
Fast Synthesis of Exact Minimal Reversible Circuits using Group Theory

Guowu Yang, Xiaoyu Song, William N.N. Hung, and Marek A. Perkowski

Dept. Electrical & Computer Engineering, Portland State University, Portland, OR, USA.

Abstract - We present fast algorithms to synthesize exact
minimal reversible circuits for various types of gates and costs.
By reducing reversible logic synthesis problems to group theory
problems, we use the powerful algebraic software GAP to solve
such problems. Our algorithms are not only able to minimize
for arbitrary cost functions of gates, but also orders of
magnitude faster than the existing approaches to reversible
logic synthesis. In addition, we show that the Peres gate is a
better choice than the standard Toffoli gate in libraries of
universal reversible gates.

I. Introduction

There has been recently much research effort on
developing algorithms for synthesis of reversible circuits
[1-5]. The previous approaches are either not optimal, time
consuming or cannot be applied to 4 qubit circuits. It has
been known that any 3-bit reversible gate can be synthesized
using the CNT gate library [1]. In [11], an optimal approach
was proposed for synthesizing 3-bit reversible gates with an
average of 5.63 gates.

Group theory has been demonstrated as a powerful tool
for analysis in many applications. Few preliminary works on
using group theory for reversible logic synthesis have been
proposed [2, 5]. GAP [8] is a mathematical analysis package
for group theory applications. It is composed of a set of
efficient and fast algorithms for manipulating set and group
operations. It was used to prove the universality of a given
reversible logic sets [5, 10].

In this paper, we describe fast GAP-based algorithms to
synthesize exact minimal reversible circuits for various
types of gates with various gate costs. By reducing the
reversible logic synthesis problems to the group theory
problems, we are able to use the power of algebraic software
GAP which is especially efficient for solving group theory
problems. We are able to minimize reversible circuits for
arbitrary gate cost circuits. Our algorithms are orders of
magnitude faster than the existing approaches to reversible
logic synthesis. In addition, we show that the Peres gate is a
better choice than the standard Toffoli gate in the libraries of
universal reversible gates. As an important feature, our
approach can handle gates in libraries with arbitrary
gate-dependent costs.

II. Background

DEFINITION 1: Let B = {0, 1}. A Boolean logic circuit f
with w input variables, B1, …, Bw, and w output variables, P1,
…, Pw, is a function f: Bw → Bw, where (B1, …, Bw) ∈Bw is the
input vector and (P1, …, Pw) ∈Bw is the output vector. A
Boolean logic circuit f is reversible if it is a one-to-one, onto

function (bijection). A Boolean reversible logic circuit with w
inputs and w outputs is also called a w×w reversible gate.

DEFINITION 2: Let M = {1, 2, …, n}. A bijection
(one-to-one, and onto mapping) of M onto itself is called a
permutation on M. The set of all permutations on M forms a
group [7], under composition of mappings, called a
symmetric group on M, denoted by Sn [6]. If M is a set of all
2w binary vectors with length w, the symmetric group on M is
denoted by

wS2
.

We write a permutation as a product of disjoint cycles [6].
The identity mapping “()” (direct wiring) is called the unity
element in a permutation group. As a convention, a product
a*b of two permutations a and b means applying mapping a
before b, which corresponds to cascading a and b.

To establish a one-to-one correspondence between a
reversible circuit and a permutation, we encode a w-bit
binary input (output) vector [Bw,Bw-1,…,B1]2 as a unique
integer value
index([Bw,Bw-1,…,B1]2)=B1+B2⋅21+B3⋅22+…+Bw⋅2w-1+1. In
this formula for index, we added a “1” so that M begins from
one, instead of zero. This will conform to normal
permutation group references. Hence:
[Bw,Bw-1,…,B1]2= index([Bw,Bw-1,…,B1]2)-1.
Using the integer coding, we consider a permutation as a
bijection function f: {1, 2, ..., 2w} → {1, 2, ... , 2w}.
Cascading two gates is equivalent to multiplying two
permutations. In what follows, we will not distinguish a
w×w reversible circuit from a permutation. If A and B are
subsets of a symmetric group, then A*B is defined as {a*b |
a∈A∧b∈ B}. Let |S| be the size of S.

DEFINITION 3: w_library is the set of w×w reversible
gates which are used to synthesize w×w reversible gates,
denoted as w_L, or simply as L. We use T(L) to denote a set of
all w×w reversible gates that can be synthesized using gates
from library L.

