Veronika M. Megler

I am currently (late 2014) a post-doctoral researcher in Computer Science at the Maseeh College of Engineering & Computer Science, Portland State University, in Portland Oregon.

Since Fall 2009, I have worked with Dr. Dave Maier at Portland State University, and with the Center for Margin Observation and Prediction (CMOP), part of OHSU.

I received my PhD in June, 2014. My dissertation topic is "Ranked Similarity Search of Scientific Datasets: An Information Retrieval Approach". My thesis committee consisted of:

My research interests include applications of emerging technologies; integration of biological and physical data; scientific information management, data access and discovery; and spatio-temporal databases.

I am currently working on two projects:

My email at PSU is: vmegler at the web server address of cs dot pdx dot edu. (Link to my scholarly publication list.)

"Data Near Here"

"Data Near Here" applies concepts from the field of Information Retrieval and Internet search to massive archives of scientific datasets. I address the following problem: with the explosion of data collected by scientists and stored in many files, many formats, many naming conventions, how do scientists find data that matches their research needs?

I use a running example of a scientist searching for salinity observations collected in of May 2009, near the Astoria-Megler bridge. (Evidence of it running over CMOP's archive is in the screenshot below.) Note that in this case, there are no exact matches for the scientist's search terms as formulated; given no exact matches, the tool presents an ordered list with the "nearest" matches at the top.

High-level Dataset Search Architecture

Similar in concept to the way an Internet text search engine operates, I focus on providing a set of results ranked by similarity to a scientist's search; however, rather than text webpages, my users are searching for scientific (primarily numeric) data. I assume that after reviewing the search results, the scientist will wish to download, visualize or otherwise process selected datasets using other tools. Thus, the search engine is complementary to existing analysis and visualization technologies.

How it Works:

A set of crawlers scan an archive of datasets, asynchronously. We create a brief summary of the contents of each dataset, and store them in a metadata catalog using a simple, consistent abstraction. The current prototype handles several different file types, and the scanning process can be easily extended to handle additional file types and formats.

The user enters his search criteria into a UI. A search engine searches over the metadata and returns ranked search results of the "closest matches" to the query, in real-time. Searches can include location, time, variable names of interest, or desired ranges for the data values. The results are displayed in a list (and, if geolocation information is available, on a map), along with brief summary information. The results can be downloaded for analysis or plotted in linked data analysis or visualization tools. A link leads to a page that shows the full metadata available for that dataset, thus providing the scientist with additional information upon which to make analysis decisions, if desired.

"Data Near Here" is described in the following publications:

... and, of course, at great length in 'my dissertation (of which sections, surprisingly, strongly resemble the above listed papers. But there is new content there, too). [local copy]

A patent was granted: "A Search Tool that Utilizes Numerical Scientific Metadata Matched Against User-Entered Parameters Edit", United States Patent US8560531 B2, filed July 1, 2011, issued October 15, 2013. Inventors: Veronika Megler, David Maier; Joint IBM/Portland State University.

Data Near Here is in production at CMOP, for use by registered users only. It will be opened to outside users in the (hopefully near) future. The CMOP production implementation currently focuses primarily on CMOP's own data archive; data from other archives may be searchable via this implementation in the future.

A research prototype is available (well, it's available when it's working), at a publicly undisclosed webpage, in order to preserve my freedom of action (i.e., to break it again).

We are now exploring application of the same ideas, concepts and (hopefully) code-base to genomics data.

"Portland Observatory"

This is a new research project, intended to explore how one might architect and build an observatory that understands and adapts to the wide variety of data gathered or otherwise available in a single domain. The project uses our local city of Portland, Oregon, as a laboratory and example within which to explore these concepts.

One use case is described in Guiding Data-Driven Transportation Decisions. To appear at BDUIC 2014, the Big Data and Urban Informatics Workshop, UIC, Chicago, IL, August 11-12, 2014.

Other Projects

I am involved in other "random" (and fun) research-related activities. They include:

Past Lives

My previous position was Executive IT Architect at IBM, prior to leaving to pursue my PhD. Here are links for: a) a summary of recent accomplishments and b) a list of my industry publications.

My 15 minutes of fame are documented in many places, including: Tolkien Gateway (which references a parody of our game I didn't know about), World of Spectrum (with a picture I have no memory of), and a Wikipedia entry (none of which I wrote). There's even a walkthrough, here.

I hereby apologize for making Thorin spend so much of his time singing about gold...

Three recent and extensive articles:

... and I even wrote a recent blog article for the Australian Center for the Moving Image, Ruminations on The Hobbit Fandom. Here's their profile of me.

As of "the day I last checked", it was the second most downloaded item in the Internet Archive's Historical Software Collection

In Memoriam: Dr. Vendelin R. Megler, 1921-2011

Last updated, November 2014.