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Abstract - We address the problem of implication of assertion 
graphs that occur in generalized symbolic trajectory evaluation 
(GSTE). GSTE has demonstrated its powerful capacity in 
formal verification of digital systems. Assertion graphs are used 
for property and model specifications. We present a novel 
implication technique for assertion graphs. It relies on direct 
Boolean reasoning on each edge (and vertex) of an assertion 
graph, thus avoiding the reachability computation in GSTE. 
We have successfully applied both model-based and 
language-based implications on real industrial circuits. 
Experimental results demonstrate the promising performance 
of our approach. 
 
 

I. Introduction 
 

Symbolic Trajectory Evaluation (STE) [1] is the main 
alternative to symbolic model checking (SMC). Compared 
with SMC, which usually requires abstraction [7], STE has 
the advantage of being applied to very large circuits directly. 
The STE theory consists of a simple specification language, 
a simulation-based model checking algorithm, and a 
mapping of the algorithm to a coarse abstract domain. The 
specification language of STE has the limited expressiveness 
where only properties over finite time intervals are allowed. 
In the generalized STE (GSTE) [2], all Omega-regular 
properties can be expressed and verified with the same space 
efficiency and comparable time efficiency. Assertion graphs 
are introduced in GSTE as an extension of STE’s 
specification language.  

GSTE specifications are expressed in the form of 
assertion graphs. It is common knowledge that many RTL 
designs are rather complicated, primarily because they 
model complex functional behavior while accommodating 
tight performance constraints. If we have already proved an 
assertion graph G1 against the RTL, a desirable usage is to 
use G1 to prove (imply) another assertion graph G2. Having 
such an implication mechanism would enable us to achieve 
higher level abstractions and pursue assume-guarantee prove 
strategies. Previously, people have tried to convert the 
assumed assertion graph G1 into a circuit [3], and then re-run 
GSTE on the compiled circuit [4] to prove G2. The problem 
with such an approach is that when G1 is a complicated 
assertion graph, the GSTE run on its compiled circuit 
(against G2) may easily blow up.  

In this paper, we present a novel way to prove that G1 
implies G2 without running GSTE. Our method relies on 
direct Boolean reasoning on each edge (and vertex) of the 

assertion graphs, thus avoiding the reachability computation 
in GSTE and side step the biggest potential cause for the 
BDD explosion problem. We have successfully applied both 
model-based implication and language-based implication on 
real industrial circuits.  

 
II. Preliminaries 

 
We introduce some basic definitions in this section. Some 

of them were given in [1, 2]. We assume a non-empty set of 
finite states, denoted by S. A relation Τ ⊆ S×S is a transition 
relation if ∀s∈S, ∃s’∈S, (s, s’)∈T, where S is a non-empty 
set of finite states. The model M induced by the transition 
relation T is the pair (pre, post) where: (1) the pre-image 
transformer pre: 2S → 2S is defined as: pre(Q)={s|∃s’∈Q, (s, 
s’)∈T} for all Q∈2S; and (2) the post-image transformer 
post: 2S → 2S  is defined as: post(Q)={s’|∃s∈Q, (s, s’)∈T}  
for all Q∈2S. Let M=(pre, post) be a directed graph M=(S, T). 
We use pre and post to represent two functions based on M. 
Note that pre(s)=pre({s}), post(s)=post({s}),  for all s∈S. If 
for all s∈S, post(s) is defined and nonempty, then M is 
well-defined. Namely, if we first define post: S → 2S-{∅}, 
where ∅ is an empty set, then a transition relation T can be 
defined as T={(s, s’)| s∈S, s’∈post(s)}. A trace in M=(pre, 
post) is a state sequence σ such that σ[i+1]∈post(σ[i]), for 
all 1≤ i< |σ|, i.e., (σ[i], σ[i+1])∈T.  

