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 Abstract by Fred Glover [13][12][17] in 1977. It has been largel
ignored for about twenty years until recently. Scatter sear
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Reduced Ordered Binary Decision Diagrams (BDDs)
are a data structure for representation and manipulation of
Boolean functions which are frequently used in VLSI
Design Automation. The variable ordering largely
influences the size of the BDD, varying from linear to
exponential. In this paper we study BDD minimization
problem based on scatter search optimization. The results
we obtained are very encouraging in comparison with other
heuristics (genetic and simulated annealing). This work is
the first successful experience of using scatter search
approach in design automation area. The approach can be
applied to many design automation applications.

1.  Introduction

Reduced Ordered Binary Decision Diagrams (BDD’s)
[2] have found extensive use in various algorithms for
analyzing Boolean functions. Some fields of application are
logic design verification, test generation, fault simulation,
and logic synthesis [18][19]. Most of the algorithms using
BDD’s have polynomial run times in the size of the BDD’s.
Unfortunately, in many applications, very large sized BDDs
can be generated which can render a BDD based analysis
scheme impractical or inefficient. In particular, BDD sizes
are very sensitive to the order chosen on input variables; any
"carelessness" in choosing orders can easily lead to
exponentially large graphs even though the given function
could easily have been represented as a very compact BDD
under a good variable order [11][19]. The sizes themselves
depend on the variable order used. Thus, there is a need to
find a variable order that minimizes the number of nodes in
a BDD.

Although there are numerous heuristics in BDD
minimization [3][15][10][5][24], the lower bound on BDD
sizes can still be exponential in some cases [14]. In general,
exact BDD minimization is NP-complete [27]. This paper
explores a powerful class of optimization techniques based
on scatter search [13][17][4]. Scatter search was introduced

is very aggressive and attempts to find high quali
solutions fast. It derives its foundations from strategie
originally proposed for combining decision rules an
constraints in the context of integer programming. In th
paper we study BDD minimization by using scatter sear
optimization techniques.

The organization of this paper is as follows. In Section
we present the BBD definitions and ordering proble
definition. In Section 3, we present the optimizatio
procedure based on scatter search. In Section 4, we use
scatter search to solve the BDD minimization problem.
Section 5, we report some experimental results perform
for the model. Section 6 concludes the paper. O
experiment demonstrates the effectiveness of our approa

2.  Preliminaries

We start with a brief review of the essential definitions

Definition 1: A BDD is a rooted directed acyclic graph
G=(V, E) with vertex setV containing two types of vertices,
nonterminalandterminalvertices. A nonterminal vertexv
has as label a variableindex(v)∈{ x1, x2, ..., xn} and two
childrenlow(v), high(v) ∈V. A terminal vertexv is labeled
with a valuevalue(v)∈{0,1} and has no outgoing edge.

A BDD can be used to compute a Boolean functionf(x1,
x2, ..., xn) in the following way. Each inputa = (x1, x2, ...,
xn)∈{0,1} n defines a computation path through the BDD
that starts at the root. If the path reaches a nonterminal no
v that is labeled byxi, it follows the pathlow(v) iff ai=0, and
it follows the pathhigh(v) iff ai=1. On all paths a terminal
vertex is reached since a BDD is directed and acyclic. T
label of the terminal vertex determines the return value
the BDD on inputa.

More formally, we can define the Boolean functio
corresponding to a BDD recursively.

Definition 2: A BDD having root vertexv denotes a
Boolean functionfv defined as follows.
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1. If v is a terminal vertex andvalue(v)=1 (value(v)=0),
thenfv=1 (fv=0).

2. If v is a nonterminal vertex andindex(v)=xi, thenfv is the
function fv(x1,...,xn) = xi • flow(v)(x1,...,xn)+xi •
fhigh(v)(x1,...,xn).

The variablexi is called the decision variable forv.

Definition 3: An ROBDD is a BDD with the following
properties:

1. The BDD isordered, i.e., there is a fixed orderπ: {1, ...,
n} → { x1,...,xn} such that for any nonterminal vertexv,
index(low(v)) = π(k) with k > π-1(index(v)) and
index(high(v)) = π(q) with q > π-1(index(v)) holds if
low(v) high(v) are also nonterminal vertices.

