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ABSTRACT
Reversible quantum logic plays an important role in quan-
tum computing. In this paper, we propose an approach to
optimally synthesize quantum circuits by symbolic reacha-
bility analysis where the primary inputs are purely binary.
We present an exact synthesis method with optimal quan-
tum cost and a speedup method with non-optimal quantum
cost. Both our methods guarantee the synthesizeability of
all reversible circuits. Unlike previous works which use per-
mutative reversible gates, we use a lower level library which
includes non-permutative quantum gates. Our approach ob-
tains the minimum cost quantum circuits for Miller’s gate,
half-adder, and full-adder, which are better than previous
results. In addition, we prove the minimum quantum cost
(using our elementary quantum gates) for Fredkin, Peres,
and Toffoli gates. Our work constitutes the first successful
experience of applying satisfiability with formal methods to
quantum logic synthesis.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Design Aids

General Terms: Design, Algorithms.

Keywords: Reversible Logic, Quantum Computing, For-
mal Verification, Model Checking, Satisfiability.

1. INTRODUCTION
Reversible logic is needed in the synthesis of quantum

computing circuits [5,7,12]. The synthesis of reversible logic
circuits using elementary quantum gates [1, 21] is different
from classical (non-reversible) logic synthesis. There are
some works [13, 16, 19, 23] on reversible logic synthesis us-
ing permutative reversible gates (Toffoli [7], Fredkin [21]
or Feynman gates). However, these gates have different
quantum costs (e.g. the cost of Feynman is lower than
Toffoli). So finding the smallest number of gates to syn-
thesize a reversible circuit does not necessarily result in a
quantum implementation with the lowest cost (in terms of
quantum gates). In this paper, we focus on synthesizing re-
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Figure 1: Elementary quantum logic gates

versible circuits to quantum implementations with the low-
est cost. These circuits include common reversible gates that
can be used at higher levels of logic synthesis or for tech-
nology mapping. We reduce the quantum logic synthesis
problem to multiple-valued logic synthesis, which simplifies
the search space and algorithm complexity. We formulate
the quantum logic synthesis problem via symbolic reacha-
bility analysis [2, 14]. Our method not only guarantees to
find a quantum implementation (for reversible circuits), but
also the lowest quantum cost in the synthesized result. In
contrast to previous works, which either use permutative
reversible gates to design permutative circuits or universal
quantum gates to design quantum circuits, we use a subset
of quantum gates to design permutative circuits.

2. BACKGROUND
It has been shown [1, 21] that any quantum logic can be

constructed using elementary quantum XOR, controlled-V,
controlled-V +, or NOT gates, as shown in Fig. 1. The NOT
gates are also known as inverters. The quantum XOR gates
are also called Feynman gates or controlled-NOT (CNOT)
gates. The controlled-V [17] gate’s data output is the same
as its data input (B) when its control input (A) value is 0
(FALSE). When its control value is 1 (TRUE), the data out-
put becomes V(input). Similar rules apply to the controlled-
V + gate, except that its data output becomes V+(input).
According to [17], the values V and V + are constructed
such that V × V =V + × V +=NOT. For any unitary matrix
X (e.g. V ), X+ is its hermitian matrix where X × X+ = I
(identity). For quantum implementation, the cost of 2-qubit
gates (Fig. 1 b,c,d) far exceeds the cost of 1-qubit gates
(Fig. 1a). Hence, in a first approximation the quantum cost
of 1-qubit gates is usually ignored in the presence of 2-qubit
implementations [1,5].

In this paper, we adopt the quantum gate cost evalua-
tion introduced originally in [21]. Each 2-qubit gate has a
quantum implementation cost of 1; and each symmetric gate
pattern (shown in Fig. 2) has a cost of 1.

Given a reversible function, the quantum logic synthe-
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Figure 2: Merged 2-qubit gates

sis problem is to synthesize the function using the above
elementary quantum logic gates with the minimum cost.
Various heuristic methods have been applied to find low
cost quantum implementations (using the elementary gates)
for the functionality of the Fredkin [21], Toffoli [20] and
Peres [18] gates. Yet, nobody has been able to prove that
they have the lowest cost implementation (based on the cost
evaluation criteria above).

