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 ABSTRACT

We address the problem of checking the routability of seg-
mented channels using satisfiability. The segmented channel rout-
ing problem arises in the context of row-based field
programmable gate array (FPGAs). Our approach transforms the
routing task into a single large Boolean equation such that any as-
signment of input variables that satisfies the equation specifies a
valid routing. It considers all nets simultaneously and the absence
of a satisfying assignment implies that the channel is unroutable.
Empirical results show that the method is time-efficient and appli-
cable to large problem instances.

1.  INTRODUCTION

A wide variety of tactics have been tried to solve the FPGA
routing problem. Wonget al [4] introduced a global router that
uses an off-line, integer linear programming technique to enumer-
ate all possible uses of a switch-block architecture. A global router
uses this information as an exact congestion estimator for each
small and atomic block of the routing fabric. However, the global
router must still handle the complexity of managing the competi-
tion for routes between the atomic blocks in the fabric. Woodet al
[5] considered a routability estimator of a global router in terms of
satisfiability. Greene [3] described search-based strategies for seg-
mented channel routing and proved that it is NP-complete. Yang
et al [6] proposed the algorithms based on graph clique for some
restricted segmented channel routability check.

In this work, we give a novel formulation for both routing and
routability that provides exact routability guarantees. In [1], Deva-
das showed a simple but elegant formulation of conventional two-
layer channel routing as Boolean satisfiability. We extend his
method to the segmented channel routing. Although some work
for FPGA routing via satisfiability has been done [2,5,9], but they
are designed for the detailed routing, none of them consider the
routability inside a segmented channel [3]. We formulate the case
analysis for segmented channel routing. This formulation encodes
the information present in a channel vertical constraint graph, hor-
izontal constraint graph, and anticipated channel width into Bool-
ean constraints. The resulting routability constraint is satisfiable if
the conjunction of all the horizontal and vertical constraints are
satisfiable. The resulting Boolean equation fully specifies the set
of feasible net-to-track mappings via its satisfying variable assign-
ments.

The idea is to specify the routing problem as a set of interacti
assignments of nets to available resources expressed exactly
large set of Boolean equations. Any assignment of values to inp
variables that satisfies this Boolean routability equation gives
complete routing. Although satisfiability is itself an NP-hard prob
lem, there has been a promising body of practical solvers availa
on large satisfiability problems [8]. Our Boolean formulation ca
be input to any satisfiability solver. It is an incremental metho
which allows not only for rapid construction of necessary routab
ity constraints, but also it can incorporate incrementally updat
for new additional performance driven constraints. Unlike oth
detailed routers which construct the routing net-by-net, our a
proach finds a routing for all net simultaneously.

2.  PRELIMINARIES AND DEFINITIONS

The input to a segmented channel routing [3] problem is a se
mented channel consisting of a setΓ of T tracks and a setC of M
nets. Each trackt (0≤t≤T−1) extends from column 1 to columnN,
whereN ≥ M, and is divided into a setGt of gt adjacent segments
separated by horizontal switches, i.e., |Gt|=gt. The model of a seg-
mented channel routing is depicted in Figure 1, where a symb
cycle represents a horizontal switch and⊕ represents a cross
switch. For convenience sake, we label the tracks 1 toT.

Figure 1.  The model of a segmented channel routing.

Each netc is a connection between two or more columns. Th
span of the netc is defined by its leftmost and rightmost columns
left(c) and right(c), respectively. There are two or more terminal
for each netc. Each terminal occupies a column. Denote the set
terminal columns of netc by L(c). The leftmost and rightmost col-
umns are both terminals of netc: . Each
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terminal of c must be located within the span of netc, i.e.,
, for all .

A performance driven track, is a track where, due to critical
timing constarints, the wire is shorter than average tracks. We use

to represent the set of nets on the critical path. We use to
represent the set of performance driven tracks.

Let st,i denote segmenti on trackt, where the indexi is num-
bered from left to right along the track. Letleft(st,i) andright(st,i)
be the leftmost and rightmost columns in which this segment is
present respectively, we have 1≤ left(st,i) ≤ right(st,i) ≤ N. Since
the switches between adjacent segments are placed between con-
secutive columns, we haveleft(st,i+1) = right(st,i) + 1 for all t = 1,
...,T andi = 1, ...,gt −1.

