
The Joy of Coding

XML, the Extensible Markup Language, is a
text-based language for representing arbitrary
data. The fact that it is text-based, well-formed,
and hierarchical makes it especially useful for
data storage and exchange. We will discuss
XML and learn about the JAXP API for
manipulating XML data. Despite being old (and,
at times, a little clunky), these APIs provide good
examples of some important patterns and
abstractions in object-oriented programming.

The Extensible Markup Language

• Introduction to XML

• The Document Type Definition

• The Document Object Model

Copyright ©2000-2025 by David M. Whitlock. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or fee. Request permission to publish from
whitlock@cs.pdx.edu. Last updated January 4, 2025.

1

The Extensible Markup Language

XML is a text-based language that, like HTML, uses tags
to represent data:

<?xml version=’1.0’ encoding=’us-ascii’?>
<person shoeSize="10.5">

<!-- Every person has a name -->
<name>Dave</name>

</person>

Each XML document begins a prolog that states the
version of XML being used (<?xml ... ?>)

Tags are said to denote elements of an XML file

• Elements can be nested as shown above

• Elements can have no subelements (e.g. <person/>)

Unlike HTML, XML documents are well-formed

• Each opening tag must have a closing tag

• Tags must be properly nested

Elements may also have name/value pairs associated
with them called attributes (e.g. shoeSize)

2

The Extensible Markup Language

What makes XML interesting?

• Plain text can be easily read by humans and a bevy
of tools

• Tells you what kind of data you have, not just how to
display it

– Easier to extract the information you want

• Well-formatted means that it can be processed safer
and easier

• Hierarchical in nature

– Can be searched more efficiently

– Natural fit with objects!

3

Working with XML

Industry-wide acceptance and standardization

• SAX API: Serial access to XML documents (fast)

• DOM API: Modeling XML documents as a tree of
objects (convenient)

• Numerous XML-based standards for sharing data
(multimedia, documents, converting XML to HTML,
etc.)

• Web Services use XML and HTTP to communicate
over the internet

– Helps homogenize the internet

– Windows, UNIX, cell phones, etc. can all speak
web services

• Many organizations working to improve, extend, and
use XML

4

Model data with an element or an attribute?

Use an element when:

• The data contains substructures

• The data contains multiple lines (e.g. long lines of
text)

• The data changes frequently or varies greatly

• The data is meant to be displayed to the user

• The data is the “contents” of some “container”

Use an attribute when:

• The data is small and rarely changes

• There are only a small, fixed number of choices for
the data’s value

• The data is used for processing the document (not
seen by the user)

• The data is a “characteristic” of some “container”

5

Text Data in XML

Because XML data, itself, is represented as text,
describing text in an XML document is little screwy:

Character Data (CDATA) is taken as a literal string

• Special characters like < will be ignored

• Attributes that have textual values are of type CDATA

• CDATA is quoted or double-quoted

Parsed Character Data (PCDATA) is parsed by the parser

• Special characters like < must be escaped with
character sequences like <

• Elements that contain text are of type #PCDATA

• PCDATA is free standing in the XML document

Example:

<expression short="x>5">
<display>x > 5</display>

</expression>

6

The Document Type Definition

Many XML documents reference a Document Type
Definition

• Specifies the kinds of elements (tags) that may
appear in an XML document

• When the XML document is parsed, its DTD is
consulted to ensure that it is structurally correct

• Not overly easy to use

A DTD for a person:

<?xml version=’1.0’ encoding=’us-ascii’?>
<!ELEMENT person (name)>
<!ATTLIST person

shoeSize CDATA #IMPLIED
>

<!ELEMENT name #PCDATA>

7

Parts of a DTD

A DTD looks a little like an XML document

• Begins with a declaration

• Denote XML elements with the ELEMENT tag that
states the name of the element followed by its valid
contents

• The following qualifiers can be used when describing
elements

? Optional (zero or one)
* Zero or more
+ One or more
| “or”
, “followed by”

• Elements that contain text are denoted as #PCDATA
for “parsed character data”

• Elements with empty bodies are denoted with EMPTY

• An element name can only be defined once

8

Parts of a DTD

The attributes of an element are specified by the ATTLIST
tag

Each attribute is described by three values: name, type,
and specification

• type may be a list of choices such as (red | blue |
green) or un-parsed character data (CDATA)

• The specification states if the attribute is required

#REQUIRED Attribute must be specified
#IMPLIED Not required, application

must have default value
value Some default value for the at-

tribute
#FIXED value If value is present it must

have this value

There are also DTD tags called “entities” that are
essentially macros that are expanded in the XML
document.