We solve the quantum logic synthesis problem through
reachability analysis. Symbolic reachability analysis is a well
known technique in formal verification [14]. Its basic idea
is to find all the reachable states of a finite state machine
(FSM). Using a symbolic representation, we can check if an
invariant (property) is true for all reachable states. This
technique is used in invariant checking [14] where the state
space is traversed exhaustively against an invariant. We
use the state-of-the-art satisfiability (SAT) based bounded
model checking (BMC) [2] to check invariants. If the invari-
ant is false, it can automatically generate a counter-example.
We can find the shortest counter-example by starting with
a zero bound and gradually incrementing the bound. If the
invariant is true and enough time is given, this method can
also check that the bound is sufficiently large and establish
the proof. SAT based applications have been successfully
deployed in industry [4,11,22].

3. SYMBOLIC FORMULATION
We consider each “quantum wire” of the quantum cir-

cuit as a superposition of |1〉 and |0〉, denoted as 1 and 0,
respectively. We are interested in synthesizing quantum cir-
cuits with pure binary inputs (1 and 0). The values of these
signals (quantum wires) are modified after passing through
the elementary gates (Fig. 1). There are six possible out-
put values when we apply binary (1 and 0) inputs to one
of those elementary gates: 0, 1, V0, V1, V0

+, V1
+, where

V0 represents V(input) when input is 0, and similarly for
V1, V0

+, V1
+. These values are used as input values to gates

in subsequent stages. We want to synthesize our circuit such
that the inputs of XOR and NOT gates and the “control”
input of controlled-V and controlled-V + will always be pure
binary (0’s and 1’s), i.e., their input values cannot be V0,
etc. As shown in Section 2, given the above six possible val-
ues at the data input of the controlled-V or controlled-V +,
their corresponding data output has the same set of six pos-
sible values. Hence the input/output of every quantum gate
in the circuit can be represented using the above six values.
Since V and V + have a dual relationship (Section 2), we have
V0 = V1

+ and V1 = V0
+. Thus, it suffices to represent sig-

nals in the circuit using four values: 0, 1, V0, V1. In this way,
we reduce the problem of quantum circuit synthesis, (that
would normally use unitary matrices and Hilbert space to
represent signals), to a simpler synthesis problem in mixed
binary/quaternary algebra. This is a general approach to
efficiently synthesize a subclass of quantum circuits.

Suppose we intend to synthesize a n × n reversible func-
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Figure 3: L-2Syn problem

tion R, using the 2 qubit quantum gates as described in
Fig. 1 b,c,d. The synthesized result should be a cascade
of L stages. Each stage consists of one of the above quan-
tum gates. Since the function applies to n qubits, and the
quantum gates at each stage are 1-qubit or 2-qubit gates,
the synthesized result should indicate to which qubits the
gates are connected. For each stage i, we use gi to represent
the gate selection (Fig. 1 b,c,d), and we use Ai and Bi to
indicate the two qubits that the gate is connected to, i.e.,
Ai, Bi ∈ {1, . . . , n}. We require: Ai �= Bi. As shown in

Fig. 3, the input of stage i is �Ui, where �Ui = u1iu2i · · ·uni,
such that uqi ∈ {0, 1, V0, V1} for q = 1, . . . , n. The output

of stage i is �Ui+1.

uq(i+1) =

8>><
>>:

uAii ⊕ uqi (q = Bi) ∧ (g = ⊕)
V (uqi) (q = Bi) ∧ (g = ctl-V ) ∧ uAii

V +(uqi) (q = Bi) ∧ (g = ctl-V +) ∧ uAii

uqi Otherwise

The input values V0 and V1 are meaningful only at particu-
lar inputs of the controlled-V and controlled-V + gates. We
create a boolean signal Ei to represent whether the gate
has been erroneously configured with the V0 or V1 values in
the current (i-th) synthesis stage or any previous synthesis
stages: Ei+1 = Ei ∨ (uAii /∈ {0, 1}) ∨ ((gi = ⊕) ∧ (uBii /∈
{0, 1})). For better quantum cost, let us use a different gate
select Gi by adding the merged gates in Fig. 2:

(�Ui+1, Ei+1) = S(Gi, Ai, Bi, �Ui, Ei) (1)