DEFINITION 4: A minimum length minl(a) of any
element a in T(L) means that there exist minl(a) gates in L
(the gates can be same) such that a is a cascade of these
minl(a) gates, and there does not exist k gates in L such that k
< minl(a) and a is a cascading of these k gates. A minimum
length of T(L) refers to the maximum value of all minimum
lengths in T(L), denoted as maxl(T(L)) or simply as maxl(T).
We define T_k = {a | a ∈T(L) ∧ minl(a) = k}, the set of all
elements in T(L) with a minimum length k.

DEFINITION 5: A synthesis of a reversible circuit g
means that there are n gates in library L such that g is the
cascading of these n gates. The cost of the circuit refers to the
sum of the costs of these n gates. The minimum cost Minc(g)
means that there exists a realization of g with cost Minc(g),
and there does not exist a realization with cost less than

 1002

PI-18

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

Minc(g). A minimum cost synthesis of g is the synthesis with
cost Minc(g).

III. Algorithms

This section presents four algorithms for reversible logic

synthesis. The first and second algorithms deal with minimal
length problems. Some papers discussed these problems.
Miller et al [4] produced some near-optimal results. Shende
at al [11] gave optimal results using group theory. Our first
two algorithms are similar to [11], but these algorithms were
realized in GAP, and had a faster speed. The third and fourth
algorithms deal with minimal cost problems, which is more
reasonable in practice because the gates have different costs.

3.1 Minimal length Algorithms

Given a library L, The first algorithm will answer the
following questions: What is the maximum length of T(L)?
How many gates have the minimum length k? And what are
these gates?

Let A(k) and B(k) denote the sets of gates, and let n(k) be
the size of B(k), k ≥ 0. Starting from the identity gate, we
perform the permutation multiplication with library. A(0)=
{()}, A(1)=A(0)∪Α(0)∗L. For step j, we have A(j), the set
of circuits with length no more than j (Lemma 1). The next
step is to perform: A(j+1)= A(j)∪A(j)*L, where A(j) ⊆
A(j+1), until a fix-point is reached. A detailed description is
given as follows.
Algorithm Finding_Minimum_Length (FML):
Input: Library L.
Output: j, n(1), … n(j), B(1), …, B(j), A(j).

1. A(0)={()}; G=Group(L);
2. while n(j)≠0 do
3. j=j+1;
4. A(j)=A(j-1)∪A(j-1)*L;
5. B(j)=A(j) - A(j-1);
6. n(j)=|B(j)|;
7. end while.

Lemma 1[13]: A(k) = {a | a ∈ T(L)∧minl(a) ≤ k}.
Theorem 1[13]:
(1): Algorithm FML will halt in a finite number of steps.
(2): A(j) = T(L), j = maxl(T), B(k) = T_k, n(k) = | T_k |.

Given a library L and an arbitrary reversible gate g, the
following algorithm determines whether g can be
synthesized by using gates from L. If yes, the algorithm will
output k gates L[ck] ,…, L[c1] in L such that g =
L[c1]*…*L[ck], and k = minl(g). Set A(0) = {()}. L[ci] refers
to the ci-th element in L. (L[ci])-1 is the inverse of L[ci]. In
the second algorithm, sets A(1), .., A(j) have the same
meaning in Algorithm FML.
Algorithm Minimum_Length_Representation (MLR):
Input: Library L, g.
Output: Implementation of g with minimum length k.

1. G=Group(L); flag=0; a = g;
2. if g in G then
3. flag=1;
4. compute A(k) (k=0,1,..) as FML;
5. if g in A(k) then

6. for i=k downto 1 do
7. find ci such that a*(L[ci])-1∈A(i-1);
8. a = a*(L[ci])-1;
9. endfor;
10. endif;
11. endif;
12. return flag, L[ck] ,…, L[c1], k;

Theorem 2[13]:
(1) In algorithm MLR, if flag=0, then gate g can not be
synthesized using gates from library L.
(2) If algorithm MLR returns flag=1, L[ck] ,…, L[c1], then g
= L[c1]*…*L[ck], minl(g) = k.

