

Implication of Assertion Graphs in GSTE

Guowu Yang, Jin Yang1, William N. N. Hung1, and Xiaoyu Song

Department of Electrical & Computer Engineering, Portland State University, OR, USA

1Intel Corporation, Hillsboro, OR, USA

Abstract - We address the problem of implication of assertion
graphs that occur in generalized symbolic trajectory evaluation
(GSTE). GSTE has demonstrated its powerful capacity in
formal verification of digital systems. Assertion graphs are used
for property and model specifications. We present a novel
implication technique for assertion graphs. It relies on direct
Boolean reasoning on each edge (and vertex) of an assertion
graph, thus avoiding the reachability computation in GSTE.
We have successfully applied both model-based and
language-based implications on real industrial circuits.
Experimental results demonstrate the promising performance
of our approach.

I. Introduction

Symbolic Trajectory Evaluation (STE) [1] is the main
alternative to symbolic model checking (SMC). Compared
with SMC, which usually requires abstraction [7], STE has
the advantage of being applied to very large circuits directly.
The STE theory consists of a simple specification language,
a simulation-based model checking algorithm, and a
mapping of the algorithm to a coarse abstract domain. The
specification language of STE has the limited expressiveness
where only properties over finite time intervals are allowed.
In the generalized STE (GSTE) [2], all Omega-regular
properties can be expressed and verified with the same space
efficiency and comparable time efficiency. Assertion graphs
are introduced in GSTE as an extension of STE’s
specification language.

GSTE specifications are expressed in the form of
assertion graphs. It is common knowledge that many RTL
designs are rather complicated, primarily because they
model complex functional behavior while accommodating
tight performance constraints. If we have already proved an
assertion graph G1 against the RTL, a desirable usage is to
use G1 to prove (imply) another assertion graph G2. Having
such an implication mechanism would enable us to achieve
higher level abstractions and pursue assume-guarantee prove
strategies. Previously, people have tried to convert the
assumed assertion graph G1 into a circuit [3], and then re-run
GSTE on the compiled circuit [4] to prove G2. The problem
with such an approach is that when G1 is a complicated
assertion graph, the GSTE run on its compiled circuit
(against G2) may easily blow up.

In this paper, we present a novel way to prove that G1
implies G2 without running GSTE. Our method relies on
direct Boolean reasoning on each edge (and vertex) of the

assertion graphs, thus avoiding the reachability computation
in GSTE and side step the biggest potential cause for the
BDD explosion problem. We have successfully applied both
model-based implication and language-based implication on
real industrial circuits.

II. Preliminaries

We introduce some basic definitions in this section. Some

of them were given in [1, 2]. We assume a non-empty set of
finite states, denoted by S. A relation Τ ⊆ S×S is a transition
relation if ∀s∈S, ∃s’∈S, (s, s’)∈T, where S is a non-empty
set of finite states. The model M induced by the transition
relation T is the pair (pre, post) where: (1) the pre-image
transformer pre: 2S → 2S is defined as: pre(Q)={s|∃s’∈Q, (s,
s’)∈T} for all Q∈2S; and (2) the post-image transformer
post: 2S → 2S is defined as: post(Q)={s’|∃s∈Q, (s, s’)∈T}
for all Q∈2S. Let M=(pre, post) be a directed graph M=(S, T).
We use pre and post to represent two functions based on M.
Note that pre(s)=pre({s}), post(s)=post({s}), for all s∈S. If
for all s∈S, post(s) is defined and nonempty, then M is
well-defined. Namely, if we first define post: S → 2S-{∅},
where ∅ is an empty set, then a transition relation T can be
defined as T={(s, s’)| s∈S, s’∈post(s)}. A trace in M=(pre,
post) is a state sequence σ such that σ[i+1]∈post(σ[i]), for
all 1≤ i< |σ|, i.e., (σ[i], σ[i+1])∈T.