Definition 1. (L-2Syn) The synthesis of reversible func-
tion R using 2 qubit gates in L stage cascade is to find
Gi, Ai, Bi, (where Ai �= Bi) such that E0 = EL = 0 and
�UL = R(�U0) for all boolean inputs of �U0. It is equivalent to:

∃G0∃A0∃B0 . . .∃GL−1∃AL−1∃BL−1 ·
 

L−1̂

i=0

Ai �= Bi

!
∧

“
∀�U0 ∈ {0, 1}n · (E0 = EL = 0) ∧ (�UL = R(�U0))

”
(2)

Note that E0 is not an input constant to the reversible logic
circuit.

Theorem 1. For any reversible function R that is real-
izable without inverters, its quantum logic implementation
with the minimum cost is equivalent to solving the L-2Syn
with the smallest L.

Proof. Each stage of the L-2Syn solution has a quantum
cost of 1. Thus the minimum quantum cost is L.

We can also modify the above formulation using 1-qubit
(inverters) and other 2-qubit gates.



G BA

M
1

M
2

M
2

n

. . . . . .

Zoom-in view of M
1

S

. . .

G A B

. . .

u
n

u
1

E

. . .

Figure 4: FSM for Reachability Analysis

4. REACHABILITY ANALYSIS
We construct a FSM shown in Fig. 4, use a bounded

model checker [2] for temporally unrolling the FSM upto a
specific bound, and invoke a SAT solver to find a counter-
example. The FSM will be initialized at time t = 0. We
use �µMht to denote the value of register vector u1, . . . , un of
machine Mh at time t, where h = 1, . . . , 2n. Similarly, we
use εMht to denote the value of register E of machine Mh at
time t. We assume: ∀t ≥ 0 (At �= Bt). From Fig. 4, we can
see that the next state is computed from the current state
and inputs through the combinational functional block S.
(�µMht+1, εMht+1) = S(Gt, At, Bt, �µMht, εMht) We initialize
the E register of every machine to 0 (FALSE): εMh0 = 0

for h = 1, . . . , 2n. We also initialize the �U registers of every
machine to their corresponding patterns in a truth table:
�µM10 = 0 . . . 0, . . . , �µM2n0 = 1 . . . 1. We check the non-
synthesizeability invariant: inv(t)

inv(t) = ¬
2n^

h=1

((�µMht = R(�µMh0)) ∧ (εMht = 0)) (3)

Theorem 2. The function R is synthesizeable if and only
if there exists a counter-example of inv(t) at time t = L.

Proof. The existence of a counter-example to inv(t) can
be re-written by the assumption and initial condition as:

∃G0∃A0∃B0 . . .∃GL∃AL∃BL ·
L̂

t=0

(At �= Bt) ∧

∀�Ut=0 ∈ {0, 1}n · (Et=0 = Et=L = 0) ∧ (�Ut=L = R(�Ut=0))

Observe that the registers (E and �U) in Fig. 4 depend only
on inputs of the previous time, making GLALBL redundant
in the above formula. Hence it is equivalent to (2).

Quantum logic synthesis is equivalent to finding a counter-
example to our formulation. By starting with a small bound
and gradually increasing the bound, we can find the short-
est counter-example, essentially the minimum cost quantum
implementation of the function R. If R is not synthesizeable,
the model checker will prove the invariant has no counter-
example (Theorem 2). Alternatively, we can use BDD [3]
based model checking [14] for the same purpose.

Our method works not only for reversible circuits, but
also for non-reversible circuits by adding input constants
(ancilla qubits) in order to convert a non-reversible logic

Table 1: Quantum cost of common circuits
Circuit Prior Our Optimum Time (sec)
Miller 7 6 Yes 318.29
Fredkin 5 5 Yes 78.02
Peres 4 4 Yes 35.18
Toffoli 5 5 Yes 122.52
Half-adder 6 4 Yes 6.77
Full-adder 12 6 Yes 7 hours
Full-adder 12 9 No 140.83

function into a reversible one [7, 17]. Input constants are
also needed in some reversible cases (e.g. [19]). We can add
k input constants to the original n × n circuit, making it a
(n + k) × (n + k) circuit with some minor changes, run it
through our model checker and see if we can get a counter-
example or a proof. If we get a proof, we can increment
k until we eventually get a counter-example (happens for
finite k [7]). A systematic way is to start with k = 1 and
gradually increment k until we reach a counter-example.