3.2 Minimal Cost Algorithms

In practice, the costs of NOT gates, Feynman gates
(called also the Controlled_NOT gates) and other
well-known gates are different (for instance, minimum costs
for NMR realization technology of quantum gates are given
in [12]). For instance, a 3*3 reversible gate can be
implemented by quantum gates: 1-qubit NOT gate, 2-qubit
Feynman gate, Controlled_V gates and Controlled_V+
(Hermitian) gate. The cost of a 2-qubit gate is much larger
than that of a 1-qubit gate. Thus, we approximately ignore
the cost of NOT gates and assume the cost of a 2-qubit gate
is equal to 1. The cost of a reversible gate is measured by the
number of the 2-qubit gates in its optimal implementation of
quantum gates. As a result, for 3*3 reversible gates, we can
have a reasonable approximation for the gate costs: cost
(NOT)=0, cost(Feynman)=1, cost(Peres)=4 (see Fig.1),
cost(Toffoli)=5 (see Fig.2) and cost(Fredkin)=5. Because of
the different costs of the gates in a library, we cannot equally
deal with each gate in the library. In the following, we
present two algorithms to find and to represent the
implementation with minimum cost in any given library. If
in future new costs will be calculated for some quantum
realization technology other than NMR [15], we can easily
adapt these costs to our CAD tools for quantum synthesis.

 Fig. 1: Peres gate Pe12 Fig. 2: Toffoli gate To1

Generally, assume a library L includes p+1 parts: L0 =
{gates with cost 0} (It always contains a direct wiring, i.e.,
identity gate), and Lri = {gates with cost ri}, where ri > 0 are
different integers, i = 1, …, p. These two algorithms can be
run with arbitrary values of costs of gates. This is practically
important, since for instance it is known that costs of the
same gates in quantum NMR realization, optical realization
and ion trapped realization can differ considerably from one
and another and ratios of costs of the same gates vary
significantly between the technologies.

The following algorithm gives the number n(k) of the
reversible gates with the minimum cost k and the set B(k) of

V V V+

B3

B2

B1

P3

P2

P1

V V V+

B3

B2

B1

P3

P2

P1

 1003

these gates. Set A(k) is the set of circuits with cost no more
than k. A(k) and B(k) are computed as follows:
A(0)=Group(L0) (All zero cost circuits),
LriN=Lri*A(0), i=1,…p,
A(j)=A(j-1)∪Α(j-r1)∗Lr1N∪...∪Α(j-rp)∗LrpN (if j-ri<0, then
we do not need to union the product Α(j-ri)∗LriN), j=1,2,….
B(0)=A(0), B(j)=A(j)-A(j-1).
Algorithm Finding_Minimum_Cost (FMC):
Input: L0, Lr1, …, Lrp, r1, …, rp;
Output: j, n(0), n(1), …, n(j), B(0), B(1), …, B(j), A(j).

1. G = Group(L); m = |G|;
2. A(0) = Group(L0); B(0) = A(0);
3. for 1≤ i ≤ p do LriN= {(), Lri}*B(0);
4. j= 1; ma = |A(0)|;
5. while (ma<m) do
6. j=j+1; A(j)=A(j-1);
7. for 1≤ i ≤ p do
8. if (j-ri ≥ 0) then A(j) = A(j) ∪A(j-ri)*LriN;
9. endfor;
10. ma = |A(j)|; B(j) = A(j) - A(j-1); n(j)=|B(j)|;
11. endwhile;

Lemma 2[13]: A(k) = {a | a∈T(L), Minc(a) ≤ k } 0≤ k≤ j.
Theorem 3[13]: Sets A(k) created in algorithm FMC, k = 0,
1, …, j, are the sets of all gates in L(T) with the minimum
cost of k, and n(k) = |B(k)|. And A(j) = T(L)=G.

We use the following algorithm to realize a reversible logic
circuit g with the minimum cost. The idea is similar to MLR.
Algorithm Minimum_Cost_Representation (MCR):
Input: L0, Lr1, …, Lrp, r1, …, rp; g.
Output: Implementation of g with minimum cost k.

1. G=Group(L); flag=0; a = g;
2. if g in G then
3. flag=1;
4. compute A(k) (k=0,1,..) as FMC;
5. if g in A(k) then
6. h=0;
7. while (k>0) do
8. scan i=1 to p until find s, t such that

a*(Lri[m]*B(0)[n])-1 is in A(k-ri) then
9. h=h+1; c[h]= Lri[m]; b(h)= B(0)[n];
10. a = a*(Lri[m]*B(0)[n])-1 ; k=k-ri;
11. endwhile;
12. endif;
13. endif;
14. return flag, h, b[1], c[1], …b[h], c[h], a, k;

Theorem 4[13]: The minimum cost realization of reversible
circuit g is g = a*(c[h]*b[h])*…*(c[1]*b[1]), where a, b[1],
…, b[h] can be realized by L0 in terms of algorithm MLR.
And the minimum cost of g is k.

IV. Experiments

We present some experiments on 3-qubit synthesis. All
experiments are running on an 850MHz Pentium® III
computer.

We first introduce some libraries and then give the
experimental results. In the following, we give some

permutations of the well-known 3*3 Feynman gates and
NOT gates. We use ⊕ to denote XOR.