9

Designing a DTD

To motivate our discussion of XML and Document Type
Definitions, we model a phone book containing entries for
residents and businesses

Each resident has a first and last name, an optional
middle initial, an address, and a telephone number.
Residents may be marked as “unlisted”.

Each business has a name, an address, and a telephone
number.

Each address consists of multiple lines of text giving the
street address, an optional apartment number, and a city,
state, and zip code

Each telephone number has a three-digit area code and
a seven digit number

10

A DTD for our phonebook

<?xml version=’1.0’ encoding=’us-ascii’?>
<!ELEMENT phonebook (resident | business)*>

<!ELEMENT resident (first-name, initial?, last-name,
address, phone)>

<!ATTLIST resident
unlisted (true | false) #IMPLIED

>

<!ELEMENT business (name, address, phone)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT first-name (name)>
<!ELEMENT last-name (name)>
<!ELEMENT initial (#PCDATA)>

<!ELEMENT address (street+, apt?, city, state, zip)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT apt (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone EMPTY>
<!ATTLIST phone

areacode CDATA #REQUIRED
number CDATA #REQUIRED

>

11

Specifying the DTD for an XML document

The <!DOCTYPE> tag is used to specify the root element
and the DTD that describes the format of an XML
document.

The DTD is an external entity from the XML document
and can be specified by a “system id” or a “public id”

A system id specifies a URL (or relative file name) for the
DTD

<!DOCTYPE phonebook SYSTEM "phonebook.dtd">

<!DOCTYPE family-tree SYSTEM
"http://www.--.edu/~whitlock/dtds/familytree.dtd">

A public id specifies a URN (Universal Resource Name)
for the DTD

<!DOCTYPE family-tree PUBLIC
"-//Portland St Univ//DTD CS399J Family Tree//EN"
"http://www.--.edu/~whitlock/dtds/familytree.dtd">

When an XML processor sees a public id, it can use a
local copy of the DTD (e.g. in a jar file) instead of visiting
the URL.

12

An XML document for our phonebook

<?xml version=’1.0’ encoding=’us-ascii’?>
<!DOCTYPE phonebook SYSTEM ’phonebook.dtd’>

<phonebook>
<resident>

<first-name><name>David</name></first-name>
<initial>M</initial>
<last-name><name>Whitlock</name></last-name>
<address>

<street>PSU CS Department</street>
<street>P.O. Box 751</street>
<city>Portland</city>
<state>OR</state>
<zip>97201</zip>

</address>
<phone areacode="503" number="725-4039"/>

</resident>
<business>

<name>Powell’s Technical Bookstore</name>
<address>

<street>33 NW Park</street>
<city>Portland</city>
<state>OR</state>
<zip>97209</zip>

</address>
<phone areacode="503" number="228-3906"/>

</business>
</phonebook>

13

Java APIs for Working with XML

The World Wide Web Consortium (W3C) is the
international standards body responsible for XML

• The W3C has published several APIs consiting of
interfaces and abstract classes that model and
manipulate XML

– org.xml.sax: The Simple API for XML
Provides event-driven, serial access to XML data

– org.w3c.dom: The Document Object Model
models XML data as an object graph

• A vendor (Sun, IBM, Apache) implements these
interfaces

People from across the Java ecosystem came together to
develop a standard set of APIs for parsing XML (JAXP)

• javax.xml.parsers: APIs for parsing XML
Provides an interface to vendors’ XML parsers

• javax.xml.transform: APIs for transforming XML
into text, HTML, etc. using the Extensible Stylesheet
Language for Transformations (XSLT)

14

The Simple API for XML (SAX)

SAX provides serial access to XML data

• The programmer provides an implementation of
callback* methods that are invoked as the XML data
is parsed

• Fast and memory-efficient, but not very natural

• Cannot look backwards in the document

javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.SAXParser are used to parse XML
data using SAX

Interfaces in the org.xml.sax package such as
ContentHandler, ErrorHandler, and InputSource are
inputs to SAX parsing

org.xml.sax also contains exceptions throwing during
parsing

• SAXException, SAXParseException, etc.

