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Abstract - We present fast algorithms to synthesize exact 
minimal reversible circuits for various types of gates and costs. 
By reducing reversible logic synthesis problems to group theory 
problems, we use the powerful algebraic software GAP to solve 
such problems.  Our algorithms are not only able to minimize 
for arbitrary cost functions of gates, but also orders of 
magnitude faster than the existing approaches to reversible 
logic synthesis. In addition, we show that the Peres gate is a 
better choice than the standard Toffoli gate in libraries of 
universal reversible gates. 
 

I. Introduction 
 

There has been recently much research effort on 
developing algorithms for synthesis of reversible circuits 
[1-5]. The previous approaches are either not optimal, time 
consuming or cannot be applied to 4 qubit circuits. It has 
been known that any 3-bit reversible gate can be synthesized 
using the CNT gate library [1]. In [11], an optimal approach 
was proposed for synthesizing 3-bit reversible gates with an 
average of 5.63 gates.  

Group theory has been demonstrated as a powerful tool 
for analysis in many applications. Few preliminary works on 
using group theory for reversible logic synthesis have been 
proposed [2, 5]. GAP [8] is a mathematical analysis package 
for group theory applications. It is composed of a set of 
efficient and fast algorithms for manipulating set and group 
operations. It was used to prove the universality of a given 
reversible logic sets [5, 10]. 

In this paper, we describe fast GAP-based algorithms to 
synthesize exact minimal reversible circuits for various 
types of gates with various gate costs. By reducing the 
reversible logic synthesis problems to the group theory 
problems, we are able to use the power of algebraic software 
GAP which is especially efficient for solving group theory 
problems.  We are able to minimize reversible circuits for 
arbitrary gate cost circuits. Our algorithms are orders of 
magnitude faster than the existing approaches to reversible 
logic synthesis. In addition, we show that the Peres gate is a 
better choice than the standard Toffoli gate in the libraries of 
universal reversible gates. As an important feature, our 
approach can handle gates in libraries with arbitrary 
gate-dependent costs. 
 

II. Background 
 

DEFINITION 1: Let B = {0, 1}. A Boolean logic circuit f 
with w input variables, B1, …, Bw, and w output variables, P1, 
…, Pw, is a function f: Bw → Bw, where (B1, …, Bw) ∈Bw is the 
input vector and (P1, …, Pw) ∈Bw is the output vector. A 
Boolean logic circuit f is reversible if it is a one-to-one, onto 

function (bijection). A Boolean reversible logic circuit with w 
inputs and w outputs is also called a w×w reversible gate. 

DEFINITION 2: Let M = {1, 2, …, n}. A bijection 
(one-to-one, and onto mapping) of M onto itself is called a 
permutation on M. The set of all permutations on M forms a 
group [7], under composition of mappings, called a 
symmetric group on M, denoted by Sn [6]. If M is a set of all 
2w binary vectors with length w, the symmetric group on M is 
denoted by

wS2
.  

We write a permutation as a product of disjoint cycles [6]. 
The identity mapping “( )” (direct wiring) is called the unity 
element in a permutation group. As a convention, a product 
a*b of two permutations a and b means applying mapping a 
before b, which corresponds to cascading a and b. 

To establish a one-to-one correspondence between a 
reversible circuit and a permutation, we encode a w-bit 
binary input (output) vector [Bw,Bw-1,…,B1]2 as a unique 
integer value  
index([Bw,Bw-1,…,B1]2)=B1+B2⋅21+B3⋅22+…+Bw⋅2w-1+1. In 
this formula for index, we added a “1” so that M begins from 
one, instead of zero. This will conform to normal 
permutation group references. Hence:  
[Bw,Bw-1,…,B1]2= index([Bw,Bw-1,…,B1]2)-1. 
Using the integer coding, we consider a permutation as a 
bijection function f: {1, 2, ..., 2w} → {1, 2, ... , 2w}. 
Cascading two gates is equivalent to multiplying two 
permutations.  In what follows, we will not distinguish a 
w×w reversible circuit from a permutation. If A and B are 
subsets of a symmetric group, then A*B is defined as {a*b | 
a∈A∧b∈ B}. Let |S| be the size of S. 