2.1.  Dogleg-free Segment Routing

In dogleg-free segment routing, a net connection can be as-
signed to at most one track. Each netci, 1 ≤ i ≤ M, is uniquely
characterized by the span of its leftmost and rightmost columns,
left(ci) andright(ci). When a netc is assigned to a trackt, the seg-
ments in trackt that are present in the columns spanned byc are
consideredoccupied. More precisely,a segment s in track t is oc-
cupied by a net c assigned to that trackiff Q(s,c) is true:

A routing,R, of a set of nets is an assignment of each net to a
track such that no segment is occupied by more than one net. AK-
segment channel routingis a routing that satisfies the additional
requirement that each net occupies at mostK segments on a track.

2.2.  Doglegged Segment Routing

In a doglegged segment routing, a net can be assigned to more
than one track. This is also calledgeneralized routing or dogleg-
ging [3]. A net c can be split intop parts: (left(c), l1),
(l1+1, l2), (l2+1, l3), . . . , (lp−1+1, right(c)), such that each part can
be assigned to different tracks. A columnli, where a net is split, is
referred to as a column where netc changes tracks. Roychowhury
proposed three important special cases of the generalized routing
problem:

1. Determine a generalized routing that uses at mostK segments.

2. Determine a generalized routing that uses at mostl different
tracks for routing any net.

3. Determine a generalized routing where connections can
switch tracks only at predetermined columns.

3.  DOGLEG-FREE ROUTABILITY

Given a segmented channel, we want to assign each net to at
most one track in order to connect the top and bottom terminals as
specified. We define a variable vector for each netc as the
binary (encoding) representation of the track index where the net
c is assigned to, i.e., where

 and  for .

Since each net has to be assigned to one track, is equal to
a track number between 0 and (T−1). Thus, the constraint for the
domain of  is:

 for all . (1)

Since all the definitions of dogleg-free segment routing involv
only the leftmost and rightmost columns of each net, the proble
formulation applies to two-terminal as well as multi-terminal rou
ing. In this section, our solution works for multi-terminal routing
as well as two-terminal routing.

3.1.  Unlimited Segment Routing

Each segment can be occupied by at most one net. We de
an occupancy functionh for netc and segments on trackt:

The functionh is true if and only if segments on trackt is oc-
cupied by netc. The segment occupancy constraint for each n
can be defined in terms of the occupancy functionh:

(2)

where∩ denotes the boolean conjunctive operator.
The necessary and sufficient condition for dogleg-free unlim

ed segment routing is the conjunction of formulae (1) and (2).

3.2. K-segment Routing

We definemleft(c, t) andmright(c, t) to be theidentification
numbers(IDs) of the left-most segment and the right-most seg
ment occupied by netc, respectively,if that net is assigned to track
t.

Given left(s) andright(s), left(c) andright(c) are deducible from
the problem specification, the values ofQ(s,c)are deducible as
well. Hence the values ofmleft(c,t) and mright(c,t) can be
computed before the satisfiability check.

To limit the maximum number of segments that the nets of
segmented channel can occupy, we need to ensure that the di
ence between indices for the leftmost segment and the rightm
segment on the track to which this net is assigned is less thanK.
Otherwise, the net cannot be assigned to this track. TheK-segment
constraint is:

(3)
The overall routability check for dogleg-freeK-segment rout-

ing is the conjunction of formulae (1), (2), and (3).

3.3.  Performance Driven Tracks

When connecting nets on the critical path, we may want
force these nets to be assigned to certainperformance driven
tracks. This requirement introduces an additional constrant:

(4)

The overall routability check for performance driven track routin
is the conjunction of formulae (1), (2), (3) and (4).
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4.  DOGLEGGED ROUTABILITY

Given a segmented channel, we aim at finding a generalized
routing where doglegs are allowed [3]. Doglegs can help to reduce
the wiring area to reach a more compact layout. The problem is
more complicated than dogleg-free routing, since we cannot use
one vector to encode (denote) all the tracks to which the net
c is assigned.