Feyman gates: Fe12: P3=B3, P2=B2, P1=B1⊕B2.
Table 1: Permutation of Feynman gate Fe12

Inputs Outputs
B3 B2 B1 index P3 P2 P1 index
0 0 0 1 0 0 0 1
0 0 1 2 0 0 1 2
0 1 0 3 0 1 1 4
0 1 1 4 0 1 0 3
1 0 0 5 1 0 0 5
1 0 1 6 1 0 1 6
1 1 0 7 1 1 1 8
1 1 1 8 1 1 0 7

Fe12=(3,4)(7,8),
Similarly, we have Fe13=(5,6)(7,8), Fe21=(2,4)(6,8),
Fe23=(5,7)(6,8), Fe31=(2,6)(4,8), Fe32=(3,7)(4,8).
NOT gates: N1: P3=B3, P2=B2, P1=B1’ (inverter of B1).
N1=(1,2)(3,4)(5,6)(7,8), N2=(1,3)(2,4)(3,7)(4,8),
N3=(1,5)(2,6)(3,7)(4,8).
3_NFT (or 3_CNT) library: this library includes 3 NOT
gates, 6 Feynman gates, and 3 Toffoli gates.
To1 = (7,8), i.e., P3=B3, P2=B2, P1=B1⊕B2B3,
To2 = (6,8), To3 = (4,8).
3_NFP library: this library includes 3 NOT gates, 6
Feynman gates, and 6 Peres gates. One example of Peres
gate is shown in Fig.1. According to Fig.1, we have
Pe12=(5,7,6,8), i.e., P3=B3, P2=B2⊕B3, P1=B1⊕B2B3,
Similarly, we have
Pe13=(3,7,4,8), Pe12=(5,6,7,8), Pe31=(3,4,7,8),
Pe23=(2,6,4,8), Pe32=(2,4,6,8).
3_NFFr library: this library includes 3 NOT gates, 6
Feynman gates, and 3 Fredkin gates.
Fr1 = (4,6), P3=B1’B3+B1B2, P2=B1’B2+B1B3, P1=B1,
Fr2 = (4,7), Fr3 = (6,7).

We implemented the above algorithms using GAP. We
then supplied all 40320 possible 3-bit reversible gates as
specifications to be synthesized by our algorithms. Our
algorithms synthesized all these 40320 gates in very short
time (see Table 2, 3 and 4). Time is measured in seconds.

Table 2: Time of number of gates with minimal
length k in different papers

NFT
Lib.

[4] 750MHz

Pentium III

Non-optimal solution

[7] 2GHz

Pentium IV

optimal solution

We: 850MHz

Pentium III

optimal solution

Time 20 40 12

Table 3 presents results for various gate libraries: NFT,
NFP, NFFr, NFPT (NOT, Feynman, Peres, Toffoli), NFTFr
(NOT, Feynman, Toffoli, Fredkin) and NFPFr (NOT,
Feynman, Peres, Fredkin). The parameter “aver.” means the
average minimum length. Observe that NFP is a winner in
the category of three-gate libraries and NFPFr in the
category of four-gate libraries. Cascades with Peres gates are
shorter both on average and for the most complex circuits.
We proved here that every 3-qubit circuit can be realized
with at most 6 gates: NOT, Feynman and Peres. Our design

 1004

times are better than those reported in the previous work.
Table 3: Number of gates with minimum length k

Mini-
length

NFT NFP NFFr NFPT NFTFr NFPFr

0 1 1 1 1 1 1
1 12 15 12 18 15 18
2 102 174 101 228 143 248
3 625 1528 676 1993 1006 2356
4 2780 8968 3413 10503 5021 12797
5 8921 23534 11378 23204 15083 22794
6 17049 6100 17970 4373 17261 2106
7 10253 0 6739 0 1790 0
8 577 0 30 0 0 0

Total 40320 40320 40320 40320 40320 40320
Aver. 5.87 4.84 5.66 4.73 5.33 4.60
maxl 8 6 8 6 7 6
Time 12 10 13 10 12 11

It can be also seen in Tables 3 and 4 that all libraries that

include Peres gate lead to cheaper circuits than those that do
not include such gate (Aver. means the average minimum
cost, and we assume that cost of NOT gate = 0, cost of
Feynman gate = 1, cost of Toffoli gate = 5, cost of Peres gate
= 4, and cost of Fredkin gate = 5). Peres gate is a better
choice in a universal library than a popularly used Toffoli
gate. Not only is the gate cheaper in quantum realization, but
on average circuits have a smaller number of gates and have
smaller total costs when Peres gates are used instead of
Toffoli gates.

