
A Constructive Algorithm for Reversible Logic
Synthesis

Guowu Yang1, Fei Xie1, Xiaoyu Song2, William N. N. Hung2, and Marek A. Perkowski2

Abstract— This paper presents a constructive synthesis al-
gorithm for any n-qubit reversible function. Given any n-
qubit reversible function, there are N distinct input patterns
different from their corresponding outputs, where N ≤ 2n,
and the other (2n −N) input patterns will be the same as their
outputs. We show that this circuit can be synthesized by at
most 2n ·N ‘(n− 1)’-CNOT gates and 4n2 ·N NOT gates. The
time complexity of our algorithm has asymptotic upper bound
O(n · 4n). The space complexity of our synthesis algorithm is
also O(n · 2n). The computational complexity of our synthesis
algorithm is exponentially lower than the complexity of breadth-
first search based synthesis algorithm.

I. INTRODUCTION

Reversible logic plays an important role in quantum com-
puting [1], [2]. It has been shown that any computing system
of irreversible logic gates leads inevitably to energy dissipa-
tion [3]–[5]. To avoid power dissipation, circuits must be
constructed [4], [5] from reversible gates. Readers interested
in various physical and technological aspects of realizing
quantum circuits from reversible gates are referred to [1],
[6]–[10]. There are a lot of research [2], [5], [9], [11]–[22]
on the construction of reversible logic gates and circuits.

A fundamental question on reversible logic is what kind
of reversible circuits can be implemented, given a library
of reversible logic gates. In this paper, we show that any
reversible logic function with n (n > 2) qubits can be
constructed by NOT and ‘(n−1)’-CNOT gates. We present a
novel, concise and constructive proof based on group theory.
Our quasi-minimal synthesis algorithm is derived based on
the constructive proof, where the numbers of ‘(n−1)’-CNOT
(definition 5) and NOT gates required in the realization are
bounded by 2n · N and 4n2 · N , respectively, where N is
the number of distinct input patterns that are different from
their corresponding output patterns. Our provable synthesis
algorithm outperforms search-based approaches. The time
complexity of our quasi-minimal algorithm has asymptotic
upper bound O(n · 4n). In contrast, a search based exact
synthesis algorithm may have a worst case time complexity
of (2n)!.

The rest of the paper is organized as follows. In section II,
we present definitions of reversibility, permutation, and some
elementary reversible logic gates. Then, in section III, we
proceed to prove a few lemmas and subsequently prove that
every reversible function can be synthesized within our upper
bounded number of gates. To showcase the practicality of

1Dept. of Computer Science, Portland State University, Portland, OR
97207, USA. Contact author’s e-mail: guowu@ece.pdx.edu

2Dept. of Electrical and Computer Engineering, Portland State University,
Portland, OR 97207, USA.

our proof, we rephrase the proof as an synthesis algorithm in
section IV and present some synthesis examples. We analyze
the complexity of our algorithm in section V. Our conclusion
is given in section VI.

II. PRELIMINARIES

In this section, we introduce some basic concepts and
results on permutation group theory from [23] and binary
reversible logic from [24]–[27].

Definition 1 (Binary reversible gate): Let B = {0, 1}. A
binary logic circuit f with n inputs and outputs is denoted
by a binary multiple-output function f : Bn → Bn. Let
〈B1, · · · , Bn〉 ∈ Bn and 〈P1, · · · , Pn〉 ∈ Bn be the input
and output vectors, where B1, · · · , Bn are input variables
and P1, · · · , Pn are output variables. There are 2n different
assignments for the input vectors. A binary logic circuit f is
reversible if it is a one-to-one and onto function (bijection).
A binary reversible logic circuit with n inputs and n outputs
is also called an n-qubit binary reversible gate. There are a
total of (2n)! different n-qubit binary reversible circuits.

We introduce permutation groups and their relationship
with reversible circuits.

