents a rotational symmetry; it can be over-
come by pre-processing the set� by adding all permutations�k for � 2 �.

6 Experimental Results

We have implemented an enumerative state space traversal
routine with greedy symmetry reduction in VIS [10]. We ex-
perimented on examples which incorporate symmetry. The
4Tree and8Tree designs are implementations of a tree-
structured mutual exclusion protocol; they are hierarchical
and afford substantial reduction.3Cube and4Cube are hy-
percube topologies incorporating a simple randomized rout-
ing protocol;Dist andStar are hybrid interconnection of
processors, also incorporating a simple randomized routing
protocol [11].DetGame is included with VIS. All these ex-
amples are essentially asynchronous, and have very few in-
puts (corresponding to nondeterministic scheduling and rout-
ing).

Table 1: Results on Reachability Analysis (max. states, memory in bytes, time in seconds).
Benchmark BDD implicit explicit lookAhead1 lookAhead2step1

States Memory Time States Memory Time States Memory Time States Memory Time
4Tree 8584 188760 9 8584 111592 38 1073 13949 7 1073 13949 9
8Tree 222570 153792 71 222570 3338550 1705 6381 95715 89 6381 95715 131
3Cube 40320 2307336 144 40320 967680 95 2400 57600 25 1680 40320 241
4Cube 12870 4080768 60 12870 411840 90 2268 72576 27 1638 52416 43
Dist 63349 38160 8 63349 823537 230 1255 16315 10 1255 16315 60
Star 60480 4221360 306 60480 612360 396 7560 68040 97 7560 68040 414

DetGame 181440 6255168 447 181440 1632960 35 45360 408240 14 45360 408240 27

We report results on reachability analysis for these exam-
ples (this information could be used for deadlock detection,
violation of mutual exclusion, etc.) in Table 1. The results
indicate that explicit state enumeration coupled with sym-
metry reduction can be superior to BDD based analysis for
these examples — sometimes dramatically so. (These ex-
periments were conducted on a DEC Alpha with 1 GByte of
main memory.)

Somewhat to our surprise, on most examples the greedy
reduction procedure with a lookahead of1 performed as well
as the lookahead of2 with a step of1 in terms of reduction;
in terms of running time, it was always substantially faster.
We conjecture this was because the netlists had a simple
topology; the most complex symmetries are those on the hy-
percube and it was on these examples thatlookahead2Step1
was able to find more reductions thanlookAhead1. Still, in-
creased number of search moves makeslookAhead2Step1in-
ferior; thus we proposelookAhead1as the method of choice
for symmetry reduction.

Note that we do not pack states into bit-arrays [3]. Instead,
we pack multi-valued states into byte-arrays. So there is sub-
stantial scope for reducing memory usage in the explicit col-
umn. Instead of using compiled code execution model, we
use fast cycle simulation techniques based on [12] and [13].
Additionally, we report the largest memory used by BDD for
state sets encountered during reachability.

7 Summary

To summarize, we have made theoretical and practical con-
tributions towards the use of symmetry in invariant verifi-
cation. We developed a theory for exploiting symmetry for
designs specified at the gate level. We gave theoretical jus-
tification for the use of explicit data structures instead of
BDDs. We suggested heuristic procedures for symmetry re-
duction, and presented experimental results on a number of
examples; the results are promising. In addition, these ex-
periments demonstrated that explicit methods coupled with
symmetry can be superior to BDDs

One problem with symmetry reduction is that it is better
suited to asynchronous designs; when presented with a de-
sign with a large number of inputs, simply iterating through
the possible inputs becomes infeasible. We plan to study
methods for dealing with this. Computational group the-
ory [14] has a long and rich history; we intend to study
the literature of this field, and see if there are any ideas we
can borrow for more efficient symmetry reduction. We also
plan to work on routines for enumerative state space traver-
sal available as an add-on to VIS. Another research problem

is using symmetry information to simplify BDD verification;
for example exploring the possibility of variable aliasing or
projections through existential quantifications of some vari-
ables.

References
[1] E. M. Clarke, T. Filkorn, and S. Jha, “Exploiting Sym-

metries in Temporal Logic Model Checking,” inProc.
of the Computer Aided Verification Conf., 1995.

[2] E. A. Emerson and A. P. Sistla, “Symmetry and Model
Checking,” inProc. of the Computer Aided Verification
Conf., 1993.

[3] N. Ip and D. Dill, “Better Verification Through Sym-
metry,” in Proc. Intl. Symp. on Computer Hardware
Description Languages., 1993.

[4] J. E. Hopcroft and J. D. Ullman,Introduction to Au-
tomata Theory, Languages and Computation. Addison-
Wesley, 1979.

[5] G. D. Micheli, Synthesis and Optimization of Digital
Circuits. McGraw Hill, 1994.

[6] W. Hung, “Exploiting Symmetry for Formal Verifi-
cation,” Master’s thesis, The University of Texas at
Austin, May 1997.

[7] M. A. Armstrong, Groups and Symmetry. Springer-
Verlag, 1989.

[8] R. Rudell, “Dynamic Variable Ordering for Binary De-
cision Diagrams,” inProc. Intl. Conf. on Computer-
Aided Design, pp. 42–47, Nov. 1993.

[9] M. R. Garey and D. S. Johnson,Computers and In-
tractability. W. H. Freeman and Co., 1979.

[10] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-
Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Ed-
wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and
T. Villa, “VIS: A system for Verification and Synthe-
sis,” in Proc. of the Computer Aided Verification Conf.,
July 1996.

[11] R. Motwani and P. Raghavan,Randomized Algorithms.
Cambridge University Press, 1995.

[12] P. Ashar and S. Malik, “Fast Functional Simulation
Using Branching Programs,” inProc. Intl. Conf. on
Computer-Aided Design, Nov. 1995.

[13] P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-
Vincentelli, and P. Scaglia, “Fast Discrete Function
Evaluation,” in Proc. Intl. Conf. on Computer-Aided
Design, Nov. 1995.

[14] C. C. Sims, Computation with Finitely Presented
Groups, vol. 48 ofEncyclopedia of mathematics and its
applications. New York: Cambridge University Press,
1994.