An assertion graph is a quintuple G=(V, v0, E, ant, cons)
where V is a finite set of vertices,v0 is the initial vertex, E
⊆V×V is a set of edges, satisfying ∀u∈V, ∃v∈V, such that (u,
v)∈E, ant is a mapping E →2S, cons is a mapping E →2S.
Let ban(e)=ant(e)-cons(e). We use start(e) and end(e) to
denote the start and end vertices of a directed edge e,
respectively. We define out(e) as the set of successor edges
of e, i.e., start(e’)=end(e) for all e’∈out(e).

Let G = (V, v0, E, ant, cons) be an assertion graph, and
let M=(pre, post) be a model. We define an edge labeling γ
as γ: E →2S where γ is either ant or cons. A trace σ in M
satisfies a path ρ of the same length under γ, denoted by
(M, σ)╞ γ (G, ρ), iff σ[i]∈γ(ρ[i]), 1≤ i ≤ |σ|. A trace satisfies
a path, denoted by (M, σ)╞ (G, ρ), iff [(M, σ)╞ant (G, ρ)]⇒
[(M, σ)╞cons (G, ρ)]. A model M strongly satisfies an
assertion graph G, denoted by M ╠ G iff (M, σ)╞ (G, ρ)
for all finite initial path ρ in G and all finite trace σ in M of
the same length. Given two assertion graphs G1 = (V, v0, E1,
ant1, cons1) and G2 = (U, u0, E2, ant2, cons2), G1

 1060

PII-7

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

model-based implies G2, denoted by G1⇒model G2, iff ∀M,
M╠G1⇒M╠G2. A word w on S is a concatenation (string) of
m states, w = w[1]w[2]…w[m], where w[i]∈S, 1≤ i ≤ m. We
use w[i] to denote the ith letter of w. The length of w is m =
|w|. We use ε to denote the null word, and |ε| = 0. We use S*
to denote the set of all words on S. Given a word w and an
assertion graph G = (V, v0, E, ant, cons), w satisfies a path ρ
of the same length under γ (ant or cons), denoted by w╞ γ ρ,
iff w[i] ∈ (ρ[i]) for every 1≤ i ≤ |w|. A word satisfies a path,
denoted by w╞ ρ, iff w╞ant ρ ⇒ w╞cons ρ. A word satisfies
the assertion graph, denoted by w╞ G, iff w╞ ρ for all path ρ
with the same length |w| in the assertion graph. Given an
assertion graph G = (V, v0, E, ant, cons), the language L(G)
of the assertion graph G is L(G) = {w ∈ S* | w╞ G}. Given
a model M=(S, T), the language L(M) of the model M is
L(M)={w∈S*|(w[i], w[i+1])∈T, 1 ≤ i ≤ |w|-1}. Given two
assertion graphs G1 = (V, v0, E1, ant1, cons1) and G2 = (U, u0,
E2, ant2, cons2), G1 language-based implies G2, denoted by
G1⇒lang G2, iff L(G1) ⊆ L(G2).

III. Assertion Graph Implication

In this section, we prove some conditions sufficient to
establish language-based and model-based implications for
assertion graphs. At the end of the section, we will show that
language-based implication is sufficient to establish
model-based implication; however, the reverse is not always
true.

3.1 Language-based implication

Theorem 3.1 Given G1 = (V, v0, E, ant1, cons1) and G2 = (V,
v0, E, ant2, cons2), if (ant2(e)⊆ ant1(e))∧ (cons1(e)⊆ cons2(e)),
for all e∈E, then G1⇒lang G2.
Proof: ∀ w ∈L(G1), For any finite initial path ρ with the
same length |w| such that (M, w)╞ant2 (G2, ρ), we have
w[i]∈ant2(ρ[i]), for every 1 ≤ i ≤ |w|. Then w[i]∈ant2(ρ[i]) ⊆
ant1(ρ[i]). w ∈L(G1) ⇒ w[i]∈cons1(ρ[i]) ⊆ cons2(ρ[i]),
therefore (M, w)╞cons2 (G2, ρ), which means w ∈L(G2). Thus
L(G1)⊆ L(G2), G1⇒lang G2.

Notice the condition (ant2(e)⊆ ant1(e))∧ (cons1(e)
⊆cons2(e)) is natural and direct. But it is too strong.
Theorem 3.2 gives a weaker condition which guarantees
G1⇒lang G2.