*A callback is a piece of functionality that a user provides to a third
party piece of software such as a parser or a GUI event manager.

15

XML Parsers and the Factory Pattern

The W3C and standard Java specify the interfaces for
parsing XML, but somebody else actually implements it

• The consumer of these APIs shouldn’t know about
the implementation classes

• “Program to the Interface”

XML Parsers use the “Factory” design pattern to
encapsulate their configuration and creation

• A “factory” object knows how to create a parser

• Hides details of creation, constructors are not
invoked directly

• Implementation-specific features can be set on the
factory as key/value Strings

The choice of parser factory implementation is specified
by a system property or in a JRE configuration file

16

Obtaining a SAX parser

javax.xml.parsers contains classes for parsing XML

A SAXParserFactory is an object that creates a
SAXParser

• The factory’s configuration determines what kind of
parser is created

• Features may be set by name (a String)

• The setValidating method is used to enable
validation of XML againsts its DTD

• Once the factory has been configured, its
newSAXParser method returns the desired
SAXParser

• If the configuration isn’t correct a
ParserConfigurationException is thrown

Note that SAXParser’s constructor is protected!
17

Parsing XML with SAX

SAXParser’s parse methods parse XML data using SAX

The XML data can come from several sources

• A java.io.File

• A java.io.InputStream

• A String Uniform Resource Identifier (URI)

• An org.xml.sax.InputSource (can be wrapped
around an InputStream, Reader, etc.)

– Should call setSystemId with URI of source, so it
can find relative entities (like DTDs)

18

Parsing XML with SAX

During parsing, the methods of an
org.xml.sax.helpers.DefaultHandler are invoked

• A DefaultHandler is a convience class that provides
no-op implementations of: EntityResolver,
DTDHandler, ContentHandler, ErrorHandler

warning()

XML

Parser

ContentHandler

ErrorHandler

Black Box

XML Parser

Your XML

document

Your callback

handler objects

XML

InputSource

startElement()

While parsing, an IOException or SAXException may be
thrown

19

org.xml.sax.ContentHandler

ContentHandler contains callback methods that are
invoked as the XML document is being parsed

• startDocument/endDocument

• startElement/endElement

– Has an Attributes with a type and value

org.xml.sax.EntityResolver

An EntityResolver’s resolveEntity method is invoked
when the SAX parser is looking for an external identity
with a given public ID and system ID

• Good for intercepting requests for external
documents
– For example, if the dtd is located in a jar file or

database

org.xml.sax.DTDHandler

A DTDHandler provides callback methods invoked while
parsing a DTD (“events”) – Not widely used

20

org.xml.sax.ErrorHandler

An ErrorHandler contains methods that are invoked
when problems are encountered during parsing

• Allows applications to handle errors in different ways

• For example, log error message to a file

• The default behavior is to not report errors, so you
really need an ErrorHandler!

Each of the callback methods is invoked with a
SAXParserException containing the line and column
number being parsed when the problem was encountered

• warning: An element is not declared in the DTD, a
DTD contains multiple declarations of the element,
etc.

• error (recoverable): Portion of data does not match
encoding, etc.

• fatalError (not recoverable): The XML is not
well-formed, cannot process the encoding, etc.