DEFINITION 3: w_library is the set of w×w reversible 
gates which are used to synthesize w×w reversible gates, 
denoted as w_L, or simply as L. We use T(L) to denote a set of 
all w×w reversible gates that can be synthesized using gates 
from library  L. 

DEFINITION 4: A minimum length minl(a) of any 
element a in T(L) means that there exist minl(a) gates in L 
(the gates can be same) such that a is a cascade of these 
minl(a) gates, and there does not exist k gates in L such that k 
< minl(a) and a is a cascading of these k gates. A minimum 
length of T(L) refers to the maximum value of all minimum 
lengths in T(L), denoted as maxl(T(L)) or simply as maxl(T). 
We define T_k = {a | a ∈T(L) ∧ minl(a) = k}, the set of all 
elements in T(L) with a minimum length k. 

DEFINITION 5: A synthesis of a reversible circuit g 
means that there are n gates in library L such that g is the 
cascading of these n gates. The cost of the circuit refers to the 
sum of the costs of these n gates. The minimum cost Minc(g) 
means that there exists a realization of g with cost Minc(g), 
and there does not exist a realization with cost less than 
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Minc(g). A minimum cost synthesis of g is the synthesis with 
cost Minc(g). 

 
III. Algorithms 

 
This section presents four algorithms for reversible logic 

synthesis. The first and second algorithms deal with minimal 
length problems. Some papers discussed these problems. 
Miller et al [4] produced some near-optimal results.  Shende 
at al [11] gave optimal results using group theory. Our first 
two algorithms are similar to [11], but these algorithms were 
realized in GAP, and had a faster speed. The third and fourth 
algorithms deal with minimal cost problems, which is more 
reasonable in practice because the gates have different costs. 
 
3.1 Minimal length Algorithms 

Given a library L, The first algorithm will answer the 
following questions: What is the maximum length of T(L)? 
How many gates have the minimum length k? And what are 
these gates? 

Let A(k) and B(k) denote the sets of gates, and let n(k) be 
the size of B(k), k ≥ 0. Starting from the identity gate, we 
perform the permutation multiplication with library. A(0)= 
{( )}, A(1)=A(0)∪Α(0)∗L. For step j, we have A(j), the set 
of circuits with length no more than j (Lemma 1). The next 
step is to perform: A(j+1)= A(j)∪A(j)*L, where A(j) ⊆ 
A(j+1), until a fix-point is reached. A detailed description is 
given as follows. 
Algorithm Finding_Minimum_Length (FML): 
Input: Library L. 
Output: j, n(1), … n(j), B(1), …, B(j), A(j).   

1. A(0)={( )}; G=Group(L);  
2. while n(j)≠0 do 
3.    j=j+1; 
4.    A(j)=A(j-1)∪A(j-1)*L; 
5.    B(j)=A(j) - A(j-1); 
6.    n(j)=|B(j)|; 
7. end while. 

Lemma 1[13]: A(k) = {a | a ∈ T(L)∧minl(a) ≤ k}. 
Theorem 1[13]: 
(1): Algorithm FML will halt in a finite number of steps. 
(2): A(j) = T(L), j = maxl(T), B(k) = T_k, n(k) = | T_k |. 

Given a library L and an arbitrary reversible gate g, the 
following algorithm determines whether g can be 
synthesized by using gates from L. If yes, the algorithm will 
output k gates L[ck] ,…, L[c1] in L such that g = 
L[c1]*…*L[ck], and k = minl(g). Set A(0) = {( )}. L[ci] refers 
to the ci-th element in L.  (L[ci])-1 is the inverse of L[ci]. In 
the second algorithm, sets A(1), .., A(j) have the same 
meaning in Algorithm FML.  
Algorithm Minimum_Length_Representation (MLR): 
Input:  Library L, g.  
Output: Implementation of g with minimum length k. 

1. G=Group(L); flag=0; a = g; 
2. if g in G then  
3.     flag=1;  
4.     compute A(k) (k=0,1,..) as FML; 
5.     if g in A(k) then 

6.        for i=k downto 1 do 
7.           find ci such that a*(L[ci])-1∈A(i-1); 
8.           a = a*(L[ci])-1; 
9.        endfor; 
10.    endif; 
11. endif;   
12. return flag, L[ck] ,…, L[c1], k;  

Theorem 2[13]:  
(1) In algorithm MLR, if flag=0, then gate g can not be 
synthesized using gates from library L.  
(2) If algorithm MLR returns flag=1, L[ck] ,…, L[c1], then g 
= L[c1]*…*L[ck], minl(g) = k. 
 