Definition 2 (Permutation): Let M = {d1, d2, · · · , dk}. A
bijection of M onto itself is called a permutation on M .
The set of all permutations on M forms a group under
composition of mappings, called a symmetric group on M .
It is denoted by Sk [23]. A permutation group is simply a
subgroup [23] of a symmetric group.

A mapping s : M → M can be written as:

s =
(d1, d2, · · · , dk

di1 , di2 , · · · , di1

)
(1)

Here we use a product of disjoint cycles (Definition 3) as an
alternative notation for a mapping [23]. For example,

(d1, d2, d3, d4, d5, d6, d7, d8, d9

d1, d4, d7, d2, d5, d8, d3, d6, d9

)
(2)

can be written as (d2, d4)(d3, d7)(d6, d8). Denote “()” as
the identity mapping (i.e., direct wiring) and call this the
unity element in a permutation group. The inverse mapping
of mapping f is denoted as f−1. Per convention, a product
f ∗ g of two permutations applies mapping f before g.

A n-qubit reversible circuit is a permutation in S2n , and
vice versa. Cascading two gates is equivalent to multiplying
two permutations in S2n . Thus, in what follows, we will not
distinguish a n-qubit reversible circuit from a permutation in
S2n .

A NOT A

Fig. 1. NOT gate

D

ABCD xor E

A

C

B

A

B

C

D

E

Fig. 2. ‘4’-CNOT gate

Definition 3 (‘j’-cycle): Let Sk be a symmetric group of
symbols {d1, d2, · · · , dk}, then (di1 , di2 , · · · , dij

) is called
a ‘j’-cycle, where j ≤ k, 1 ≤ i1, i2, · · · , ij ≤ k.

Definition 4 (NOT gate): A NOT gate Nj connects an
inverter to the j-th wire, i.e.: Pj = Bj ⊕ 1; Pi =
Bi, if i �= j. 1 ≤ j ≤ n.

An example NOT gate is shown in figure 1.
Definition 5 (‘n − 1’-CNOT gate): A ‘n− 1’-Controlled-

NOT (CNOT) gate Cj is defined as follows:

• If m �= j, then Pm = Cj(Bm) = Bm.
• If m = j, and Bi = 1 for all i �= j, then Pj =

Cj(Bj) = Bj ⊕ 1, else, Pj = Bj .
An example ‘4’-CNOT gate is shown in figure 2.
A ‘n− 1’-CNOT gate is a generalized Toffoli gate where

two inputs control an output of another input.

III. THEORETICAL RESULTS

In this section, we show the process how to constructively
synthesize any ‘n’-qubit reversible circuit by Not and ‘n−1’-
CNOT gates without ancilla qubits. It will be used in our
synthesis algorithm in section IV.

Lemma 1: All permutations can be generated by some ‘2’-
cycles.

Proof: Any permutation can be written as product of
some disjoint cycles. So we only need to show that every
cycle (d1, d2, . . . , dk) can be expressed as a product of some
2-cycles.

(d1, d2, . . . , dk) = (d1, d2)(d1, d3, . . . , dk) (3)

Recursively using this equation, lemma 1 holds.

Remark 1: This lemma is a well-known result in group
theory, we give a proof for showing the equation 3 which
will be used in our algorithm.

TABLE I

THE ORDERED SET M OF u AND s

P1 P2 P3 P4 P5 encode
0 0 1 1 1 d1 = s
0 1 1 1 1 d2

0 1 0 1 1 d3

0 1 0 0 1 d4

0 1 0 0 0 d5 = u

Definition 6 (neighboring ‘2’-cycle): If two n-dimension
vectors u, s have only one bit different, we call the permu-
tation (u, s) a neighboring ‘2’-cycle.

Lemma 2: Suppose between u and s, there is only one bit
Bj different, and l same bits are zeros. These zero bits are
Bi1 , . . . , Bil

. Then,

(u, s) = Ni1 ∗ . . . ∗ Nil
∗ Cj ∗ Nil

∗ . . . ∗ Ni1 (4)
Proof: This lemma holds by direct computation.