An assertion graph is a quintuple G=(V, v0, E, ant, cons) 
where V is a finite set of vertices,v0 is the initial vertex, E 
⊆V×V is a set of edges, satisfying ∀u∈V, ∃v∈V, such that (u, 
v)∈E, ant is a mapping E →2S, cons is a mapping E →2S. 
Let  ban(e)=ant(e)-cons(e). We use start(e) and end(e) to 
denote the start and end vertices of a directed edge e, 
respectively. We define out(e) as the set of successor edges 
of e, i.e., start(e’)=end(e) for all e’∈out(e). 

Let G = (V, v0, E, ant, cons) be an assertion graph, and 
let M=(pre, post) be a model. We define an edge labeling γ  
as γ: E →2S where γ is either ant or cons. A trace σ in M 
satisfies a path ρ of the same length under γ, denoted by  
(M, σ)╞ γ (G, ρ), iff σ[i]∈γ(ρ[i]), 1≤ i ≤ |σ|. A trace satisfies 
a path, denoted by (M, σ)╞ (G, ρ), iff [(M, σ)╞ant (G, ρ)]⇒ 
[(M, σ)╞cons (G, ρ)]. A model M strongly satisfies an 
assertion graph G, denoted by M ╠  G iff (M, σ)╞ (G, ρ)  
for all finite initial path ρ in G and all finite trace σ in M of 
the same length. Given two assertion graphs G1 = (V, v0, E1, 
ant1, cons1) and G2 = (U, u0, E2, ant2, cons2), G1 
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model-based implies G2, denoted by G1⇒model G2, iff ∀M, 
M╠G1⇒M╠G2. A word w on S is a concatenation (string) of 
m states, w = w[1]w[2]…w[m], where w[i]∈S, 1≤ i ≤ m. We 
use w[i] to denote the ith letter of w. The length of w is m = 
|w|. We use ε to denote the null word, and |ε| = 0. We use S* 
to denote the set of all words on S. Given a word w and an 
assertion graph G = (V, v0, E, ant, cons), w satisfies a path ρ 
of the same length under γ (ant or cons), denoted by w╞ γ ρ, 
iff w[i] ∈ (ρ[i]) for every 1≤ i ≤ |w|. A word satisfies a path, 
denoted by w╞ ρ, iff w╞ant ρ ⇒ w╞cons ρ. A word satisfies 
the assertion graph, denoted by w╞ G, iff w╞ ρ for all path ρ 
with the same length |w| in the assertion graph. Given an 
assertion graph G = (V, v0, E, ant, cons), the language L(G) 
of the assertion graph G is  L(G) = {w ∈ S* | w╞ G}. Given 
a model M=(S, T), the language L(M) of the model M is 
L(M)={w∈S*|(w[i], w[i+1])∈T, 1 ≤ i ≤ |w|-1}. Given two 
assertion graphs G1 = (V, v0, E1, ant1, cons1) and G2 = (U, u0, 
E2, ant2, cons2), G1 language-based implies G2, denoted by 
G1⇒lang G2, iff L(G1) ⊆ L(G2). 
 

III. Assertion Graph Implication 
 

In this section, we prove some conditions sufficient to 
establish language-based and model-based implications for 
assertion graphs. At the end of the section, we will show that 
language-based implication is sufficient to establish 
model-based implication; however, the reverse is not always 
true. 
 
3.1 Language-based implication 
 
Theorem 3.1 Given G1 = (V, v0, E, ant1, cons1) and G2 = (V, 
v0, E, ant2, cons2), if (ant2(e)⊆ ant1(e))∧ (cons1(e)⊆ cons2(e)), 
for all e∈E,  then G1⇒lang G2. 
Proof: ∀ w ∈L(G1), For any finite initial path ρ with the 
same length |w| such that (M, w)╞ant2 (G2, ρ), we have 
w[i]∈ant2(ρ[i]), for every 1 ≤ i ≤ |w|. Then w[i]∈ant2(ρ[i]) ⊆ 
ant1(ρ[i]).  w ∈L(G1) ⇒  w[i]∈cons1(ρ[i]) ⊆ cons2(ρ[i]), 
therefore (M, w)╞cons2 (G2, ρ), which means w ∈L(G2). Thus 
L(G1)⊆ L(G2), G1⇒lang G2.       � 
 
Notice the condition (ant2(e)⊆ ant1(e))∧ (cons1(e) 
⊆cons2(e)) is natural and direct. But it is too strong. 
Theorem 3.2 gives a weaker condition which guarantees 
G1⇒lang G2. 
 
