
The Joy of Coding Summer 2024 Project 0 Submittable is optional

Project 0: Extending A Class

In this project you will write a Student class that subclasses the Human class we discussed in lecture.

Goals:

• Work with someone else’s class

• Learn about inheritance and virtual methods

• Read program arguments from the command line

Below is the skeleton of a simple Java class that extends the Human class. Class Student is declared in
package edu.pdx.cs.joy.your-login-id. In order for Student to access its superclass, Human, it must
import the edu.pdx.cs.joy.lang package. Note how the Student class overrides the says and
toString methods.

package edu.pdx.cs.joy.<your-login-id>;

import edu.pdx.cs.joy.lang.*; // Lets us use Human
import java.util.*; // Lets us use ArrayList

/**
* This class is represents a <code>Student</code>.

*/
public class Student extends Human {

/**
* Creates a new <code>Student</code>

*
* @param name

* The student’s name

* @param classes

* The names of the classes the student is taking. A student

* may take zero or more classes.

* @param gpa

* The student’s grade point average

* @param gender

* The student’s gender ("male", "female", or "other", case insensitive)

*/
public Student(String name, ArrayList<String> classes, double gpa, String gender) {

super(name);
}

1

/**
* All students say "This class is too much work"

*/
public String says() {

throw new UnsupportedOperationException("Not implemented yet");
}

/**
* Returns a <code>String</code> that describes this

* <code>Student</code>.

*/
public String toString() {

throw new UnsupportedOperationException("Not implemented yet");
}

/**
* Main program that parses the command line, creates a

* <code>Student</code>, and prints a description of the student to

* standard out by invoking its <code>toString</code> method.

*/
public static void main(String[] args) {

System.err.println("Missing command line arguments");
System.exit(1);

}
}

The easiest way to get started with this project is to following the instructions in this GitHub repository.

https://github.com/DavidWhitlock/PortlandStateJavaGettingStarted

The generated Maven project contains unit and integration tests to get you started with test-driven develop-
ment. You can build the project and run its tests by invoking the verify phase.

$./mvnw verify

Building the Maven project will create an “executable jar” file that will invoke the mainmethod the Student
class.

$ java -jar target/student-1.0.0.jar

Initially, running the executable jar will simply print “Missing command line arguments” to standard error.
The goal of this assignment is to parse the input from the command line, create a new Student object, and
invoke its toString method such that running this command result in the output below:

$ java -jar target/student-1.0.0.jar \
Dave male 3.64 Algorithms "Operating Systems" Java

Dave has a GPA of 3.64 and is taking 3 classes: Algorithms, Operating
Systems, and Java. He says "This class is too much work".

2

Error handling: Your program should exit “gracefully”1 with a user-friendly error message under all reason-
able error conditions. For instance, if the command line does not contain enough entries, then your program
should issue an error like Missing command line arguments! It would be even better if it stated
which arguments were missing.

A note from Dave on gender and this project

At one point in time, this project modeled gender as a binary choice between “female” and “male”. A student
of mine, Casper Rutz, reached out to engage me in a conversation about the impacts of a representing gender
in the computing sciences. They had this to say on the subject:

Confining options of things like gender, sexuality, and race to boxes to be checked or unchecked
is problematic as it automatically limits the autonomy of our users, but is often necessary for the
sake of user statistics and database entry. The goal we should have as programmers is to allow
our users as much freedom to choose how to define themselves in our system as we realistically
can, given the constraints of whatever we are building.

In a real student record system (such as the one used by PSU) there are many gender options
for students to choose from; however, for ease of programming, this assignment is going to limit
gender and pronouns to three options: male (he/him), female (she/her), and other (they/them).

In our dialog, Casper helped me realize something that I think is powerful: When a project like this one
restricts gender to a binary choice, people who do not identify within that binary cannot use themselves as a
test case. As a result, their identity is not represented and, in a way, is erased. That runs counter to a software
engineer’s goal of writing software that is welcoming and usable to a wide customer base.

Casper and I talked about how best to evolve this project to be more inclusive (and realistic). Modeling a
multi-valued data attribute is part of the project and something that I want students to learn how to do. We
agreed that it would be appropriate to include a third gender option of “other” to model a Student who
does not identify as “male” or “female”.

I admire the courage that Casper showed to bring these issues to my attention and greatly appreciate the
education they have brought to me. That education has helped me improve this project.

Last updated May 19, 2024

1For example, the user shouldn’t see any evidence of an exception being thrown.

3