Lemma 3: If two n-dimension vectors u, s have k bits dif-
ferent, then there is an ordered set M = {d1, d2, · · · , dk+1}
such that d1 = u, dk+1 = s and for any i, 1 ≤ i < k + 1,
there is only one bit different between di and di+1, and

(u, s) = (d1, d2)(d2, d3) . . . (dk, dk+1)(dk, dk−1) . . . (d2, d1)
(5)

Proof: First, set d1 = u, dk+1 = s. Then, each time
we change one bit in the k different bits between u and s.
So we get an ordered set M = {d1, d2, · · · , dk+1} such that
d1 = u, dk+1 = s and for any i, 1 ≤ i < k + 1, there is
only one bit difference between di and di+1. Equation 5 is
a directly computable result.

Remark 2: In order to make the number of NOT gates
as small as possible, we give two rules for constructing the
ordered set M .

• If the number of 1s in the vector u is more than that in
s, then d1 = u, dk+1 = s. Else, d1 = s, dk+1 = u.

• In the different bits between u and s, change the zero
bit to one first, then change one bit to zero bit.

For example, if u = 〈0, 1, 0, 0, 0〉, s = 〈0, 0, 1, 1, 1〉, then
k = 4, d1 = s, d5 = u and, d2, d3, d4 are given in Table I.

Remark 3: There is commutativity in the product of NOT
gates, and we can remove a pair of the adjacent NOT gates
in the same quantum wire.

Lemma 4: In decomposing ‘2’-cycle (u, s) to NOT gates
and ‘n − 1’-CNOT gates, suppose there are j bits different
between u and s, and there are j0 zero bits in these bits in d1

and j1 one bits in these bits in d1, where j0 ≤ j1, then the
number of NOT gates is no more than 2(j − 2) + 2(j0 − 1)
if j0 ≥ 1; or 2(j − 1) if j0 = 0.

Proof: Using two rules in remark 2 and the property of
NOT gate in remark 3, we can calculate the number of the
needed NOT gates, no more than 2(j − 2) + 2(j0 − 1) if
j0 ≥ 1; or 2(j − 1) if j0 = 0.

Theorem 1: For a given n-qubit reversible circuit f , if
there are N distinct input patterns that are different from

their corresponding outputs, where N ≤ 2n, and the other
(2n − N) input patterns are the same as their outputs, then
this circuit can be synthesized by at most 2n · N ‘(n − 1)’-
CNOT gates and 4n2 · N NOT gates without ancilla qubit.

Proof: According to equation 3, this reversible circuit
can be decomposed to at most N − 1 ‘2’-cycles. According
to lemma 3 and 2, the number of ‘(n− 1)’-CNOT gates is
no more than 2n · N ; the number of NOT gates is no more
than 2n · 2n · N = 4n2 · N .

Theorem 2: All n-qubit reversible circuits can be con-
structed by less than 2n · 2n NOT gates and less than
(2n − 1) · 2n ‘n − 1’-CNOT gates without ancilla qubit.

Proof: Let (d1, d2), (d3, d4), . . . , (dm−1, dm), where
m = 2n, be the all ‘2’-cycles where d2i−1 and d2i have
the maximal number of different bits, n.

When we optimally decompose any permutation p in Sm

to a product of some neighboring ‘2’-cycles, let function
N(p) be the minimal number of neighboring ‘2’-cycles.

When p = (d1, d2)(d3, d4) . . . (dm−1, dm), N(p) achieves
the maximal number (2n−1)·2n. The reason is the following.
When use equation 1 to optimally decompose p to some
neighboring 2-cycles based equation 5, if (d2i−1, d2i) is in
the decomposition, then (d2i−1, a) or (d2i, b) will not be
included in this decomposition. By contradiction, assume
(d2i−1, a) is in the optimal decomposition.

(d2i−1, d2i)(d2i−1, a) = (d2i−1, d2i, a)
= (d2i−1, a)(d2i, a)

The number r of different bits between d2i and a is less than
n. According to equation 5

N((d2i, a)) = 2r − 1 < 2n − 1 = N((d2i−1, d2i)).