Most of the time, you’ll want to just rethrow the
SAXParserException or wrap it in another exception

21

Example SAX Parser

package edu.pdx.cs399J.xml;

import java.io.*;
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

public class PrintPhoneNumbers
extends DefaultHandler {

private static PrintStream out = System.out;
private static PrintStream err = System.err;

public void startElement(String namespaceURI,
String localName,
String qName,
Attributes attrs)

throws SAXException {

if (qName.equals("phone")) {
String area = attrs.getValue("areacode");
String number = attrs.getValue("number");
out.println("(" + area + ") " + number);

}
}

22

Example SAX Parser

public void warning(SAXParseException ex) {
err.println("WARNING: " + ex);

}

public void error(SAXParseException ex) {
err.println("ERROR: " + ex);

}

public void fatalError(SAXParseException ex) {
err.println("FATAL: " + ex);

}

23

Example SAX Parser

public static void main(String[] args) {
SAXParserFactory factory =

SAXParserFactory.newInstance();
factory.setValidating(true);

SAXParser parser = null;
try {

parser = factory.newSAXParser();

} catch (ParserConfigurationException ex) {
// ...

} catch (SAXException ex) {
// ...

}

DefaultHandler handler = new PrintPhoneNumbers();
try {

File file = new File(args[0]);
InputSource source =

new InputSource(new FileReader(file));
source.setSystemId(file.toURL().toString());
parser.parse(source, handler);

} catch (SAXException ex) {
// ...

} catch (IOException ex) {
// ...

}

24

Example SAX Parser

$ java edu.---.PrintPhoneNumbers phonebook.xml
(503) 725-4039
(503) 228-3906

When the parser parsed an element, it called
startElement

SAX parsing is good when you only want a little
information from XML data or the data is fairly simple

25

The Document Object Model

The Document Object Model is a programming API for
documents put forward by the World Wide Web
Consortium (W3C)

DOM views structured hierarchical documents as trees of
objects

<initial> <lastname> <address>

"M" <name>

"Whitlock"

<street>

"PSU CS Department"

<street>

"P.O. Box 751" "Portland" "OR"

<citty> <state> <zip>

"97201"

<resident>

<address>

number="228−3906"

<phone>

areacode="503"

<business>

<zip><state><citty>

"OR" "97209""Portland"

<street>

"33 NW Park"

"Powell’s Technical Bookstore"

<name>

<phonebook>

<phone>

areacode="503"

number="725−4039"

<firstname>

<name>

"David"

DOM gives you an object view of an XML file and
provides an API by which the objects can be examined
and modified

26

The DOM API: The org.w3c.dom package

org.w3c.dom contains interfaces that specify which
objects a DOM tree may contain

Node

Element DocumentTypeCharacterDataDocumentAttr

CDATASection

TextComment

27

org.w3c.dom.Node

Node represents a node in a DOM tree

• appendChild: Adds a child Node

• getNodeName: Returns the name of the node (e.g.
element name)

• getAttributes: Returns a Node’s attributes as a
NamedNodeMap (only Element nodes have attributes)

• getNodeValue: Returns the “value” of a Node (e.g.
the text of a Text node)

• getOwnerDocument: Returns the Document in which
a Node resides

• getParentNode: Returns a Node’s parent in the DOM
tree

28

org.w3c.dom.Document

A Document represents an XML document and contains
factory methods for creating Nodes:

• createElement

• createTextNode

• createAttribute

• createComment

Also contains methods to examine the XML document

• getDoctype: Returns a DocumentType object that
models the DTD for an XML document

• getDocumentElement: Returns the root Element of
the document

• getElementsByTagName: Returns all of the Elements
in a document with the given name

29

org.w3c.dom.Element

An Element represents an element in an XML document.

• getAttribute/getAttributeNode: Returns the
value (String/Attr) of a given named attribute

• getTagName: Returns the name of an Element (you
can also use getNodeName)

• removeAttribute/removeAttributeNode

• setAttribute/setAttributeNode

30

org.w3c.dom.Attr

Attr represents an attribute of an Element

• getName: Returns the name of an Attr

• getValue / setValue

org.w3c.dom.NamedNodeMap

The attributes of an Element are described by a
NamedNodeMap (a “collection” that maps Strings to
Nodes)