3.2 Minimal Cost Algorithms 

In practice, the costs of NOT gates, Feynman gates 
(called also the Controlled_NOT gates) and other 
well-known gates are different (for instance, minimum costs 
for NMR realization technology of quantum gates are given 
in [12]). For instance, a 3*3 reversible gate can be 
implemented by quantum gates: 1-qubit NOT gate, 2-qubit 
Feynman gate, Controlled_V gates and Controlled_V+ 
(Hermitian) gate. The cost of a 2-qubit gate is much larger 
than that of a 1-qubit gate. Thus, we approximately ignore 
the cost of NOT gates and assume the cost of a 2-qubit gate 
is equal to 1. The cost of a reversible gate is measured by the 
number of the 2-qubit gates in its optimal implementation of 
quantum gates. As a result, for 3*3 reversible gates, we can 
have a reasonable approximation for the gate costs: cost 
(NOT)=0, cost(Feynman)=1, cost(Peres)=4 (see Fig.1), 
cost(Toffoli)=5 (see Fig.2) and cost(Fredkin)=5. Because of 
the different costs of the gates in a library, we cannot equally 
deal with each gate in the library. In the following, we 
present two algorithms to find and to represent the 
implementation with minimum cost in any given library. If 
in future new costs will be calculated for some quantum 
realization technology other than NMR [15], we can easily 
adapt these costs to our CAD tools for quantum synthesis. 

 
   Fig. 1: Peres gate Pe12          Fig. 2: Toffoli gate To1  

Generally, assume a library L includes p+1 parts: L0 = 
{gates with cost 0} (It always contains a direct wiring, i.e., 
identity gate), and Lri = {gates with cost ri}, where ri > 0 are 
different integers, i = 1, …, p. These two algorithms can be 
run with arbitrary values of costs of gates. This is practically 
important, since for instance it is known that costs of the 
same gates in quantum NMR realization, optical realization 
and ion trapped realization can differ considerably from one 
and another and ratios of costs of the same gates vary 
significantly between the technologies.  

The following algorithm gives the number n(k) of the 
reversible gates with the minimum cost k and the set B(k) of 
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these gates. Set A(k) is the set of circuits with cost no more 
than k.  A(k) and B(k) are computed as follows: 
A(0)=Group(L0) (All zero cost circuits),  
LriN=Lri*A(0), i=1,…p,  
A(j)=A(j-1)∪Α(j-r1)∗Lr1N∪...∪Α(j-rp)∗LrpN (if j-ri<0, then 
we do not need to union the product Α(j-ri)∗LriN), j=1,2,…. 
B(0)=A(0), B(j)=A(j)-A(j-1). 
Algorithm Finding_Minimum_Cost (FMC): 
Input: L0, Lr1, …, Lrp, r1, …, rp; 
Output: j, n(0), n(1), …, n(j), B(0), B(1), …, B(j), A(j). 

1. G = Group(L); m = |G|; 
2. A(0) = Group(L0); B(0) = A(0); 
3. for 1≤ i ≤ p do LriN= {(), Lri}*B(0); 
4. j= 1; ma = |A(0)|; 
5. while (ma<m) do 
6.   j=j+1; A(j)=A(j-1); 
7.   for 1≤ i ≤ p do 
8.     if (j-ri  ≥ 0) then  A(j) = A(j) ∪A(j-ri)*LriN; 
9.    endfor; 
10.   ma = |A(j)|; B(j) = A(j) - A(j-1); n(j)=|B(j)|; 
11. endwhile; 

Lemma 2[13]: A(k) = {a | a∈T(L), Minc(a) ≤ k } 0≤ k≤ j. 
Theorem 3[13]: Sets A(k) created in algorithm FMC, k = 0, 
1, …, j, are the sets of all gates in L(T) with the minimum 
cost of k, and n(k) = |B(k)|. And A(j) = T(L)=G. 
 