Theorem 3.2 Given G1 = (V, v0, E, ant1, cons1) and G2 = (V, 
v0, E, ant2, cons2), if  
(ant2(e)⊆ant1(e))∧(cons1(e)∩ant2(e)⊆cons2(e)) for all e∈E,  
then G1⇒lang G2. 
Proof: ∀ w ∈L(G1), For any finite initial path ρ with the 
same length |w| such that (M, w)╞ant2 (G2, ρ), we have 
w[i]∈ant2(ρ[i]), for every 1 ≤ i ≤ |w|. Then w[i]∈ant2(ρ[i]) ⊆ 
ant1(ρ[i]).  w ∈L(G1) ⇒  w[i]∈cons1(ρ[i]), so 
w[i]∈cons1(ρ[i])∩ant2(ρ[i]) ⊆ cons2(ρ[i]), therefore (M, 
w)╞cons2 (G2, ρ), which means w ∈L(G2). Thus L(G1)⊆ L(G2), 

G1⇒lang G2.       � 
 
Lemma 3.1 (ant2(e)⊆ant1(e))∧(cons1(e)∩ ant2(e)⊆ cons2(e))  
⇔(ant1(e) ⊇ant2(e))∧( ban1(e)⊇ ban2(e)), for all e∈E. 
Proof: ⇒: ban1(e)=ant1(e)-cons1(e)⊇ant2(e)-cons1(e) 
=ant2(e)-cons1(e)∩ant2(e)⊇ant2(e)-cons2(e)=ban2(e). 
⇐: cons1(e)∩ant2(e)=cons1(e)∩(ant2(e)∩cons2(e)∪ban2(e)) 
⊆(cons1(e)∩ant2(e)∩cons2(e))∪(cons1(e)∩ban1(e)) 
=cons1(e)∩ant2(e)∩cons2(e)⊆cons2(e).  � 
 
Theorem 3.3 If G1 and G2 have the same graph structure 
and ant1(e) ⊇ant2(e) and  ban1(e)⊇ ban2(e), for all e∈ E, 
then, G1⇒lang G2. 
Proof: Directly from Theorem 3.2 and Lemma 3.1.  � 
 
Set ban(e) is a useful concept when we analyses the 
unsatisfying word of an assertion graph. In the following, we 
give soundness and completeness condition of G1⇒lang G2 
when G1 ang G2 are linear assertion graph and have the same 
graph structure. 
 
Definition 3.1 Linear assertion graph G = (V, v0, E, ant, 
cons): Every edge has one and only one successor edge. In 
the following, without special announcement, if an assertion 
graph G is a linear assertion graph, we always assume that 
|E| = m, e[m]=(vm-1, vt), 0 ≤ t ≤ m-1, e[m+1]=e[t+1], namely, 
after m, edges have a periodicity.  
 
Definition 3.2 Lk(G)={w|w∈L(G), |w|=k}, i.e., Lk(G) is all 
the words satisfying the assertion graph G with length k. 
UNLk(G)={w|w∉L(G), |w|=k}, i.e., UNLk(G) is all the 
words unsatisfying the assertion graph G with length k. 
 