2. The BDD is reduced, i.e., there exists nov∈V with
low(v) = high(v), and there are no two verticesv andv’
such that the sub-BDD’s rooted byv and v’ are
isomorphic.

Since we work only with ROBDD’s in the following, we
briefly call them BDD’s. BDD is a canonical representation
of boolean functions. It represents many common
encountered functions in reasonable sizes. The time
complexity of any single operation is bounded by the
product of the related function graph sizes [2].

There are no redundant vertices and no isomorphic
subtrees in a BDD and the variables appear in the same
order along each path from the root to a terminal vertex,
which means ordered graph. Given an ordering, the reduced
graph for a function is unique. Hence the BDD is a
canonical form.

The size of a BDD is largely influenced by the choice of
the variable ordering. For ann-bit comparator: for ordera1
< b1 < ... < an < bn, the number of vertices is3n+2. For
ordera1 < ... < an < b1 ... < bn, the number of vertices is
(3*2n−1)!. The problem of finding the optimal variable
order is NP-complete [27]. Some Boolean functions have
exponential size BDDs for any order (e.g., multiplier) [19].

Node ordering plays a significant role in determining the
size of BDDs and affects their efficient manipulation. In this
paper we study the dynamic ordering heuristics by a robust
scatter search algorithm to minimize the BDD graph size.

3.  Scatter Search

Scatter search operates on a set of solutions, the
reference set, by combining these solutions to create new
ones. The main mechanism for combining solutions is such
that a new solution is created from the linear combination
of two other solutions. Unlike a "population" in genetic
algorithms, the reference set of solutions in scatter search
tends to be small. In genetic algorithms, two solutions are
randomly chosen from the population and a "crossover" or

combination mechanism is applied to generate one or m
offspring. A typical population size in a genetic algorithm
consists of 100 elements, which are randomly sampled
create combinations. In contrast, scatter search chooses
or more elements of the reference set in asystematicway
with the purpose of creating new solutions. Since th
combination process considers at least all pairs of solutio
in the reference set, there is a practical need for keeping
cardinality of the set small. Typically, the reference set
scatter search has 20 solutions or less.

Scatter search is a very aggressive search method
attempts to find high quality solutions fast. The search m
be sketched as follows:

Stage 1: Generate a starting set of solution vectors
guarantee a critical level of diversity and apply heurist
processes designed for the problem. Designate a subse
the best vectors to be reference solutions.

Stage 2: Create new solutions consisting of structure
combinations of subsets of the current reference solutio
The structured combinations are: (a) Chosen to produ
points both inside and outside the convex regions spann
by the reference solutions. (b) Modified to yield acceptab
solutions.

Stage 3: Apply the heuristic processes used in Stage 1
improve the solutions created in Stage 2.

Stage 4: Extract a collection of the "best" improved
solutions from Stage 3 and add them to the reference s
Repeat Stages 2, 3 and 4 until the reference set does
change. Diversify the reference set, by restarting from Sta
1. Stop when reaching a specified iteration limit.

The two fundamental features of the scatter sear
methodology are:

• Useful information about the form (or location) of
optimal solutions is typically contained in a suitably
diverse collection of elite solutions.

• Constructing combinations that extrapolate beyond t
regions spanned by the solutions considere
incorporating both diversity and quality. Taking accoun
of multiple solutions simultaneously, as a foundation for
creating combinations, enhances the opportunity
exploit information contained in the union of elite
solutions.

4.  BDD Minimization by Scatter Search

GivenN variables and a set of functions represented
BDDs, we want to find the optimal variable ordering
(permutation of variables) that minimizes the number
BDD nodes that represent these functions. As mention
above, scatter search process consists of diversificat
generation, improvement, reference set update, sub
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generation and solution combination. In what follows, we
discuss the implementation details of each procedure in
solving the BDD minimization problem.

