Solution to the

Gaming Parlor

Programming Project
The Gaming Parlor - Solution

- **Scenario:**
 - Front desk with dice (*resource units*)
 - Groups request (e.g., 5) dice (*They request resources*)
 - Groups must wait, if none available
 - Dice are returned (*resources are released*)
 - A list of waiting groups... A “condition” variable
 - The condition is signaled
 - The group checks and finds it needs to wait some more
 - The group (thread) waits...and goes to the end of the line

- **Problem?**
The Gaming Parlor – Solution

- **Scenario:**
 - Front desk with dice (*resource units*)
 - Groups request (e.g., 5) dice (*They request resources*)
 - Groups must wait, if none available
 - Dice are returned (*resources are released*)
 - A list of waiting groups... A “condition” variable
 - The condition is signalled
 - The group checks and finds it needs to wait some more
 - The group (thread) waits...and goes to the end of the line

- **Problem?**
 - Starvation!
The Gaming Parlor - Solution

- **Approach:**
 - Serve every group “first-come-first-served”.

- **Implementation:**
 - Keep the thread at the front of the line separate
 - “Leader” - the thread that is at the front of the line
 - Use 2 condition variables.
 - “Leader” will have at most one waiting thread
 - “RestOfLine” will have all other waiting threads
The Threads

```plaintext

function Group (numDice: int)
    var i: int
    for i = 1 to 5
        gameParlor.Acquire (numDice)
        currentThread.Yield ()
        gameParlor.Release (numDice)
        currentThread.Yield ()
    endFor
endFunction

thA.Init ("A")
thA.Fork (Group, 4)
...
```
class GameParlor
 superclass Object
 fields
 monitorLock: Mutex
 leader: Condition
 restOfLine: Condition
 numberDiceAvail: int
 numberOfWaitingGroups: int
 methods
 Init ()
 Acquire (numNeeded: int)
 Release (numReturned: int)
 Print (str: String, count: int)
endClass
The Release Method

method Release (numReturned: int)
 monitorLock.Lock ()

 -- Return the dice
 numberDiceAvail = numberDiceAvail + numReturned

 -- Print
 self.Print ("releases and adds back", numReturned)

 -- Wakeup the first group in line (if any)
 leader.Signal (&monitorLock)

 monitorLock.Unlock ()
endMethod
The Acquire Method

```java
method Acquire (numNeeded: int)
    monitorLock.Lock ()
    -- Print
    self.Print ("requests", numNeeded)
    -- Indicate that we are waiting for dice.
    numberOfWaitingGroups = numberOfWaitingGroups + 1
    -- If there is a line, then get into it.
    if numberOfWaitingGroups > 1
        restOfLine.Wait (&monitorLock)
    endIf
    -- Now we're at the head of the line.  Wait until there are enough dice.
    while numberDiceAvail < numNeeded
        leader.Wait (&monitorLock)
    endwhile
    ...
```
The Acquire Method

...

-- Take our dice.
numberDiceAvail = numberDiceAvail - numNeeded

-- Now we are no longer waiting; wakeup some other group and leave.
numberOfWaitingGroups = numberOfWaitingGroups - 1
restOfLine.Signal (&monitorLock)

-- Print
self.Print ("proceeds with", numNeeded)

monitorLock.Unlock ()
endMethod
Page sharing

- In a large multiprogramming system...
 - Some users run the same program at the same time
 - Why have more than one copy of the same page in memory???

- **Goal:**
 - Share pages among “processes” (not just threads!)
 - Cannot share writable pages
 - If writable pages were shared processes would notice each other’s effects
 - Text segment can be shared
Page sharing

Process 1
address
space

Process 1
page table

Physical memory

Process 2
address
space

Process 2
page table

Stack (rw)

Data (rw)

Instructions (rx)
Page sharing

- "Fork" system call
 - Copy the parent’s virtual address space
 - ... and immediately do an “Exec” system call
 - Exec overwrites the calling address space with the contents of an executable file (i.e., a new program)
 - Desired Semantics:
 - pages are copied, not shared
 - Observations
 - Copying every page in an address space is expensive!
 - processes can’t notice the difference between copying and sharing unless pages are modified!
Page sharing

- **Idea:** *Copy-On-Write*
 - Initialize new page table, but point entries to existing page frames of parent
 - Share pages
 - Temporarily mark all pages “read-only”
 - Share all pages until a protection fault occurs

- Protection fault (copy-on-write fault):
 - Is this page really read only or is it writable but temporarily protected for copy-on-write?
 - If it is writable
 - copy the page
 - mark both copies “writable”
 - resume execution as if no fault occurred
New System Calls for Page Management

- **Goal:**
 - Allow some processes more control over paging!