We use the following algorithm to realize a reversible logic 
circuit g with the minimum cost. The idea is similar to MLR. 
Algorithm Minimum_Cost_Representation (MCR): 
Input:  L0, Lr1, …, Lrp, r1, …, rp; g.  
Output: Implementation of g with minimum cost k. 

1. G=Group(L); flag=0; a = g; 
2. if g in G then 
3.    flag=1;  
4.    compute A(k) (k=0,1,..) as FMC; 
5.    if g in A(k) then 
6.       h=0; 
7.       while (k>0) do 
8.         scan i=1 to p until find s, t such that          

a*(Lri[m]*B(0)[n])-1  is in A(k-ri) then 
9.         h=h+1; c[h]= Lri[m]; b(h)= B(0)[n]; 
10.         a = a*(Lri[m]*B(0)[n])-1 ; k=k-ri; 
11.       endwhile; 
12.    endif; 
13. endif;   
14. return flag, h, b[1], c[1], …b[h], c[h], a, k;  

Theorem 4[13]: The minimum cost realization of reversible 
circuit g is g = a*(c[h]*b[h])*…*(c[1]*b[1]), where a, b[1], 
…, b[h] can be realized by L0 in terms of algorithm MLR.  
And the minimum cost of g is k. 
 

IV.  Experiments  
 

We present some experiments on 3-qubit synthesis. All 
experiments are running on an 850MHz Pentium® III 
computer. 

We first introduce some libraries and then give the 
experimental results. In the following, we give some 

permutations of the well-known 3*3 Feynman gates and 
NOT gates. We use ⊕  to denote XOR.   

Feyman gates: Fe12: P3=B3, P2=B2, P1=B1⊕B2.  
Table 1: Permutation of Feynman gate Fe12 

Inputs Outputs 
B3 B2 B1 index P3 P2 P1 index 
0 0 0 1 0 0 0 1 
0 0 1 2 0 0 1 2 
0 1 0 3 0 1 1 4 
0 1 1 4 0 1 0 3 
1 0 0 5 1 0 0 5 
1 0 1 6 1 0 1 6 
1 1 0 7 1 1 1 8 
1 1 1 8 1 1 0 7 

Fe12=(3,4)(7,8), 
Similarly, we have Fe13=(5,6)(7,8), Fe21=(2,4)(6,8), 
Fe23=(5,7)(6,8), Fe31=(2,6)(4,8), Fe32=(3,7)(4,8). 
NOT gates: N1: P3=B3, P2=B2, P1=B1’ (inverter of B1). 
N1=(1,2)(3,4)(5,6)(7,8), N2=(1,3)(2,4)(3,7)(4,8),  
N3=(1,5)(2,6)(3,7)(4,8). 
3_NFT (or 3_CNT) library: this library includes 3 NOT 
gates, 6 Feynman gates, and 3 Toffoli gates. 
To1 = (7,8), i.e., P3=B3, P2=B2, P1=B1⊕B2B3, 
To2 = (6,8), To3 = (4,8). 
3_NFP library: this library includes 3 NOT gates, 6 
Feynman gates, and 6 Peres gates. One example of Peres 
gate is shown in Fig.1. According to Fig.1, we have 
Pe12=(5,7,6,8), i.e.,  P3=B3, P2=B2⊕B3, P1=B1⊕B2B3, 
Similarly, we have 
Pe13=(3,7,4,8), Pe12=(5,6,7,8), Pe31=(3,4,7,8),  
Pe23=(2,6,4,8), Pe32=(2,4,6,8). 
3_NFFr library: this library includes 3 NOT gates, 6 
Feynman gates, and 3 Fredkin gates. 
Fr1 = (4,6), P3=B1’B3+B1B2, P2=B1’B2+B1B3, P1=B1, 
Fr2 = (4,7), Fr3 = (6,7). 

We implemented the above algorithms using GAP. We 
then supplied all 40320 possible 3-bit reversible gates as 
specifications to be synthesized by our algorithms. Our 
algorithms synthesized all these 40320 gates in very short 
time (see Table 2, 3 and 4). Time is measured in seconds. 

Table 2: Time of number of gates with minimal 
length k in different papers 

NFT 
Lib. 