Lemma 3.2 G1⇒lang G2 ⇔ L(G1) ⊆ L(G2) ⇔ Lk(G1) ⊆Lk(G2) 
for all k>0 ⇔ UNLk(G) ⊇ UNLk(G) for all k>0. 
Proof: Directly from the definitions.  � 
 
Lemma 3.3 Assuming G = (V, v0, E, ant, cons) is a linear 
assertion graph with |E| = m, e[m]=(vm-1, vt), 0 ≤ t ≤ m-1, 
e[m+1]=e[t+1], then 
UNLk(G)=ban(e[1])×ant(e[2])×…×ant(e[k])∪ 
ant(e[1])×ban(e[2])×…×ant(e[k])∪… 
∪ant(e[1])×ant(e[2])×…×ban(e[k]) for all k>0. 
Proof: ∀ w ∈ UNLk(G), Since the definition of a word 
satisfying an assertion graph, ∃ path ρ, |ρ|=k, such that w╞ant 
ρ  but w╞cons ρ is invalid, i.e., ∃1< h ≤ k such that w[h] 
∉cons(ρ[h]), which implies w[h]∈ban(ρ[h]). Therefore  
w∈ant(e[1]) ×…×ban(e[h]) ×…×ant(e[k]). And obviously, 
for any w, if w∈ ban(e[1])×ant(e[2])×…×ant(e[k])∪ 
ant(e[1])×ban(e[2])×…×ant(e[k])∪… 
∪ant(e[1])×ant(e[2])×…×ban(e[k]), then w ∈ UNLk(G). 
Thus UNLk(G)=ban(e[1])×ant(e[2])×…×ant(e[k])∪ 
ant(e[1])×ban(e[2])×…×ant(e[k])∪… 
∪ant(e[1])×ant(e[2])×…×ban(e[k]) for all k>0.    � 
 
Theorem 3.4 If G1 and G2 have the same graph structure 
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and are linear assertion graphs, then G1⇒lang G2 iff 
1. If there exists r with t ≤ r ≤m, such that ban2(e[r])≠∅, 

then ant1(e) ⊇ant2(e), and 
• If there is a minimum integer c such that ban1(e[c]) 

⊇ant2(e[c]), then ban1(e[i]) ⊇ban2(e[i]) for 1≤ i ≤ c; 
• Else ban1(e) ⊇ban2(e); 
Or, 

2. Else assume j is the maximum integer number such that 
ban2(e[j]) ≠∅, then ant1(e[i]) ⊇ant2([i]) for any 1≤ i ≤ j, 
and  
• If there is a minimum integer c ≤ j such that 

ban1(e[c]) ⊇ant2(e[c]), then ban1(e[i]) ⊇ban2(e[i]) 
for 1≤ i ≤ c; 

• Else ban1(e[i]) ⊇ban2(e[i]) for 1≤ i ≤ j. 
Proof: See technical report [6]. 
 
3.2 Model-based implication 
 

There are some differences between model-based 
implication and language-based implication. A trace in a 
model satisfying an assertion graph is a word satisfying the 
assertion graph, while a word satisfying an assertion graph 
may not be a trace in a model satisfying the assertion graph. 
There are two essential distinctions. First, if a trace in a 
model satisfies an assertion graph, then any part of this trace 
is still a trace satisfying the assertion graph; therefore any 
part of this trace is a word satisfying the assertion graph. 
However, if a word satisfies an assertion graph, a part of it 
may not be a word satisfying the assertion graph. Second, 
any finite trace in a model must be a prefix of a trace in the 
model; but a word satisfies the assertion graph may not be a 
prefix of another satisfying word. We will see these 
differences in the following example, which demonstrate the 
relationship of the two implications. 

 
Example 3.1: Consider two assertion graphs G1 and G2:  

 
Figure 1: structure of assertion graph G1 and G2.  

 
G1 : ant1(e1) = cons1(e1) = {2}, ant1(e2) = {3, 4, 5, 6, 7},  
       cons1(e2) = {5, 6}, ban1(e2) = {3, 4, 7},                                            
G2 : ant2(e1) = cons2(e1) = {2}, ant2(e2) = {2, 3, 4, 5},  
       cons2(e2) = {2, 4, 5}, ban2(e2) = {3}. 
 