• getLength: Returns the number of items in a
NamedNodeMap

• getNamedItem: Returns the Node (e.g. Attr) with a
given name

• item: Returns the Node at a given index in the map

• setNamedItem: Adds a Node to the mapping

• removeNamedItem

31

org.w3c.dom.CharacterData

CharacterData represents (duh) character data in a
document

• getData: Returns a String representing the
character data

• setData / appendData / insertData

org.w3c.dom.Text

Text represents PCDATA

org.w3c.dom.Comment

Comment represent a comment in a document

32

Turning DOM trees into Objects

Now, we’re going to use the data stored in a DOM tree to
construct Java objects

Business

#String name#String firstName

#String middleInitial

#String lastName

#boolean unlisted

Resident

PhoneBook
1 *

#String[] street

#String city

#String state

#String phone

#String apt

#String zip

#fillInAddress(Element)

#fillInPhone(Element)

PhoneBookEntry

33

The Phone Book Classes

PhoneBooks, Residents and Businesses are constructed
from pieces (Elements) of a DOM tree*

• Examine each of the Element’s children in the DOM
tree and extracting information from them

• Common code for extracting address and phone
information was refactored into the PhoneBookEntry
class

• The toString method of Resident creates a String
for the resident’s name and then invokes
super.toString() to handle the address and phone
portion

• Code reuse!

• Note the use of protected fields and methods

*In this example code, the domain classes are highly dependent on
the XML APIs. In general, it’s better to separate domain objects from
code that converts them to other data formats.

34

Constructing a PhoneBook

package edu.pdx.cs399J.xml;
import java.io.*;
import java.util.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;

public class PhoneBook {
private Collection entries = new ArrayList<>();

public PhoneBook(Element root) {
NodeList entries = root.getChildNodes();
for (int i = 0; i < entries.getLength(); i++) {

Node node = entries.item(i);
if (!(node instanceof Element)) {

// Ignore other stuff
continue;

}
Element entry = (Element) node;
switch (entry.getNodeName()) {

case "resident":
this.entries.add(new Resident(entry));
break;

case "business":
this.entries.add(new Business(entry));
break;

}
}

35

Highlights from PhoneBookEntry

package edu.pdx.cs399J.xml;
import java.util.*;
import org.w3c.dom.*;

public abstract class PhoneBookEntry {
protected List streetLines = new ArrayList();
protected String apt; // snip...

protected void fillInAddress(Element root) {
NodeList elements = root.getChildNodes();
for (int i = 0; i < elements.getLength(); i++) {

Node node = elements.item(i);
if (!(node instanceof Element)) {

continue;
}
Element element = (Element) node;
switch (element.getNodeName()) {

case "street": {
Node text = element.getFirstChild();
this.streetLines.add(text.getNodeValue());
break;

}
case "apt": {

Node text = element.getFirstChild();
this.apt = text.getNodeValue();
break;

}
// Snip...

36

Extracting attributes from elements

From PhoneBookEntry:

protected void fillInPhone(Element phone) {
String areacode = null;
String number = null;

// Examine the phone’s attributes
NamedNodeMap attrs = phone.getAttributes();
for (int i = 0; i < attrs.getLength(); i++) {

Node attr = attrs.item(i);
switch (attr.getNodeName()) {

case "areacode":
areacode = attr.getNodeValue();
continue;

case "number":
number = attr.getNodeValue();
continue;

}
}

this.phone = areacode + "-" + number;
}

We could have also used:

areacode = phone.getAttribute("areacode");
number = phone.getAttribute("number");

37

Parsing XML data as DOM

javax.xml.parsers contains classes for parsing XML
data as DOM

• Follows the “factory” pattern

• A DocumentBuilderFactory creates a
DocumentBuilder

• A DocumentBuilderFactory may be configured to
create validating parsers

• DocumentBuilder’s parse methods read XML data
from a source (File, InputSource, etc.) and from it
create a Document

• DOM parsers use SAX parsers to do the heavy lifting

• DocumentBuilder has setEntityResolver and
setErrorHandler methods

38

Parsing XML data as DOM

From PhoneBook.java

public static void main(String[] args) {
// Parse the XML file to create a DOM tree
Document doc = null;
try {

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setValidating(true);

DocumentBuilder builder =
factory.newDocumentBuilder();

doc = builder.parse(new File(args[0]));

} catch (ParserConfigurationException ex) {
// ...