5. NON-OPTIMAL SYNTHESIS
Industrial experience [4] suggests that the complexity of

model checking is sensitive to the number of state retaining
elements in a FSM. For our FSM in Fig. 4, there are 2n×2n

boolean state variables. However, n tends to be small due
to physical limitations (the largest number [24] of qubits is
7). Nevertheless, we would like to speed up our synthesis
process.

Theorem 3. ∀R∀Q∃P R = Q◦P , where R, Q, P are all
n × n reversible functions, and ◦ is function composition.

Proof. Since Q is reversible, we have function Q−1 such
that Q ◦ Q−1 = I , where I is the identity function. Hence
there exists P = Q−1 ◦R, such that Q ◦ P = Q ◦ Q−1 ◦R =
I ◦ R = R

We devised a strategy to speed up the synthesis process
at the expense of a higher circuit cost. Given an n × n
reversible gate to synthesize, there are 2n cases to be enu-
merated. We pick one of the inputs, say the first input, and
consider only the cases where it is 0. Then we have 2n−1

cases. To perform reachability analysis, we construct the
same FSM as shown in Fig. 4, but check it with a differ-
ent invariant inv′(t). This new invariant inv′(t) checks that
R is accomplished for only half of all possible input pat-
terns (cases where the first input is 0). It is easier to find
a counter-example for this new invariant, because only half
of the cases has to be accomplished. We take a snap-shot
of all register states at the end of this counter-example, and
use it as the initial state of the FSM. We then run model
checker again with our original invariant inv(t). Since we
started from a state fairly close to R, it is easier to generate
a counter-example. According to Theorem 3, this method
guarantees to generate the counter-example if the function
that we want to synthesize is reversible.

6. EXPERIMENTS
We constructed our invariant checking formulations us-

ing NuSMV with BerkMin [8] on a 850MHz Pentium r©III
processor running Linux.
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Our results are summarized in Table 1. The “Prior” and
“Our” columns indicate the best published quantum cost
in previous literature and our synthesized quantum cost re-
spectively. Our result for Miller’s gate [15] is (cost=6) bet-
ter than prior result (cost=7) [15, 25]. For the Fredkin [7],
Peres [18] and Toffoli [1, 20] gates, our synthesized results
have the same quantum costs as reported in prior litera-
ture [21, 25]. But nobody was able to show that the cost
was minimum until now. In the past, people have been syn-
thesizing the 2-bit adder using a Toffoli gate and an XOR
gate (total cost of 6) [6, 9]. Our method proved that the
minimum quantum cost is actually 4, as shown in Fig. 6.

Recent papers [13,16] used two Toffoli gates and two Feyn-
man gates to implement a full-adder (cost=12). We proved
that the minimum quantum cost for a full-adder is 6, shown
in Fig. 7. To shorten the CPU runtime, we used a two-
stage strategy (Section 5), and obtained a cost of 9 (Fig. 8).
The CPU runtime is significantly reduced (from 7 hours to
140.83 seconds). Notice that the cost of this implementation
can be reduced to 8 if we choose to omit the “propagate”
logic (the last XOR gate).

We have also tried BDD based model checking [14], but
the computation depends largely on variable ordering [10].
It is not as efficient as SAT based model checking.

7. CONCLUSION
We applied invariant checking, a formal verification tech-

nique, to the synthesis of quantum logic circuits. We re-
duced problems in quantum logic synthesis to those of multiple-
valued logic synthesis, thus simplifying the search space and
algorithm complexity. We created an optimal synthesis method
and a speedup method with non-optimal quantum cost. Both
our methods are guaranteed to synthesize the circuit. Our
optimal synthesis method created minimum cost quantum
circuits for Miller’s gate, half-adder, and full-adder, which
are better than previous results. We also proved the mini-
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Figure 8: Full-adder with quantum cost = 9

mum quantum cost (using our elementary quantum gates)
for Fredkin, Peres, and Toffoli gates. Our work is the first
successful application of satisfiability with formal methods
in quantum logic synthesis.
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