We use numbers to denote states. From [6], we have 
G1⇒model G2. But obviously a word (2,2,3) satisfies G1, 
which does not satisfy G2, so G1⇒lang G2 is invalid. First, 
notice that the word (2,2,3) cannot be a trace in a model 
satisfying G1(otherwise (2,3) also can be a trace, which is a 
contradiction). This fact shows that the union of the 
languages of all the models satisfying an assertion graph 
may be less than the language of the assertion graph. Second, 

a part (2,3) of the word (2,2,3) does not satisfy G1. This is 
consistent with the differences between a word and a trace. 
The fact that ant1(e2) does not contain ant2(e2) shows that 
ant2(e)⊆ ant1(e) is not necessary for G1⇒model G2. 
 
Lemma 3.4 Given a model M and an assertion graph G = (V, 
v0, E, ant, cons), M╠G iff L(M)⊆ L(G). 
Proof: According to the definitions of trace and the 
language of a model, a word in L(M) is a trace in M, vice 
versa. For any finite initial path ρ and any finite trace σ of 
the same length such that (M, σ)╞ant (G, ρ) , from M╠G , we 
have σ[i]∈cons(ρ[i]), for every 1≤ i ≤ |σ|, which means the 
word σ in L(G). Therefore L(M)⊆ L(G). For any finite initial 
path ρ and any finite trace σ of the same length such that (M, 
σ)╞ant (G, ρ), from L(M)⊆ L(G), we have σ[i]∈cons(ρ[i]), 
for every 1≤ i ≤ |σ|, which means (M, σ)╞cons (G, ρ). 
Therefore M╠G.       � 
 
Using Lemma 3.1 and Example 3.1, we have: 
Theorem 3.5   
1) (G1⇒lang G2) ⇒  (G1⇒model G2).  
2) (G1⇒model G2) ⇒  (G1⇒lang G2) is not valid.  
 
Using Theorems 3.1, 3.2, 3.3, and 3.5, we have: 
Theorem 3.6 If two aspersion graphs G1 and G2 have the 
same graph structure and one of the following conditions is 
satisfied, then G1⇒model G2. 
(1) (ant2(e)⊆ ant1(e)) ∧ (cons1(e)⊆ cons2(e)), for all e∈E, 
(2) (ant2(e)⊆ ant1(e)) ∧ (cons1(e)∩ ant2(e)⊆ cons2(e)), for 

all e∈E,  namely, (ant1(e) ⊇ant2(e)) ∧ (ban1(e)⊇ 
ban2(e)), for all e∈ E. 

 
IV. Experiments 

 
In this section we show two industrial verification 

examples using our GSTE assertion graph implication 
approach: a content-addressable memory and a memory unit 
with complicated output alignment/mask operations. 

We have successfully applied both model-based 
implication and language-based implication on a 
content-addressable memory (CAM) previously shown in 
Figure 5 of [4] for assertion graph implication. The top level 
property specification is shown in Figure 2(a). We first 
prove that the tag portion of the CAM functions correctly, 
and on a tag read it produces the correct tag match, shown in 
Figure 2(b). We also prove that the data portion of the CAM 
functions correctly, and given a tag match, outputs the 
corresponding data, shown in Figure 2(c). We prove these 
two assertion graphs (Figure 2(b) and 2(c)) using GSTE. We 
then create a product assertion graph G, which is the cross 
product of (b) and (c). Since both (b) and (c) have already 
been proven to be true, their product G is also true. Also, if a 
graph G is true, a portion of the graph G’ should also be true. 
We extract a portion (subgraph G’) of the product graph that 
is structurally identical to the top level property (Figure 2(a)). 
The only difference between G’ and the top level 
specification are the antecedents and consequents on each 

e1 
e2 

vI v1 
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edge. At this point, we apply Theorem 3.1 and Theorem 3.6 
to show that G’ implies the top level specification. Both 
model-based implication and language-based implication 
were successfully established. 

 

 
Figure 2. Assertion graphs for CAM. 

For runtime comparison, it took 8 CPU seconds to 
verify the original property through GSTE (without 
decomposition). Each of the decomposed properties (Figure 
2(b) and (c)) took 1.5 seconds to verify through GSTE. The 
implication based Theorem 3.1 took 0.01 second and the 
implication based Theorem 3.4 took 0.1 second. So the 
runtime for the decomposed properties plus the implication 
total around 3 seconds, which is much faster than the 
original verification. 