} catch (SAXException ex) {
// ...

} catch (IOException ex) {
// ...

}

Element root =
(Element) doc.getChildNodes().item(1);

PhoneBook phonebook = new PhoneBook(root);
System.out.println(phonebook);

}

39

Creating a PhoneBook

$ java edu.---.PhoneBook phonebook.xml
Phone Book

David M Whitlock
PSU CS Department
P.O. Box 751
Portland, OR 97201
503-725-4039

Powell’s Technical Bookstore
33 NW Park
Portland, OR 97209
503-228-3906

40

Creating an empty DOM tree

The org.w3c.dom.DOMImplementation interface
provides methods for creating DOM trees

• createDocumentType creates a
org.w3c.dom.DocumentType that represents a DTD

– Name of root element (e.g. phonebook)

– DTD’s public identifier (text description of DTD)

– DTD’s system identifier (e.g. DTD’s URL)

• createDocument is used to create an empty XML
Document

– “Namespace URI” of the document (null for our
purposes)

– Name of the root element of the document

– The DocumentType for the document

DocumentBuilder’s getDOMImplementation method
returns a DOMImplementation

If an error occurs while creating a DOM tree, a
org.w3c.dom.DOMException will be thrown

41

Converting XML

XML by itself is nice, but often we want to convert it into
something else

• Text for viewing by humans

• HTML for display in a web browser

• A different XML format

The Extensible Stylesheet Language (XSL) is used for
transforming XML

• XSLT: A language for specifying XML transformations

• XPath: A language for “addressing” portions of XML
data

– Lets XSLT distinguish between
<person><address> and <order><address>

• XSL-FO: “Flow objects” that desribe font sizes,
layouts and how information flows from one page to
another

42

XSLT in Java

javax.xml.transform contains classes and interfaces
for transforming XML

• A TransformerFactory creates a Transformer

• A Transformer transforms a Source to a Result

– Accomplished with the transform method

• An ErrorListener has callback methods invoked
when a TransformerException is thrown

javax.xml.transform.dom contains classes for using
DOM as an input or output to/from an XML transformation

• DOMSources and DOMResults are created from an
org.w3c.dom.Node

Similarly for javax.xml.transform.sax

javax.xml.transform.stream contains classes for
using I/O streams for input/output to/from a
transformation

• StreamSource: Reads from an InputStream,
Reader, etc.

• StreamResult: Writes to an OutputStream, Writer
43

Formatting the Result of a Transformation

By default, a Transformer creates raw, unformatted XML

Transformer’s setOutputProperty method is used to
set formatting properties

The constants defined in the OutputKeys class are used
to specify a property

• DOCTYPE_SYSTEM: The system id of the DTD

• DOCTYPE_PUBLIC: The public id of the DTD

• OMIT_XML_DECLARATION: Should there be a <?xml
declaration? (yes or no)

• INDENT: Should the output be indented? (yes or no)

• METHOD: How should the result outputted? (text,
xml, html, or other)

44

Building a DOM tree from scratch

package edu.pdx.cs399J.xml;
import java.io.*;
import java.net.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*; // DOMSource
import javax.xml.transform.stream.*; // StreamResult
import org.w3c.dom.*;

public class BuildPhonebook {
private static PrintStream err = System.err;

public static void main(String[] args) {
String publicID = null; // Who cares?
String systemID = null;

try {
File dtd = new File("phonebook.dtd");
systemID = dtd.toURL().toString();

} catch (MalformedURLException ex) {
err.println("** Bad URL: " + ex);
System.exit(1);

}

// continued...

45

Building a DOM tree from scratch

// Create an empty Document
Document doc = null;
try {

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setValidating(true);
DocumentBuilder builder =

factory.newDocumentBuilder();
DOMImplementation dom =

builder.getDOMImplementation();
DocumentType docType =

dom.createDocumentType("phonebook", publicID,
systemID);

doc = dom.createDocument(null, "phonebook",
docType);

} catch (ParserConfigurationException ex) {
// ...