Theorem 3.2 Given G1 = (V, v0, E, ant1, cons1) and G2 = (V,
v0, E, ant2, cons2), if
(ant2(e)⊆ant1(e))∧(cons1(e)∩ant2(e)⊆cons2(e)) for all e∈E,
then G1⇒lang G2.
Proof: ∀ w ∈L(G1), For any finite initial path ρ with the
same length |w| such that (M, w)╞ant2 (G2, ρ), we have
w[i]∈ant2(ρ[i]), for every 1 ≤ i ≤ |w|. Then w[i]∈ant2(ρ[i]) ⊆
ant1(ρ[i]). w ∈L(G1) ⇒ w[i]∈cons1(ρ[i]), so
w[i]∈cons1(ρ[i])∩ant2(ρ[i]) ⊆ cons2(ρ[i]), therefore (M,
w)╞cons2 (G2, ρ), which means w ∈L(G2). Thus L(G1)⊆ L(G2),

G1⇒lang G2.

Lemma 3.1 (ant2(e)⊆ant1(e))∧(cons1(e)∩ ant2(e)⊆ cons2(e))
⇔(ant1(e) ⊇ant2(e))∧(ban1(e)⊇ ban2(e)), for all e∈E.
Proof: ⇒: ban1(e)=ant1(e)-cons1(e)⊇ant2(e)-cons1(e)
=ant2(e)-cons1(e)∩ant2(e)⊇ant2(e)-cons2(e)=ban2(e).
⇐: cons1(e)∩ant2(e)=cons1(e)∩(ant2(e)∩cons2(e)∪ban2(e))
⊆(cons1(e)∩ant2(e)∩cons2(e))∪(cons1(e)∩ban1(e))
=cons1(e)∩ant2(e)∩cons2(e)⊆cons2(e).

Theorem 3.3 If G1 and G2 have the same graph structure
and ant1(e) ⊇ant2(e) and ban1(e)⊇ ban2(e), for all e∈ E,
then, G1⇒lang G2.
Proof: Directly from Theorem 3.2 and Lemma 3.1.

Set ban(e) is a useful concept when we analyses the
unsatisfying word of an assertion graph. In the following, we
give soundness and completeness condition of G1⇒lang G2
when G1 ang G2 are linear assertion graph and have the same
graph structure.

Definition 3.1 Linear assertion graph G = (V, v0, E, ant,
cons): Every edge has one and only one successor edge. In
the following, without special announcement, if an assertion
graph G is a linear assertion graph, we always assume that
|E| = m, e[m]=(vm-1, vt), 0 ≤ t ≤ m-1, e[m+1]=e[t+1], namely,
after m, edges have a periodicity.

Definition 3.2 Lk(G)={w|w∈L(G), |w|=k}, i.e., Lk(G) is all
the words satisfying the assertion graph G with length k.
UNLk(G)={w|w∉L(G), |w|=k}, i.e., UNLk(G) is all the
words unsatisfying the assertion graph G with length k.

Lemma 3.2 G1⇒lang G2 ⇔ L(G1) ⊆ L(G2) ⇔ Lk(G1) ⊆Lk(G2)
for all k>0 ⇔ UNLk(G) ⊇ UNLk(G) for all k>0.
Proof: Directly from the definitions.

Lemma 3.3 Assuming G = (V, v0, E, ant, cons) is a linear
assertion graph with |E| = m, e[m]=(vm-1, vt), 0 ≤ t ≤ m-1,
e[m+1]=e[t+1], then
UNLk(G)=ban(e[1])×ant(e[2])×…×ant(e[k])∪
ant(e[1])×ban(e[2])×…×ant(e[k])∪…
∪ant(e[1])×ant(e[2])×…×ban(e[k]) for all k>0.
Proof: ∀ w ∈ UNLk(G), Since the definition of a word
satisfying an assertion graph, ∃ path ρ, |ρ|=k, such that w╞ant
ρ but w╞cons ρ is invalid, i.e., ∃1< h ≤ k such that w[h]
∉cons(ρ[h]), which implies w[h]∈ban(ρ[h]). Therefore
w∈ant(e[1]) ×…×ban(e[h]) ×…×ant(e[k]). And obviously,
for any w, if w∈ ban(e[1])×ant(e[2])×…×ant(e[k])∪
ant(e[1])×ban(e[2])×…×ant(e[k])∪…
∪ant(e[1])×ant(e[2])×…×ban(e[k]), then w ∈ UNLk(G).
Thus UNLk(G)=ban(e[1])×ant(e[2])×…×ant(e[k])∪
ant(e[1])×ban(e[2])×…×ant(e[k])∪…
∪ant(e[1])×ant(e[2])×…×ban(e[k]) for all k>0.