We have also verified a memory unit previously 
discussed in [2, 4]. The top level specification is shown in 
Figure 3(a). We decompose the proof into two parts. First we 
prove that the core part of the memory unit send out the 
correct data upon a read (Figure 3(b)). Given the read results 
from the core memory, we prove that the select, align and 
mask operations are carried out correctly for the data output 
(Figure 3(c)). We use GSTE to prove the assertion graphs in 
Figure 3(b) and 3(c) against the memory unit, create a 
product assertion graph G from these two graphs, extract a 
part of the product graph (partial assertion graph), G’, that is 
structurally the same as the top level specification (Figure 
3(a)). We then use theorem 3.1 and theorem 3.6 to show that 
G’ implies the top level specification (Figure 3(a)). 

Verification of the original property (Figure 3(a)) 
through GSTE took 182 CPU seconds (without 
decomposition). Verification of each of the decomposed 
properties (Figure 3(b) and (c)) took 2 seconds each. 
Runtime for the implication based on Theorem 3.1 and 3.6 
took 0.01 and 0.3 seconds respectively. So the overall 
runtime using a decomposition and assertion graph 

implication strategy is much faster than proving the original 
property through GSTE. 
 

 
Figure 3. Assertion graphs for the memory unit 

 
V. Summary and Conclusions 

 
We investigated the problem of implication of assertion 

graphs that occur in generalized symbolic trajectory 
evaluation (GSTE). We presented a novel implication 
technique. It relies on direct Boolean reasoning on each edge 
(and vertex) of the assertion graphs, thus avoiding the 
reachability computation in GSTE. We successfully applied 
both model-based implication and language-based 
implication on industrial circuits. Experimental results 
demonstrate the promising performance of our approach. 
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v0 v1 v2 v3
WRITE / True

NO_OVERWRITE / True

READ & SEL_ALIGN / True MASK / DATA_CORRECT

True / True

v0 v1 v2
WRITE / True

NO_OVERWRITE / True

READ / READ_RESULT

True / True

v0 v2v1
MASK / DATA_CORRECT

True / True

READ & SEL_ALIGN & READ_RESULT / True
(c)

(a)

(b)

WRITE := (we = 1) ∧ (addr = A) ∧ (datawr = D) 
NO_OVERWRITE := (we = 0) ∨ (addr ≠ A) 
READ := (ck = 0) ∧ (we = 0) ∧ (addr = A) 
SEL_ALIGN := (sel = S) ∧ (align = R) 
MASK := (ck = 1) ∧ (maskbegin = B) ∧ (maskend = E) 
DATA_CORRECT := (dataout=mask(align(sel(D,S),R),B,E)) 
READ_RESULT := (memout = D) 

v0
TAG_WRITE & DATA_WRITE / True

TAG_RETAIN & DATA_RETAIN / True

TAG_READ / TAG_RESULT & DATA_RESULT

True / True

v2v1

v0 v1 v2
TAG_WRITE / True

TAG_RETAIN / True

TAG_READ / TAG_RESULT & TAG_MATCH

True / True

v0

True / True

v2v1
TAG_READ & TAG_MATCH / DATA_RESULT

DATA_RETAIN / True

DATA_WRITE / True

(a) 

(b) 

(c) 

  TAG_WRITE := (twrite = 1) ∧ (taddr = A) ∧ (tagin = T) 
 DATA_WRITE := (dwrite = 1) ∧ (daddr = A) ∧ (din = D) 
 TAG_RETAIN := (twrite = 0) ∨ (taddr ≠ A) 
DATA_RETAIN := (dwrite = 0) ∨ (daddr ≠ A) 
   TAG_READ := (aread = 1) ∧ (tagin = T) 
 TAG_RESULT := (hit = 1) 
  TAG_MATCH := ∀i [(i = A) ⇒ match[i]] 
DATA RESULT := ∀i [(i = A) ⇒ (matchout[i] = D)]
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