} catch (DOMException ex) {
// ...

}

46

Building a DOM tree from scratch

// Construct the DOM tree
try {

Element root = doc.getDocumentElement();

Element biz = doc.createElement("business");
root.appendChild(biz);

Element name = doc.createElement("name");
biz.appendChild(name);
String br = "Tripwire, Inc.";
name.appendChild(doc.createTextNode(br));

Element address = doc.createElement("address");
biz.appendChild(address);
// continued...

47

Building a DOM tree from scratch

Element street1 = doc.createElement("street");
address.appendChild(street1);
String st1 = "805 SW Broadway";
street1.appendChild(doc.createTextNode(st1));

Element city = doc.createElement("city");
address.appendChild(city);
city.appendChild(doc.createTextNode("Portland"));

Element state = doc.createElement("state");
address.appendChild(state);
state.appendChild(doc.createTextNode("OR"));

Element zip = doc.createElement("zip");
address.appendChild(zip);
zip.appendChild(doc.createTextNode("97205"));

Element phone = doc.createElement("phone");
biz.appendChild(phone);
phone.setAttribute("areacode", "503");
phone.setAttribute("number", "973-5200");

} catch (DOMException ex) {
err.println("** DOMException: " + ex);
System.exit(1);

}

// continued...

48

Building a DOM tree from scratch

// Write the XML document to the console
try {

Source src = new DOMSource(doc);
Result res = new StreamResult(System.out);

TransformerFactory xFactory =
TransformerFactory.newInstance();

Transformer xform = xFactory.newTransformer();
xform.setOutputProperty(OutputKeys.INDENT,

"yes");
xform.setOutputProperty(

OutputKeys.DOCTYPE_SYSTEM, systemID);
xform.transform(src, res);

} catch (TransformerException ex) {
ex.printStackTrace(System.err);
System.exit(1);

}
}

}

Note that when we built the DOM tree we used Elements,
Documents, and DocumentTypes

JAXP has its own classes that implement the W3C
interfaces, but we don’t care: Program to the interface!

49

Building a DOM tree from scratch

Running our program...

$ java edu.---.BuildPhonebook
<?xml version=’’1.0’’ encoding=’’UTF-8’’?>
<!DOCTYPE phonebook SYSTEM

"file:/u/whitlock/public_html/src/edu/
pdx/cs399J/xml/phonebook.dtd">

<phonebook>
<business>
<name>Tripwire, Inc.</name>
<address>
<street>308 SW 2nd Ave</street>
<street>Suite 400</street>
<city>Portland</city>
<state>OR</state>
<zip>97205</zip>
</address>
<phone areacode="503" number="276-7500"/>
</business>
</phonebook>

50

So What?

We’ve just seen how we can construct an XML
document, model an XML document using DOM, and
construct Java object from a DOM tree.

We could also generate a DOM tree, and thus an XML
file, from our Java objects.

By using XML with a DTD we have agreed upon a
standard representation of our data.

If we follow all use the same DTD, we can share our data
without worries.

This is the promise of XML!

51

But, wait. There’s more!

The XML Schema Definition (XSD) improves on DTD for
defining a structure (“schema”) for XML content

• XSD is expressed as XML

• Support for data types like numbers and dates,
restrictions on data values, validation with regular
expressions, etc.

The Java API for XML Binding (JAXB) streamlines the
amount of Java code necessary to work with XML

• Generate Java classes directly from an XSD

– Command line tools, Maven plugin, etc.

• Java annotations that guide how objects are mapped
to XML

• Custom transformations for complex objects and JDK
objects/enums

52

Summary

XML is a text-based markup language used for
representing data

The format of an XML document is specified by a DTD

The Document Object Model is used to view hierarchical
documents as a tree of objects

The JAXP API provides a standard interface for parsing
XML data and working with DOM trees that represent
them.

XML allows people to share data regardless of how their
programs represent or manipulate it internally.

53