Thus (d2i−1, a)(d2i, a) is a better decomposition than
(d2i−1, d2i)(d2i−1, a).

Therefore, (d2i−1, a) or (d2i, b) will not be included in
this decomposition. So, the product p of all these ‘2’-cycles
with maximal n different bits makes N(p) to be (2n−1)·2n.

Using equation 2, the number of ‘n − 1’-CNOT gates is
no more than (2n − 1) · 2n.

Let the number of NOT gates be Y , C(i; j) be a binomial
coefficient [28]. Using lemma 4 and properties of binomial
coefficient, when n = 2k − 1, k ≥ 2, an odd number,

Y = 2(2k − 3)C(2k − 1; 0)
+(2(2k − 3) + 2(1 − 1))C(2k − 1; 1)
+ . . . + (2(2k − 3) + 2(k − 2)C(2k − 1; k − 1))

= (3k − 4)22k−1 − (2k − 1)C(2k − 2; k − 1) + 2
< 2n · 2n

when n = 2k, k ≥ 2, an even number,

Y = 2(2k − 2)C(2k; 0)
+(2(2k − 2) + 2(1 − 1))C(2k; 1)
+ . . . + (2(2k − 2) + 2(k − 1)C(2k; k))

= (3k − 4)22k + (2k − 3)C(2k; k)
< 2n · 2n

Remark 4: The upper bound for NOT gates can be re-
duced by further removing the pair of the adjacent NOT
gates in the same quantum wire. This is illustrated by the
example in the next section.

Remark 5: The product of all ‘2’-cycles with maximal n
different bits indeed is the product of all n different NOT
gates. Thus the approach by directly using equation 3 and
lemma 3 has some defects. We should consider the NOT gate
before using equation 3.

The idea of considering the NOT gate before using equa-
tion 3 is:

Consider the truth table of a given reversible circuit, each
output bit has 2n values, compare them with the input values,
if the number of different values is bigger than 2n−1, tie a
NOT gate to this bit. After dealing with all bits, count the
changed vectors, if the number of the changed vectors is less
than that of the original circuit, then decompose the reversible
circuit dealt by NOT gates using equation 3 and lemma 3.
Otherwise, decompose the original reversible circuit. The
decomposition algorithm and examples are given in the next
section.

IV. ALGORITHM AND SYNTHESIS EXAMPLE

Based on the above analysis, we present the following
constructive algorithm for synthesizing any given binary
reversible circuit f without using ancilla qubits.

Algorithm:
Step 1. Check the truth table of f to determine before

using equation 3 and lemma 3, whether we need NOT gates
or not.

Step 2. After step 1, write the reversible circuit in a
product of cycles form. For every cycle (d1, d2, . . . , dk),
calculate the number ri of different bits between di and di+1,
i = 1, 2, . . . , k where dk+1 = d1. Let rj be the maximal
number. The basic idea to decompose the reversible circuit
by equation 3 is to break the mapping relation from dj to
dj+1 without increasing the number of different bits between
adjacent vectors.

(d1, d2, . . . , dk) = (dj , dj+1)(dj , dj+2, dj+3, . . . , d1) (6)

Recursively repeating this process, we decompose the
reversible circuit to ‘2’-cycles.

Step 3. Decompose every ‘2’-cycle by NOT and ‘n− 1’-
CNOT gates by Lemma 3, two rules in remark 2, lemma 2,
and remove pairs of adjacent NOT gates when possible.

Example 1: Given a binary reversible circuit f which has
a truth table as shown in Table II.