Theorem 3.4 If G1 and G2 have the same graph structure

 1061

and are linear assertion graphs, then G1⇒lang G2 iff
1. If there exists r with t ≤ r ≤m, such that ban2(e[r])≠∅,

then ant1(e) ⊇ant2(e), and
• If there is a minimum integer c such that ban1(e[c])

⊇ant2(e[c]), then ban1(e[i]) ⊇ban2(e[i]) for 1≤ i ≤ c;
• Else ban1(e) ⊇ban2(e);
Or,

2. Else assume j is the maximum integer number such that
ban2(e[j]) ≠∅, then ant1(e[i]) ⊇ant2([i]) for any 1≤ i ≤ j,
and
• If there is a minimum integer c ≤ j such that

ban1(e[c]) ⊇ant2(e[c]), then ban1(e[i]) ⊇ban2(e[i])
for 1≤ i ≤ c;

• Else ban1(e[i]) ⊇ban2(e[i]) for 1≤ i ≤ j.
Proof: See technical report [6].

3.2 Model-based implication

There are some differences between model-based
implication and language-based implication. A trace in a
model satisfying an assertion graph is a word satisfying the
assertion graph, while a word satisfying an assertion graph
may not be a trace in a model satisfying the assertion graph.
There are two essential distinctions. First, if a trace in a
model satisfies an assertion graph, then any part of this trace
is still a trace satisfying the assertion graph; therefore any
part of this trace is a word satisfying the assertion graph.
However, if a word satisfies an assertion graph, a part of it
may not be a word satisfying the assertion graph. Second,
any finite trace in a model must be a prefix of a trace in the
model; but a word satisfies the assertion graph may not be a
prefix of another satisfying word. We will see these
differences in the following example, which demonstrate the
relationship of the two implications.

Example 3.1: Consider two assertion graphs G1 and G2:

Figure 1: structure of assertion graph G1 and G2.

G1 : ant1(e1) = cons1(e1) = {2}, ant1(e2) = {3, 4, 5, 6, 7},
 cons1(e2) = {5, 6}, ban1(e2) = {3, 4, 7},
G2 : ant2(e1) = cons2(e1) = {2}, ant2(e2) = {2, 3, 4, 5},
 cons2(e2) = {2, 4, 5}, ban2(e2) = {3}.

We use numbers to denote states. From [6], we have
G1⇒model G2. But obviously a word (2,2,3) satisfies G1,
which does not satisfy G2, so G1⇒lang G2 is invalid. First,
notice that the word (2,2,3) cannot be a trace in a model
satisfying G1(otherwise (2,3) also can be a trace, which is a
contradiction). This fact shows that the union of the
languages of all the models satisfying an assertion graph
may be less than the language of the assertion graph. Second,

a part (2,3) of the word (2,2,3) does not satisfy G1. This is
consistent with the differences between a word and a trace.
The fact that ant1(e2) does not contain ant2(e2) shows that
ant2(e)⊆ ant1(e) is not necessary for G1⇒model G2.