4.1.  Track Variables

In a generalized routing, a netc can be split intop
parts: (left(c), l1), (l1+1, l2), (l2+1, l3), . . . , (lp−1+1, right(c)), such
that each part can be assigned to different tracks. These distinctp
parts exists because the net c can change tracks in columns be-
tween left(c) and right(c). Let pm(c) be the maximum number of
parts for netc, we have:

 and

For every net c, we use a set of variable vectors
to denote the tracks where the

net is assigned to:
•  is the track of netc between left(c) and left(c)+1;
•  is the track of netc between left(c)+1 and left(c)+2;
•  is the track of netc between left(c)+2 and left(c)+3;
• . . . . . .
• is the track of netc between right(c)-1 and right(c).

Each variable vector is a binary (encoding) representation
of a track used by netc:

 for  where

 and  for .

The constraint for the domain of  is:

 for all  and (5)

4.2.  Horizontal Wiring Constraints

For every part of netc on track , we can deduce the left
and right columns of that part of the connection:

 for

 for

We define an occupancy functionhd for the ith part of netc and
segments on trackt:

where  and

The functionhd is true if and only if segmentson trackt is oc-
cupied by theith part of netc. The segment occupancy constraint
for each net can be defined in terms of the occupancy functionhd:

(6)

where ∩ denotes the boolean conjunctive operator. Notice th
similarity between formula (6) and formula (2). Their differenc
is their occupancy functionshd and h.

4.3.  Vertical Wiring Constraints

On the vertical side, each column can be occupied by at m
one net. A column is occupied if any net has a terminal on that c
umn or if any net changes tracks on that column. The terminal
cations are already given by the problem specification. But t
places where each net changes tracks must be resolved so that
do not conflict with the terminals or track changes of other net

Each netc changes tracks on columni if and only if it spans
over that column and its parts on the left side and right side of c
umn i are assigned to different tracks. We use a boolean va
x(c,i) to denote a change of track for netc on columni :

where

If net c does change tracks on columni, this column is occupied
by the netc. This column cannot be used by another net (either
a terminal or to change tracks). This requirement is formulated
the following constraint:

(7)

The necessary and sufficient condition for doglegged segmen
channel routing is the conjunction of formulae (5), (6) and (7).

4.4. K-segment Routing

To limit the maximum number of segments used by any net, w
need to find out if segments on trackt is occupied by netc

The total number of segments used by netc for all segments on all
tracks cannot exceedK.

 , for all (8)

Notice that the arithmetic addition operator that is used
implement the summation is applied to boolean formulae here. W
compute the addition over boolean symbolic formulae and cre
a constraint that limits the sum to be less thanK.

The K-segment generalized routability is the conjunction o
formulae (5), (6), (7) and (8).

4.5.  Track Limitations

To limit the maximum number of distinct tracks used by eac
netc, we define a boolean function for the distinct formulation fo
each parti of netc:

where
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The constraint on the maximum number of distinct tracks is
phrased using the sum of the above boolean bits:

 , for all (9)

A generalized routing that uses at mostl different tracks for
routing any net is essentially the conjunction of formulae (5), (6),
(7) and (9).

4.6.  Column Limitations

Given a segmented channel, we want to find a generalized rout-
ing where each netc can only switch tracks at predetermined col-
umns. LetΘ(c) be the set of columns where netc is allowed to
switch tracks. The constraint can be formulated as:

 where

(10)
A generalized routing where connections can switch tracks

only at predetermined columns is essentially the conjunction of
formulae (5), (6), (7) and (10).

5.  EXPERIMENTAL RESULTS

We formulated the segmented routability problems with bool-
ean equations in Sections 3 and 4, compiled them through BCSat
[7] into DIMACS format, and used Chaff [8] to solve these prob-
lem instances. The runtime is in seconds on 850MHz PentiumIII
with 1GB RDRAM (only small part of memory has been used).