4.1. Reference Set Update

The idea of maintaining reference sets in Scatter Search
is to maintain both quality and diversity. We partition the
reference setRefSetinto two subsets:RefSet1 andRefSet2.
RefSet1 is the high quality subset of sizeb1, it contains the
b1 orders so far encountered with the smallest BDD size.
RefSet2 is the high diversity subset of sizeb2, it contains the
b2 orders so far encountered that do not qualify forRefSet1
but with the largest distance. In a reference set update, new
variable orders are first considered for membership in
RefSet1. If not, they are considered for membership in
RefSet2. Quality is defined in terms of BDD size. The
smaller the number of nodes in BDDs, the better the quality.
Diversity is calculated in terms of distance. Letd(x, y) be
the distance of two variable orders. The degree of diversity
is defined in terms of minimum distance

. Thus,
each order inRefSet2 has the largest minimum distance
from any other order in the reference set.

Figure 1.  Dependency matrix for computing
distances.

To calculate the distance between two variable orders,
we consider the difference in positions between two orders
with regard to the same variable. Given variable ordersx
andy, let the position of variablev in x andy bepx(v) and
py(v), respectively. Therefore, the variable position
difference is . The distance betweenx
andy is the sum of all variable position differences:

SinceRefSet2 is defined in terms of distances between
every element inRefSet2 and every other element in

, this calculation is potentially
expensive. We use a distance matrix to simplify this
problem. The idea is to maintain a matrixd(x, y) for all

, . In addition, we

maintain an array for all . If
order is updated, we only need to update th
row and . If
order is updated, we need to update th
column and the row

 and .
An example is given in Figure 1, where

and . Since
d(x, y) = d(y, x), the right side of the matrix is symmetric
along the diagonal line. Suppose

, the computational complexity
for all distances without the matrix is

, with the
matrix, it is reduced to .

4.2. Diversification

The BDD variable reordering problem can viewed as
permutation problem. We apply the permutatio
diversification generator in [12] to ourDGP. As a starting
point, let the initial order of BDD variables be a sequenceP
= (1,2,...,n). Define the subsequenceP(h:s) = (s, s+h, s+2h,
..., s+rh), whereh andsare integers, , , andr
is the largest non-negative integer such that . Th
we define the permuted sequenceP(h) = (P(h:h), P(h:h-1),
..., P(h:1)). It is shown in [12] that whenh approaches ,
the minimum relative separation of each element from ea
other element inP(h) is maximized. The diversification
generator would generate a set ofP(h), for h = 1, ..., n
(excludingP(1) = P).

4.3. Improvement

In Scatter Search,Improvementis to transform a trial
solution into one or more enhanced trial solutions. If n
improvement can be made, the “enhanced” solution
considered to be the same as the input solution. In o
implementation we used the sifting [23] algorithm. Th
algorithm allows us to take advantage of existing heuristi
specifically tailored to the reordering of BDD variables. I
is possible for a tabu style improvement heuristic t
generate better result, but the sifting heuristic has been w
established and robust enough for our implementation.

4.4. Subset Generation

Subset Generationoperates on the reference set t
produce a subset of its solutions as a basis for creat
combined solutions. Given the high quality and hig
diversity reference set, scatter search generates
following subsets: (i) all 2-element subsets; (ii) 3-eleme
subsets derived from 2-element subsets by augmenting e
2-element subset to include the best order (minimum BD
size) not in this subset; (iii) 4-element subsets derived fro
3-element subsets by augmenting each 3-element subse

dmin x( ) min d x y,( ) y∀ RefSet1 RefSet2∪∈{ }=

RefSet1
a b c d

α

β

γ

δ

α β γ δ

dbα dcα ddα

daβ dbβ dcβ ddβ

daγ dbγ dcγ ddγ

daδ dbδ dcδ ddδ

0 dβα dγα dδα

dαβ 0 dγβ dδβ

dαγ dβγ 0 dδγ

dαδ dβδ dγδ 0

RefSet2

daα

dmin array

m(α)

m(δ)

m(γ)