Lemma 3.4 Given a model M and an assertion graph G = (V,
v0, E, ant, cons), M╠G iff L(M)⊆ L(G).
Proof: According to the definitions of trace and the
language of a model, a word in L(M) is a trace in M, vice
versa. For any finite initial path ρ and any finite trace σ of
the same length such that (M, σ)╞ant (G, ρ) , from M╠G , we
have σ[i]∈cons(ρ[i]), for every 1≤ i ≤ |σ|, which means the
word σ in L(G). Therefore L(M)⊆ L(G). For any finite initial
path ρ and any finite trace σ of the same length such that (M,
σ)╞ant (G, ρ), from L(M)⊆ L(G), we have σ[i]∈cons(ρ[i]),
for every 1≤ i ≤ |σ|, which means (M, σ)╞cons (G, ρ).
Therefore M╠G.

Using Lemma 3.1 and Example 3.1, we have:
Theorem 3.5
1) (G1⇒lang G2) ⇒ (G1⇒model G2).
2) (G1⇒model G2) ⇒ (G1⇒lang G2) is not valid.

Using Theorems 3.1, 3.2, 3.3, and 3.5, we have:
Theorem 3.6 If two aspersion graphs G1 and G2 have the
same graph structure and one of the following conditions is
satisfied, then G1⇒model G2.
(1) (ant2(e)⊆ ant1(e)) ∧ (cons1(e)⊆ cons2(e)), for all e∈E,
(2) (ant2(e)⊆ ant1(e)) ∧ (cons1(e)∩ ant2(e)⊆ cons2(e)), for

all e∈E, namely, (ant1(e) ⊇ant2(e)) ∧ (ban1(e)⊇
ban2(e)), for all e∈ E.

IV. Experiments

In this section we show two industrial verification

examples using our GSTE assertion graph implication
approach: a content-addressable memory and a memory unit
with complicated output alignment/mask operations.

We have successfully applied both model-based
implication and language-based implication on a
content-addressable memory (CAM) previously shown in
Figure 5 of [4] for assertion graph implication. The top level
property specification is shown in Figure 2(a). We first
prove that the tag portion of the CAM functions correctly,
and on a tag read it produces the correct tag match, shown in
Figure 2(b). We also prove that the data portion of the CAM
functions correctly, and given a tag match, outputs the
corresponding data, shown in Figure 2(c). We prove these
two assertion graphs (Figure 2(b) and 2(c)) using GSTE. We
then create a product assertion graph G, which is the cross
product of (b) and (c). Since both (b) and (c) have already
been proven to be true, their product G is also true. Also, if a
graph G is true, a portion of the graph G’ should also be true.
We extract a portion (subgraph G’) of the product graph that
is structurally identical to the top level property (Figure 2(a)).
The only difference between G’ and the top level
specification are the antecedents and consequents on each

e1
e2

vI v1

 1062

edge. At this point, we apply Theorem 3.1 and Theorem 3.6
to show that G’ implies the top level specification. Both
model-based implication and language-based implication
were successfully established.

Figure 2. Assertion graphs for CAM.

For runtime comparison, it took 8 CPU seconds to
verify the original property through GSTE (without
decomposition). Each of the decomposed properties (Figure
2(b) and (c)) took 1.5 seconds to verify through GSTE. The
implication based Theorem 3.1 took 0.01 second and the
implication based Theorem 3.4 took 0.1 second. So the
runtime for the decomposed properties plus the implication
total around 3 seconds, which is much faster than the
original verification.

We have also verified a memory unit previously
discussed in [2, 4]. The top level specification is shown in
Figure 3(a). We decompose the proof into two parts. First we
prove that the core part of the memory unit send out the
correct data upon a read (Figure 3(b)). Given the read results
from the core memory, we prove that the select, align and
mask operations are carried out correctly for the data output
(Figure 3(c)). We use GSTE to prove the assertion graphs in
Figure 3(b) and 3(c) against the memory unit, create a
product assertion graph G from these two graphs, extract a
part of the product graph (partial assertion graph), G’, that is
structurally the same as the top level specification (Figure
3(a)). We then use theorem 3.1 and theorem 3.6 to show that
G’ implies the top level specification (Figure 3(a)).

Verification of the original property (Figure 3(a))
through GSTE took 182 CPU seconds (without
decomposition). Verification of each of the decomposed
properties (Figure 3(b) and (c)) took 2 seconds each.
Runtime for the implication based on Theorem 3.1 and 3.6
took 0.01 and 0.3 seconds respectively. So the overall
runtime using a decomposition and assertion graph

implication strategy is much faster than proving the original
property through GSTE.