[4] 750MHz  

Pentium III  

Non-optimal solution 

[7] 2GHz  

Pentium IV  

optimal solution 

We: 850MHz  

Pentium III  

optimal solution 

Time 20  40 12 
 

Table 3 presents results for various gate libraries: NFT, 
NFP, NFFr, NFPT (NOT, Feynman, Peres, Toffoli), NFTFr 
(NOT, Feynman, Toffoli, Fredkin) and NFPFr (NOT, 
Feynman, Peres, Fredkin). The parameter “aver.” means the 
average minimum length. Observe that NFP is a winner in 
the category of three-gate libraries and NFPFr in the 
category of four-gate libraries. Cascades with Peres gates are 
shorter both on average and for the most complex circuits. 
We proved here that every 3-qubit circuit can be realized 
with at most 6 gates: NOT, Feynman and Peres. Our design 
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times are better than those reported in the previous work. 
Table 3: Number of gates with minimum length k 

Mini- 
length 

NFT NFP NFFr NFPT NFTFr NFPFr

0 1 1 1 1 1 1
1 12 15 12 18 15 18
2 102 174 101 228 143 248
3 625 1528 676 1993 1006 2356
4 2780 8968 3413 10503 5021 12797
5 8921 23534 11378 23204 15083 22794
6 17049 6100 17970 4373 17261 2106
7 10253 0 6739 0 1790 0
8 577 0 30 0 0 0

Total 40320 40320 40320 40320 40320 40320
Aver. 5.87 4.84 5.66 4.73 5.33 4.60
maxl 8 6 8 6 7 6
Time 12 10 13 10 12 11

 
It can be also seen in Tables 3 and 4 that all libraries that 

include Peres gate lead to cheaper circuits than those that do 
not include such gate (Aver. means the average minimum 
cost, and we assume that cost of NOT gate = 0, cost of 
Feynman gate = 1, cost of Toffoli gate = 5, cost of Peres gate 
= 4, and cost of Fredkin gate = 5). Peres gate is a better 
choice in a universal library than a popularly used Toffoli 
gate. Not only is the gate cheaper in quantum realization, but 
on average circuits have a smaller number of gates and have 
smaller total costs when Peres gates are used instead of 
Toffoli gates. 

Table 4: Number of circuits with minimum cost k 

Mini-cost NFT NFP NFFr NFPT NFTFr NFPFr

0 8 8 8 8 8 8
1 48 48 48 48 48 48
2 192 192 192 192 192 192
3 408 408 408 408 408 408
4 480 672 480 672 480 672
5 288 1248 288 1248 384 1344
6 592 3184 880 3184 1072 3568
7 2016 4320 3008 4320 3104 3968
8 4128 3552 3904 3552 3808 3424
9 2496 11520 1440 11520 1248 11520

10 672 4416 416 4416 1856 4416
11 2880 0 4608 0 6720 0
12 7488 9856 10432 9856 7552 9856
13 7488 896 3456 896 2688 896
14 384 0 0 0 0 0
15 1600 0 0 0 6784 0
16 5568 0 4608 0 3840 0
17 3584 0 6144 0 128 0

Aver. 11.98 9.08 11.87 9.08 11.38 9.06
Time 112 111 123 126 159 126

 
From the library NFP and NFPT in Table 4, we know 

that any 3*3 reversible circuits can be realized by no more 

than 13 2-qubit control and XOR quantum gates and some 
1-qubit NOT gates. Therefore, the maximum cost of any 3*3 
reversible circuits is no more than 13. 
 

V. Summary and Conclusions 
 

By reducing the reversible circuit synthesis problem to 
group theory representation and using group-theory 
algebraic software GAP, we were able to synthesize exact 
3-qubit circuits with the minimum numbers of gates from 
various libraries. Our approach synthesizes minimum-cost 
circuits from libraries of gates with arbitrary costs. We 
showed that a Peres gate is better than the Toffoli gate that is 
used by practically every research paper. We demonstrated 
on several examples and in an exhaustive analysis the 
importance and usefulness of the Peres gate. It is the 
cheapest gate in NMR quantum realization [12]. Using the 
library containing the Peres gate, we can have circuits with a 
smaller number of gates with a less cost. As a result, there 
are no more reasons to use Toffoli gates in practical NMR 
designs.  
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