TABLE II

A BINARY REVERSIBLE CIRCUIT f

input output
B1 B2 B3 B4 encoding P1 P2 P3 P4 encoding
0 0 0 0 a1 0 1 0 0 a3

1 0 0 0 a2 1 0 1 0 a6

0 1 0 0 a3 1 1 0 0 a4

1 1 0 0 a4 1 1 1 1 a16

0 0 1 0 a5 0 0 1 0 a5

1 0 1 0 a6 1 0 1 1 a14

0 1 1 0 a7 0 1 1 0 a7

1 1 1 0 a8 1 1 1 0 a8

0 0 0 1 a9 0 0 0 1 a9

1 0 0 1 a10 1 0 0 1 a10

0 1 0 1 a11 0 1 0 1 a11

1 1 0 1 a12 1 1 0 1 a12

0 0 1 1 a13 0 0 1 1 a13

1 0 1 1 a14 1 0 0 0 a2

0 1 1 1 a15 0 1 1 1 a15

1 1 1 1 a16 0 0 0 0 a1

Therefore, f = (a1, a3, a4, a16)(a2, a6, a14).
Step 1. The total number of changed vectors is 7, less than

24−1 = 8, thus, we deal with the input reversible circuit f
without pre-cascading NOT gates.

Step 2. Decompose each cycle into the product of 2-cycles
by using equation 6.

(a1, a3, a4, a16) = (a4, a16)(a4, a1, a3)
= (a4, a16)(a4, a3)(a1, a3)

(a2, a6, a14) = (a6, a14)(a6, a2)

Step 3. By applying equation 6 and lemma 2, we have:

(a4, a16) = (a16, a12)(a12, a4)(a16, a12)
= C3 ∗ N3 ∗ C4 ∗ N3 ∗ C3

(a4, a3) = N3 ∗ N4 ∗ C1 ∗ N3 ∗ N4

(a1, a3) = N1 ∗ N3 ∗ N4 ∗ C2 ∗ N1 ∗ N3 ∗ N4

(a6, a14) = N2 ∗ C4 ∗ N2

(a6, a2) = N2 ∗ N4 ∗ C3 ∗ N4 ∗ N2

Therefore,

f = C3 ∗ N3 ∗ C4 ∗ N3 ∗ C3 ∗ N3 ∗ N4

∗C1 ∗ N1 ∗ C2 ∗ N1 ∗ N3 ∗ N4

∗N2 ∗ C4 ∗ N4 ∗ C3 ∗ N4 ∗ N2.

The synthesis process is finished, and f is decomposed
into the product of 12 NOT gates and 7 ‘n−1’-CNOT gates,
shown in figure 3.

Example 2: Given a binary reversible circuit g which has
a truth table as shown in Table III.

Step 1. Only the output P1 has over 24−1 = 8 different
values with input B1. So we need cascade a NOT gate N1

after g, shown in figure 4.
The remaining steps. g ∗N1 = f , so the rest of the steps

is the same as Example 1, and g = f ∗ N1.

Remark 6: From these two examples, especially the sec-
ond example, the numbers of NOT gates and ‘n− 1’-CNOT
gates are much less than the upper bound that we gave in
Theorem 1. The optimal upper bound of our algorithm is still
our future research.

V. COMPLEXITY ANALYSIS

In this section, we analyze the computation complexity
of our algorithm. Compared with exact breadth-first search
based synthesis algorithm, the computation complexity of our
algorithm is exponentially lower.

Theorem 3: The time complexity of our synthesis algo-
rithm is O(n · 4n).

Proof: The time complexity of step 1 is n · 2n, since
we need to check all values in truth table. In step 2, to
get equation 6, in worst case (k = 2n), we need n · 2n

computations. And we need recursively use equation 6 k−1
times, so the time complexity of step 2 is n · (2n)2/2 =
n · 4n/2. In step 3, there are 2n − 1 ‘2’-cycles in worst case.
According lemma 3 and 2, decompose every ‘2’-cycle to
NOT and ‘n − 1’-CNOT gates, we need 2n · 2n = 4n2.
Removing NOT gates needs to check all these 2n · 2n NOT
gates. So the time complexity of step 3 is 4n2·2n+2n·n·2n =
6n2 · 2n.

Therefore, the total time complexity of the synthesis
algorithm is:

n · 2n + n · 4n/2 + 6n2 · 2n = O(n · 4n).