Figure 3. Assertion graphs for the memory unit

V. Summary and Conclusions

We investigated the problem of implication of assertion

graphs that occur in generalized symbolic trajectory
evaluation (GSTE). We presented a novel implication
technique. It relies on direct Boolean reasoning on each edge
(and vertex) of the assertion graphs, thus avoiding the
reachability computation in GSTE. We successfully applied
both model-based implication and language-based
implication on industrial circuits. Experimental results
demonstrate the promising performance of our approach.

References

[1] J. Yang and C. Seger, “Generalized Symbolic Trajectory

Evaluation,” Technical Report, 2002, Intel Corporation.
[2] J. Yang and C. Seger, “Introduction to Generalized Symbolic

Trajectory Evaluation,” IEEE Trans on VLSI Systems, 11(3),
pp. 345-353, 2003.

[3] A. J. Hu, J. Casas, and J. Yang, “Efficient Generation of
Monitor Circuits for GSTE Assertion Graphs,” IEEE/ACM
International Conference on Computer-Aided Design, 2003.

[4] A. J. Hu, J. Casas, and J. Yang, ``Reasoning about GSTE
Assertion Graphs,'' 12th Advanced Research Working
Conference on Correct Hardware Design and Verification
Methods (CHARME), 2003.

[5] C. Segar and R.E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods
in System Design, 6(2): 147-190, March 1995.

[6] G. Yang and X. Song, “Formal Verification by Generalized
Symbolic Trajectory Evaluation”, Technical Report, Portland
State University, 2004. http://www.ece.pdx.edu/~song/

[7] W. N. N. Hung and N. Narasimhan, “Reference Model Based
RTL Verification: An Integrated Approach”, IEEE
International High Level Design Verification and Test
Workshop (HLDVT), Sonoma, California, November 2004.

v0 v1 v2 v3
WRITE / True

NO_OVERWRITE / True

READ & SEL_ALIGN / True MASK / DATA_CORRECT

True / True

v0 v1 v2
WRITE / True

NO_OVERWRITE / True

READ / READ_RESULT

True / True

v0 v2v1
MASK / DATA_CORRECT

True / True

READ & SEL_ALIGN & READ_RESULT / True
(c)

(a)

(b)

WRITE := (we = 1) ∧ (addr = A) ∧ (datawr = D)
NO_OVERWRITE := (we = 0) ∨ (addr ≠ A)
READ := (ck = 0) ∧ (we = 0) ∧ (addr = A)
SEL_ALIGN := (sel = S) ∧ (align = R)
MASK := (ck = 1) ∧ (maskbegin = B) ∧ (maskend = E)
DATA_CORRECT := (dataout=mask(align(sel(D,S),R),B,E))
READ_RESULT := (memout = D)

v0
TAG_WRITE & DATA_WRITE / True

TAG_RETAIN & DATA_RETAIN / True

TAG_READ / TAG_RESULT & DATA_RESULT

True / True

v2v1

v0 v1 v2
TAG_WRITE / True

TAG_RETAIN / True

TAG_READ / TAG_RESULT & TAG_MATCH

True / True

v0

True / True

v2v1
TAG_READ & TAG_MATCH / DATA_RESULT

DATA_RETAIN / True

DATA_WRITE / True

(a)

(b)

(c)

 TAG_WRITE := (twrite = 1) ∧ (taddr = A) ∧ (tagin = T)
 DATA_WRITE := (dwrite = 1) ∧ (daddr = A) ∧ (din = D)
 TAG_RETAIN := (twrite = 0) ∨ (taddr ≠ A)
DATA_RETAIN := (dwrite = 0) ∨ (daddr ≠ A)
 TAG_READ := (aread = 1) ∧ (tagin = T)
 TAG_RESULT := (hit = 1)
 TAG_MATCH := ∀i [(i = A) ⇒ match[i]]
DATA RESULT := ∀i [(i = A) ⇒ (matchout[i] = D)]

 1063