Table 1 shows the routability checks for conventional sege-
mented channels with no doglegging. The columns N, M, T corre-
sponds to the number of columns, nets, tracks respectively. It takes
a lot longer time to verify unroutability (for N=100, M=18, T=10)
than routability. This is because it’s much easier for the SAT
checkers to find one satisfiable instance than searching every pos-
sible case for unsatisfiability. The parameters of the largest chan-
nel model (N=100, T=36) are close to Actel’s family A1280 [6].

Table 2 shows the routability checks for segmented chann
with doglegging. Since there are more flexibility in doglegging
the search time is generally longer compared to dogleg-free cas

6.  CONCLUSION

We have studied a satisfiability-based method for solving se
mented channel routability. The approach transformed the rout
task into a single, large Boolean equation with the property th
any assignment of input variables that satisfies the equation sp
ifies a valid routing. Absence of a satisfying assignment implie
that the channel is unroutable. Experimental results demonstr
its time-efficiency and applicability to large problem instances.

7.  REFERENCES

[1] S. Devadas, “Optimal layout via Boolean satisfiability,” in
Proc. ACM/IEEE ICCAD, 1989, pp. 294-297.

[2] G. Nam, F. Aloul, K. Sakallah and R. Rutenbar, “A
comparative study of two Boolean formulations of FPGA Detaile
routing constraints,” inProc. ACM ISPD’01, pp. 222-227, 2001.

[3] V.P. Roychowdhury, J. Greene, and A. El Gama
“Segmented channel routing,”IEEE Trans. on CAD, 12(1), pp. 79-
95, 1993.

[4] S. Thakur, Y. W. Chang, D. F. Wong, and S. Muthukrishnan
“Algorithms for an FPGA switch module problem with application
to global routing,”IEEE Trans. on CAD, vol. 16, 1997.

[5] R. G. Wood, R. A. Rutenbar, “FPGA routing and routability
estimation via Boolean satisfiability,”IEEE Trans. on VLSI
Systems, 6(2), 1998.

[6] C. Yang, S. Chen, J. Ho, and C. Tsai, “Efficient routability
check algorithms for segmented channel routing,”ACM Trans. on
Design Automation, 5(3), July, 2000, pp. 735-747.

[7] T. Junttila and I. Niemelä, “Towards an Efficient Tableau
Method for Boolean Circuit Satisfiability Checking,” in J. Lloyd et
al., editors,Computational Logic; First International Conference,
Lecture Notes in Artificial Intelligence, vol. 1861, pp. 553-567,
July 2000.

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Design Automation
Conference, Las Vegas, June 2001.

[9] X. Song, W. N. N. Hung, A. Mishchenko, M. Chrzanowska
Jeske, A. Coppola, and A. Kennings, “Board-Level Multitermina
Net Assignment,” inProc. ACM Great Lakes Symposium on VLS,
New York City, April 18-19, 2002.

Table 1.  Dogleg-free Segmented Routability

N M T clauses literals routability Chaff

30 15 10 4979 10271 Y 0.04

50 15 15 6651 13675 Y 0.01

50 18 15 9564 19576 Y 0.01

50 20 15 11594 23686 Y 0.03

75 25 20 26141 53555 Y 55.04

100 15 10 5100 10544 Y 1.22

100 18 10 7163 14739 N 17171.20

100 30 25 46340 94328 Y 0.41

100 30 30 54092 109892 Y 0.17

100 30 36 66549 136157 Y 0.53

100 40 36 111937 227953 Y 1.42

100 45 36 140375 285339 Y 1.35

100 50 36 172741 350581 Y 3.97

l diff c i,( )
i 1=

pm c( )

∑≥ c C∈

pm c( ) 1>( ) nw c i,( )
i 1=

pm c( ) 1–

∩⇒
 
 
 

c C∈
∩

nw c i,( ) left c( ) i+( ) Θ c( )∉( ) u c i,( ) u c i 1+,( )=( )⇒=

Table 2.  Doglegged Segmented Routability

N M T clauses literals routability Chaff

20 6 5 1447 3167 Y 0.01

20 7 5 2061 4491 Y 0.03

20 8 5 2155 4619 N 0.02

20 9 5 1697 3483 N 0.02

20 9 7 2643 5473 Y 0.01

50 20 15 32396 70882 Y 0.60

75 25 20 126027 283005 Y 18999.8
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