Remark 7: Our method is a constructive algorithm, since
for each step, we are simply transforming the formula to
obtain the synthesized gates. We do not need to search
other reversible circuits that do not appear in our result.
The computational complexity of our synthesis algorithm

Fig. 3. Decomposed circuit for f

TABLE III

A BINARY REVERSIBLE CIRCUIT g

input output
B1 B2 B3 B4 encoding P1 P2 P3 P4 encoding
0 0 0 0 a1 1 1 0 0 a4

1 0 0 0 a2 0 0 1 0 a5

0 1 0 0 a3 0 1 0 0 a3

1 1 0 0 a4 0 1 1 1 a15

0 0 1 0 a5 1 0 1 0 a6

1 0 1 0 a6 0 0 1 1 a13

0 1 1 0 a7 1 1 1 0 a8

1 1 1 0 a8 0 1 1 0 a7

0 0 0 1 a9 1 0 0 1 a10

1 0 0 1 a10 0 0 0 1 a9

0 1 0 1 a11 1 1 0 1 a12

1 1 0 1 a12 0 1 0 1 a11

0 0 1 1 a13 1 0 1 1 a14

1 0 1 1 a14 0 0 0 0 a1

0 1 1 1 a15 1 1 1 1 a16

1 1 1 1 a16 1 0 0 0 a2

Fig. 4. Decomposed circuit for g

is exponentially lower than the complexity of breadth-first
search based synthesis algorithm, which needs to explore a
number of different reversible gates in each step and only a
subset of them are used in the result. The space complexity
of any breadth-first search based synthesis algorithm for n
qubits reversible circuit is more than (2n)!, since in the
worst case, it at least needs to remember all (2n)! reversible
circuits. This is impossible even when n = 4 since (24)! ≈
2.0 × 1013. The time complexity is also greater than (2n)!,
because in the worst case, it at least needs to compute
all reversible circuits. In fact, it also has to do a lot of
comparisons of equality to determine whether the calculated
circuit is the given circuit or not, so the time complexity of
any breadth-first search based synthesis algorithm is much
more than (2n)!.

Theorem 4: The space complexity of our synthesis algo-

rithm is 6n · 4n.
Proof: The space complexity of step 1 is 2n · 2n,

since we need to store the input assignments and output
assignments in truth table for computing the different number
of values between the input and the output. After we finish
step 1, we do not have to store the input assignment. In step
2, we need to store all ‘2’-cycles, and we need n2 space
units to compute rj which can be ignored by comparing
with the exponential number of the needed space. So, the
space complexity of step 2 is n · 2n. In step 3, we need to
store all Not gates and ‘n − 1’-CNOT gates. According to
Theorem 2, the space complexity of step 3 is 4n · 2n. Thus,
the space complexity of our synthesis algorithm is 6n · 2n.

In the worst case, the breadth-first search based synthesis
algorithm at least needs to store all (2n)! reversible circuits.

So, the space complexity of our synthesis algorithm is still
exponentially lower than that of the breadth-first search based
synthesis algorithm.

VI. CONCLUSIONS

In this paper, we presented a constructive algorithm for
synthesizing reversible circuits by NOT and ‘n − 1’-CNOT
gates and give two synthesis examples based on this algo-
rithm, which show that even by hand, synthesizing any ‘4’-
qubit reversible circuit is not difficult. The computational
complexity of our synthesis algorithm is exponentially lower
than the complexity of breadth-first search based synthesis
algorithm.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, December 2000.

[2] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules
for designing CNOT-based quantum circuits,” in Proc. DAC, 2002, p.
28.4.

[3] R. Landauer, “Irreversibility and heat generation in the computational
process,” IBM Journal of Research and Development, vol. 5, pp. 183–
191, 1961.

[4] C. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development, vol. 17, pp. 525–532, 1973.

[5] E. Fredkin and T. Toffoli, “Conservative logic,” Int. Journal of Theo-
retical Physics, vol. 21, pp. 219–253, 1982.