m(β)
RefSet2

δ v( ) px v( ) py v( )–=

d x y,( ) δ v( )
v
∑ px v( ) py v( )–

v
∑= =

RefSet1 RefSet2∪

x RefSet1 RefSet2∪∈ y RefSet2∈

m x( ) dmin x( )= x RefSet2∈
α RefSet1∈
d x α,( ) x RefSet2∈∀{ } m x( ) x RefSet2∈∀{ }
β RefSet2∈

d β y,( ) y RefSet1 RefSet2∪∈∀{ }
d x β,( ) x RefSet2∈∀{ } m x( ) x RefSet2∈∀{ }

RefSet1 a b c d, , ,{ }= RefSet2 α β γ δ, , ,{ }=

RefSet1 RefSet2 c= =

O RefSet1 RefSet2∪ RefSet2⋅( ) O c
2( )=

O RefSet1 RefSet2∪( ) O c( )=

h n≤ 1 s h≤ ≤
s rh+ n≤

n
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include the best order (minimum BDD size) not in this
subset; (iv) The subsets consisting of the besti elements for
i = 5 to (b1 + b2). The variable orders in each subset are
combined to generate new variable order.

4.5. Combining Variable Orders

Our strategy on combining variable orders is based on
the notion of variable movements. Given variable ordersx
andy, let the position of variablev in x andy bepx(v) and
py(v), respectively. Letx’ be an auxiliary variable order
derived fromx by moving the variablev up or down in the
variable order towards its corresponding position iny. We
denote the position ofv in x’ aspx’(v). Similarly, lety’ be an
auxiliary variable order derived fromy by moving the
variable v towards its corresponding position inx, with
position ofv in y’ aspy’(v). There is a mid-point where the
variablev position meets:px’(v) = py’(v). To do this, we
construct a weight function for the variable

. It is obvious that the average weight
is essentially the mid-point

position between the two orders. We now generalize our
solution combination method for more than 2 variable
orders. Givenn variable orders:x1, x2, ..., xn. Construct a
weight function for each variablev:

After we have computed the weights for all variables, the
combined variable order is generated by sorting the
variables in ascending order of their weights. Notice that the
average weight

is actually the center of gravity of that variablev among the
n orders.

For variables whose positions remain the same among
the n orders, their average weights are the same as their
variable positions. For variables who changed position
between orders, their average weights serve as
compromised balances among their various positions. It is
possible for several variables to end up with the same
weight. This is often the case when two variables
exchanged positions between two orders. When they try to
move towards each other, their centers of gravity collide
together. For this, we introduce a historical weight
accumulator for each variable. When two or more variables
came up with the same weight, we compare their historical
weights and sort them in descending order (as opposed to
the general ascending order). By doing this, we try to
rebalance the average positions for each variable and allow
historically unfavorable variables to gain more significance.

The combination of variable orders is so far based on
equal weights among all orders. Besides historical

adjustments, we can also increase the weight for so
particular orders. Thus making the combined result mo
biased towards those favorable orders. When chos
correctly, this bias would guide the search to arrive at bet
results faster. However, the bias may also lead to mo
emphasis on local minimas. One of the features of scat
search is to find a balance between diversity and quality.
avoid offsetting this balance, we implemented our avera
weight function without any special bias.

4.6. Improving Quality in Casual Encounters

Although our solution combination method uses avera
weights that exploit locality of the solutions, the
diversification generator and the high-diversity referen
set aimed to project solutions outside the convex region
our best solutions. Our search routine need to rearrange
BDD’s according to the new variable order. This
rearrangement is done by swapping adjacent variables
order to reach those diversified solutions, ou
rearrangement routine has to go through many variab
orders along the way. These transient orders along the w
sometimes have smaller BDD sizes than we have ev
encountered, they are potential candidates for the hig
quality reference set. However, when inserting the
transient solutions to the high-quality reference set, we ne
to avoid two pit-falls:

1. Similar variable orders may have similar BDD sizes.
our search traversal go through a local minima, the
may be several transient orders that qualify to b
inserted to our high-quality reference set.