- **System calls added to the kernel**
 - A process can request a page before it is needed
 - Allows processes to grow (heap, stack etc)
 - Processes can share pages
 - Allows fast communication of data between processes
 - Similar to how threads share memory
 - ... so what is the difference?
Unix processes

- Stack Pages
- Not allocated to the virtual address space
- Data Pages
- Text Pages
Unix processes

- Stack Pages
- Not allocated to the virtual address space
- Data Pages
- Text Pages

Page Zero: Environment (Filled in with parameters to the process)
Unix processes

- The stack grows;
- Page requested here

Stack Pages

Not allocated to the virtual address space

Data Pages

Text Pages
Unix processes

- The stack grows;
- Page requested here
- A new page is allocated and process continues
Unix processes

- The stack grows;
- Page requested here
- A new page is allocated and process continues

Stack Pages

Not allocated to the virtual address space

Data Pages

Text Pages
Unix processes

- The heap grows;
- Page requested here

Stack Pages

Not allocated to the virtual address space

Data Pages

Text Pages
Unix processes

- The heap grows;
- Page requested here
- A new page is allocated and process continues

Stack Pages

Data Pages

Text Pages

Not allocated to the virtual address space
Unix processes

- The heap grows;
- Page requested here
- A new page is allocated and process continues
Virtual memory implementation

- When is the kernel involved?
Virtual memory implementation

- When is the kernel involved?
 - Process creation
 - Process is scheduled to run
 - A fault occurs
 - Process termination
Virtual memory implementation

- **Process creation**
 - Determine the process size
 - Create new page table
Virtual memory implementation

- Process is scheduled to run
 - MMU is initialized to point to new page table
 - TLB is flushed
Virtual memory implementation

- **A fault occurs**
 - Could be a TLB-miss fault, segmentation fault, protection fault, copy-on-write fault ...
 - Determine the virtual address causing the problem
 - Determine whether access is allowed, if not terminate the process
 - Refill TLB (TLB-miss fault)
 - Copy page and reset protections (copy-on-write fault)
 - Swap the evicted page out & read in the desired page (page fault)
Virtual memory implementation

- Process termination
 - Release / free all frames
 - Release / free the page table
Handling a page fault

- Hardware traps to kernel
 - PC and SR are saved on stack
- Save the other registers
- Determine the virtual address causing the problem
- Check validity of the address
 - determine which page is needed
 - may need to just kill the process
- Find the frame to use (page replacement algorithm)
- Is the page in the target frame dirty?
 - If so, write it out (& schedule other processes)
- Read in the desired frame from swapping file
- Update the page tables

(continued)
Handling a page fault

- Back up the current instruction
 - The "faulting instruction"
- Schedule the faulting process to run again
- Return to scheduler
- ...
- Reload registers
- Resume execution
Back to the PC up to restart an instruction

- Consider a multi-word instruction.
- The instruction makes several memory accesses.
- One of them faults.
- The value of the PC depends on when the fault occurred.
- How can you know what instruction was executing???

MOVE.L #6(A1), 2(A0)

<table>
<thead>
<tr>
<th>1000</th>
<th>MOVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002</td>
<td>6</td>
</tr>
<tr>
<td>1004</td>
<td>2</td>
</tr>
</tbody>
</table>

16 Bits

 Opcode
 First operand
 Second operand
Solutions

- Lot’s of clever code in the kernel

- Hardware support (precise interrupts)
 - Dump internal CPU state into special registers
 - Make “hidden” registers accessible to kernel
Locking pages in memory

- Virtual memory and I/O interact
 - Requires “Pinning” pages

- Example:
 - One process does a read system call
 - (This process suspends during I/O)
 - Another process runs
 - It has a page fault
 - Some page is selected for eviction
 - The frame selected contains the page involved in the read

- Solution:
 - Each frame has a flag: “Do not evict me”.
 - Must always remember to un-pin the page!
Managing the swap area on disk

- **Approach #1:**
 - A process starts up
 - Assume it has N pages in its virtual address space
 - A region of the swap area is set aside for the pages
 - There are N pages in the swap region
 - The pages are kept in order
 - For each process, we need to know:
 - Disk address of page 0
 - Number of pages in address space
 - Each page is either...
 - In a memory frame
 - Stored on disk
Approach #1
Problem

- What if the virtual address space grows during execution? i.e. more pages are allocated.

- **Approach #2**
 - Store the pages in the swap in a random order.
 - View the swap file as a collection of free “swap frames”.
 - Need to evict a frame from memory?
 - Find a free “swap frame”.
 - Write the page to this place on the disk.
 - Make a note of where the page is.
 - Use the page table entry.
 - Just make sure the valid bit is still zero!
 - Next time the page is swapped out, it may be written somewhere else.
Approach #2

This picture uses a separate data structure to tell where pages are stored on disk rather than using the page table.

Some information, such as protection status, could be stored at segment granularity.
Separation of Policy and Mechanism

- Kernel contains
 - Code to manipulate the MMU
 - Machine dependent
 - Code to handle page faults
 - Machine independent

- A user-level “External Pager” process can determine policy
 - Which page to evict
 - When to perform disk I/O
 - How to manage the swap file

- Examples: Mach, Minix
Separation of Policy and Mechanism

User space
- User process

Kernel space
- Fault handler
- MMU handler

Main memory
- External pager

3. Request page
4. Page arrives
5. Here is page
6. Map page in

1. Page fault
2. Needed page
Paging performance

- Paging works best if there are plenty of free frames.
- If all pages are full of dirty pages...
 - Must perform 2 disk operations for each page fault
Paging daemon

- **Page Daemon**
 - A kernel process
 - Wakes up periodically
 - Counts the number of free page frames
 - If too few, run the page replacement algorithm...
 - Select a page & write it to disk
 - Mark the page as clean
 - If this page is needed later... then it is still there.
 - If an empty frame is needed later... this page is evicted.