[6] D. Copsey, M. Oskin, T. Metodiev, F. T. Chong, and I. L. Chuang, “The
effect of communication costs in solid-state quantum architectures,” in
Symposium on Parallel Architectures and Applications (SPAA), 2003.

[7] L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quan-
tum control and computation,” Reviews of Modern Physics, vol. 76,
no. 4, pp. 1037–1069, October 2004.

[8] L. Xiao and J. A. Jones, “Robust Logic Gates and Realistic
Quantum Computation,” 2005. [Online]. Available: http://arxiv.org/
abs/quant-ph/0511100

[9] D. Deutsch, “Quantum computational networks,” Royal Society of
London Series A, vol. 425, pp. 73–90, 1989.

[10] D. Maslov and D. M. Miller, “Comparison of the Cost Metrics for
Reversible and Quantum Logic Synthesis,” 2005. [Online]. Available:
http://arxiv.org/abs/quant-ph/0511008

[11] G. W. Dueck and D. Maslov, “Reversible function synthesis with
minimum garbage outputs,” in Proc. 6th Int. Symp. Representations
and Methodology of Future Computing Technologies (RM2003), 2003.

[12] P. Kerntopf, “Maximally efficient binary and multi-valued reversible
gates,” in Proc. ULSI Workshop, May 2001, pp. 55–58.

[13] ——, “Synthesis of multipurpose reversible logic gates,” in Proc.
EUROMICRO Symp. Digital Systems Design, 2002, pp. 259–266.

[14] A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic
synthesis by gate composition,” in Proc. IEEE/ACM Int. Workshop
on Logic Synthesis, 2002, pp. 261–266.

[15] D. Maslov and G. W. Dueck, “Garbage in reversible designs of
multiple-output functions,” in Proc. 6th Int. Symp. Representations and
Methodology of Future Computing Technologies (RM2003), 2003.

[16] A. Mishchenko and M. Perkowski, “Logic synthesis of reversible wave
cascades,” in Proc. IEEE/ACM International Workshop on Logic and
Synthesis, June 2002, pp. 197–202.

[17] P. Picton, “A universal architecture for multiple-valued reversible
logic,” Mutiple Valued Logic: an Int. Journal, vol. 5, pp. 27–37, 2000.

[18] T. Toffoli, “Bicontinuous extensions of invertible combinatorial func-
tions,” Mathematical Systems Theory, vol. 14, pp. 13–23, 1981.

[19] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Quantum Logic Synthesis by Symbolic Reachability Analysis,” in
Design Automation Conference (DAC), 2004, pp. 838–841.

[20] G. Yang, W. N. N. Hung, X. Song, and M. Perkowski, “Majority-
Based Reversible Logic Gates,” Theoretical Computer Science,
vol. 334, no. 1–3, pp. 295–274, April 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.tcs.2004.12.026

[21] X. Song et al., “Algebraic Characteristics of Reversible Gates,” Theory
of Computing Systems, vol. 39, no. 2, pp. 311–319, May–April 2005.

[22] G. Yang, X. Song, W. N. N. Hung, and M. Perkowski, “Fast Syn-
thesis of Exact Minimal Reversible Circuits using Group Theory,”
in ACM/IEEE Asia and South Pacific Design Automation Conference
(ASP-DAC), 2005, pp. 1002–1005.

[23] J. D. Dixon and B. Mortimer, Permutation Groups. New York:
Springer, 1996.

[24] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic gates,” IEEE Trans. CAD, vol. 22, no. 6, pp. 710–
722, June 2003.

[25] A. De Vos, “Reversible computing,” Qutantum Electronics, vol. 23,
pp. 1–49, 1999.

[26] L. Storme, A. De Vos, and G. Jacobs, “Group theoretical aspects of
reversible logic gates,” Journal of Universal Computer Science, vol. 5,
pp. 307–321, 1999.

[27] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Proc. DAC, 2003, pp. 318–
323.

[28] K. P. Bogart, Introductory Combinatorics. Harcourt Brace Jovanovich,
1990.