2. Our search could have just departed from a loc
minima that is already included in the high-quality
reference set, so we may pick up several transient ord
in our departure neighborhood that still qualify to b
included in the high-quality reference set.

So, for each transient variable order, we compare
BDD size with our best solution so far, if it turns out to be
smaller, we record that transient order and its BDD size.
there are multiple transient orders that qualify, we only pic
the best (smallest BDD size) to be inserted.

5.  Experimental Results

We have implemented our algorithm on the CUBDD
package [26]. We tested the performance on Linux usi
850MHz PentiumIII and 1GB RDRAM.

Our first experiment compares the CPU run time (
seconds) and BDD nodes between Scatter Search and
Exact Algorithm [15][9][16]. Since the Exact Algorithm is
limited to a small number of BDD variables, we limit our
experiments to some circuits with 17 or less inputs from th

w v( ) px v( ) py v( )+=
w v( ) 2⁄ px v( ) py v( )+[ ] 2⁄=

w v( ) px1
v( ) px2

v( ) … pxn
v( )+ + +=

w v( )
n

------------
px1

v( ) px2
v( ) … pxn

v( )+ + +

n
-------------------------------------------------------------------------=
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LGSynth93benchmark. The results are shown in Table 1.
The orig column shows the original BDD size before
reordering. The exact time, scatter time, exact nodes, scatter
nodes columns refers to run time and final BDD size for
exact algorithm and scatter search respectively. For run
time, the exact algorithm quickly blows up as the number of
inputs (BDD variables) increases, whereas our scatter
search run time is several orders of magnitude smaller than
those of the exact algorithm. Regarding the reduced BDD
size, our scatter search algorithm is as good as the exact
algorithm for the problem size that is runnable by the exact
algorithm. For larger circuits, scatter search may not
perform as much reduction as the exact algorithm. That is
the trade off between quality and speed. So far, the results
are in favor of scatter search.

Our second experiment compared scatter search with
other heuristics that came with the CUBDD package.
Again, we run these tests on circuits from theLGSynth93
benchmark. The results are listed in Table 2. Theorig
column contains the original BDD size before reordering.
The rest of the columns contains reordered BDD sizes after
applying reordering methods using: scatter search, genetic
algorithm [5], simulated annealing [1], sifting [23],
convergent sifting, symmetric sifting [22], group sifting
[21], window permutation approach of Fujita [11] and
Ishiura [15] with sizes 2, 3, and 4, respectively. In all these

experiments, we obtained smallest BDD sizes aft
reordering with scatter search. Notice that genet
algorithms and simulated annealing also resulted in fair
small BDD sizes. They are both population base
optimization that bears some similarity with scatter searc
Unlike genetic algorithms, which tries to mimic a natura
process of improvement, scatter search incorporates
systematic intensification and diversification that depen
less on the randomness of nature. For large circuit with b
BDDs like C1908, the advantage of scatter search ove
other methods becomes quite significant.

6. Conclusion

Scatter Search is a powerful optimization searc
technique. In this paper we have investigated BD
minimization by scatter search. The experimen
demonstrates the efficiency of the approach in comparis
with simulated annealing, genetic agorithm and variou
other methods. It is our belief that by adding othe
heuristics, the performance can be further improved a
would be at par with any other methods. Our work is th
first successful experience of using scatter search appro
in design automation area.
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frg2 143 5104 856 862 965 1706 1145 1706 1620 5047 4691 4583

i4 192 85855 213 243 216 850 253 314 479 83730 82275 78408

i8 133 10366 1276 1277 1296 1336 1278 1336 1400 8146 8089 6720

ldd 9 80 64 64 64 69 64 69 71 74 69 68

too_large 38 7083 302 308 320 726 441 530 471 5068 3213 2086

x1 51 1916 407 419 443 572 456 556 578 1663 1479 1325

x3 135 3041 506 515 562 743 604 741 630 2927 2827 2791

x4 94 1124 320 337 371 375 349 375 378 1116 881 787

Total 1441 276110 15044 15424 15811 23298 16971 22401 33535 245504 225151 205307
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