Table 4: Number of circuits with minimum cost k

Mini-cost NFT NFP NFFr NFPT NFTFr NFPFr

0 8 8 8 8 8 8
1 48 48 48 48 48 48
2 192 192 192 192 192 192
3 408 408 408 408 408 408
4 480 672 480 672 480 672
5 288 1248 288 1248 384 1344
6 592 3184 880 3184 1072 3568
7 2016 4320 3008 4320 3104 3968
8 4128 3552 3904 3552 3808 3424
9 2496 11520 1440 11520 1248 11520

10 672 4416 416 4416 1856 4416
11 2880 0 4608 0 6720 0
12 7488 9856 10432 9856 7552 9856
13 7488 896 3456 896 2688 896
14 384 0 0 0 0 0
15 1600 0 0 0 6784 0
16 5568 0 4608 0 3840 0
17 3584 0 6144 0 128 0

Aver. 11.98 9.08 11.87 9.08 11.38 9.06
Time 112 111 123 126 159 126

From the library NFP and NFPT in Table 4, we know

that any 3*3 reversible circuits can be realized by no more

than 13 2-qubit control and XOR quantum gates and some
1-qubit NOT gates. Therefore, the maximum cost of any 3*3
reversible circuits is no more than 13.

V. Summary and Conclusions

By reducing the reversible circuit synthesis problem to
group theory representation and using group-theory
algebraic software GAP, we were able to synthesize exact
3-qubit circuits with the minimum numbers of gates from
various libraries. Our approach synthesizes minimum-cost
circuits from libraries of gates with arbitrary costs. We
showed that a Peres gate is better than the Toffoli gate that is
used by practically every research paper. We demonstrated
on several examples and in an exhaustive analysis the
importance and usefulness of the Peres gate. It is the
cheapest gate in NMR quantum realization [12]. Using the
library containing the Peres gate, we can have circuits with a
smaller number of gates with a less cost. As a result, there
are no more reasons to use Toffoli gates in practical NMR
designs.

VI. References

[1] T. Toffoli, Reversible computing, Tech. Memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.
[2] A. De Vos, B. Raa and L. Storme, “Generating the group of
reversible logic gates,” Journal of Physics A: Mathematical and
General, 35, (2002), pages 7063–7078.
[3] M. Perkowski, M. Lukac, M. Pivtoraiko, P. Kerntopf, M.
Folgheraiter, “A hierarchical approach to computer aided design of
quantum circuits,” 6th International Symposium on Representations
and Methodology of Future Computing Technology, pp. 201-209,
Trier, Germany, March 2003.
[4] D. M. Miller, D. Maslov and G. W. Dueck, “A transformation
based algorithm for reversible logic synthesis,” Proceedings of
DAC, pp. 318-323, Anaheim, Cal, USA, June 2003.
[5] L. Storme et al, “Group theoretical aspects of reversible logic
gates,” Journal of Universal Computer Science, 5 (1999), pp.
307-321.
[6] J. D. Dixon, and B. Mortimer, Permutation Groups, Springer,
New York, 1996.
[7] M. I. Kargapolov, and Ju. I. Merzljakov, Fundamentals of the
Theory of Groups, Springer-Verlag, New York, 1979.
[8] M. Schonert et.al, GAP-Group, Algorithms, and Programming,
Lehrstuhl D fur Mathematik, Rheinisch Westfalische Technische
Hochschule, Aachen, Germany, fifth, 1995.
[9] J. A. Smolin, and D. P. DiVincenzo, “Five two-bit quantum
gates are sufficient to implement the quantum Fredkin gate,”
Physical Review A, 53 (1996), pp. 2855-2856.
[10] G. Yang, W. N. N. Hung, X. Song, and M. Perkowski.
“Majority-based reversible logic gate”, 6th International
Symposium on Representations and Methodology of Future
Computing Technology, pp. 191-200, Trier, Germany, March 2003.
[11] V.V. Shende, A.K. Prasad, I.L.Markov, and J.P. Hayes,
“Synthesis of Reversible Logic Circuits”, IEEE Trans. on
Computer Aided Design of Integrated Circuits and Systems, Vol. 22,
No. 6, June 2003, pp. 710-723.
[12] S. Lee, J.-S. Lee, T. Kim., S.-J. Lee, J. Biamonte, and M.
Perkowski, “The Cost of quantum gate Primitives”, submitted to
MVL Journal, 2004.
[13]: Technical report, Portland State University.

 1005

