
Embedded Coder® Support Package for
Texas Instruments™ C2000™ Processors
User’s Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors User's
Guide
© COPYRIGHT 2014–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
October 2014 Online only Revised for Version 14.2.0 (R2014b)
March 2015 Online only Revised for Version 15.1.0 (R2015a)
September 2015 Online only Revised for Version 15.2.0 (R2015b)
November 2015 Online only Rereleased for Version 15.2.2 (R2015b)
March 2016 Online only Revised for Version 16.1.0 (R2016a)
September 2016 Online only Revised for Version 16.2.0 (R2016b)
March 2017 Online only Revised for Version 17.1.0 (R2017a)
September 2017 Online only Revised for Version 17.2.0 (R2017b)
March 2018 Online only Revised for Version 18.1.0 (R2018a)
September 2018 Online only Revised for Version 18.2.0 (R2018b)
October 2018 Online only Revised for Version 18.2.1 (R2018b)
March 2019 Online only Revised for Version 19.1.0 (R2019a)
September 2019 Online only Revised for Version 19.2.0 (R2019b)
October 2019 Online only Revised for Version 19.2.1 (R2019b)
January 2020 Online only Revised for Version 19.2.2 (R2019b)

Working with Texas Instruments C2000 Processors
1

Install Support for Texas Instruments C2000 Processors 1-2
Install, Update, or Uninstall Support Package 1-2
Hardware Setup . 1-3
Install Code Composer Studio . 1-4

Supported Texas Instruments C2000 Processors 1-5

Set Up Serial Communication with Target Hardware 1-7

Set Up CAN Communication with Target Hardware 1-10

Data Type Support . 1-13

Scheduling and Timing . 1-14
Timer-Based Interrupt Processing . 1-14
External Interrupt Processing . 1-15

Sharing General Purpose Timers Between C281x Peripherals
. 1-16

Sharing General Purpose Timers Between CAP and eCAN . . 1-17
Sharing General Purpose Timers Between CAP and SPI 1-20

Overview of Creating Models for C2000 Processors 1-24
Accessing the Embedded Coder Block Library 1-24
Building Your Model . 1-24

Creating CCS Project from a Model . 1-26

Apply the c2000lib Blockset . 1-31
Introduction . 1-31
Hardware Setup . 1-31
Starting the c2000lib Library . 1-32

v

Contents

Setting Up the Model . 1-32
Adding Blocks to the Model . 1-33
Generating Code from the Model . 1-35

Configuring Timing Parameters for CAN Blocks 1-36
The CAN Blocks . 1-36
Setting Timing Parameters . 1-36

Configuring Acquisition Window Width for ADC Blocks 1-42
What Is an Acquisition Window? . 1-42
Configuring ADC Parameters for Acquisition Window Width

. 1-44

Parameter Tuning and Signal Logging over Serial
Communication . 1-48

Monitor and Tune over Serial Communication 1-48
Monitor and Tune over CCP . 1-51

CAN Calibration Protocol with Third Party Tools 1-60

Using the IQmath Library . 1-62
About the IQmath Library . 1-62
Fixed-Point Numbers . 1-63
Building Models . 1-68

Configuring LIN Communications . 1-70
Overview . 1-70
Configuring Your Model . 1-70

Tips and Limitations . 1-72

MAT-File Logging on SD Card
2

Log Signals on an SD Card . 2-2

Prerequisites for Logging Signals . 2-4

Configure Board Parameters and Enable MAT-File Logging . . 2-5

vi Contents

Configure Model to Log Signals on SD Card 2-7
To Workspace Block . 2-7
Scope Block . 2-9
Outport Block . 2-12

Run Model on Target Hardware . 2-17

Import MAT-Files into MATLAB . 2-18

SD Card Logging Troubleshooting
3

Memory and Signal Logging limitations on SD Card 3-2

Examples
4

ADC-PWM Synchronization Using ADC Interrupt 4-2

LIN-Based Control of PWM Duty Cycle 4-5

Asynchronous Scheduling . 4-8

Using CAN Calibration Protocol for Monitoring and Tuning
. 4-11

Simulation of FOC Using PMSM Model 4-18

Permanent Magnet Synchronous Motor Field-Oriented Control
. 4-23

Using the Control Law Accelerator (CLA) 4-37

Schedule a Multi-Rate Controller for a Permanent Magnet
Synchronous Machine . 4-49

Code Verification and Validation with PIL 4-53

vii

Parameter Tuning and Signal Logging with Serial
Communication . 4-60

Real-Time Code Execution Profiling . 4-75

Using the I2C Bus to Access Sensors . 4-80

Modeling a Voltage Controller for the DC/DC Buck Converter
. 4-86

Using SPI to Read and Write Data to SPI EEPROM 4-90

Inter-Processor Communication Using IPC Blocks 4-98

Modify Duty Cycle of ePWM Using DMA 4-103

Photovoltaic Inverter with MPPT Using Solar Explorer Kit 4-106

MAT-file Logging on SD Card for Texas Instruments C2000
Processors . 4-112

Power Factor Correction Using Boost Converter 4-118

Interface LCD Booster Pack with Texas Instruments C2000
Processors . 4-123

viii Contents

Working with Texas Instruments
C2000 Processors

• “Install Support for Texas Instruments C2000 Processors” on page 1-2
• “Supported Texas Instruments C2000 Processors” on page 1-5
• “Set Up Serial Communication with Target Hardware” on page 1-7
• “Set Up CAN Communication with Target Hardware” on page 1-10
• “Data Type Support” on page 1-13
• “Scheduling and Timing” on page 1-14
• “Sharing General Purpose Timers Between C281x Peripherals” on page 1-16
• “Overview of Creating Models for C2000 Processors” on page 1-24
• “Creating CCS Project from a Model” on page 1-26
• “Apply the c2000lib Blockset” on page 1-31
• “Configuring Timing Parameters for CAN Blocks” on page 1-36
• “Configuring Acquisition Window Width for ADC Blocks” on page 1-42
• “Parameter Tuning and Signal Logging over Serial Communication” on page 1-48
• “CAN Calibration Protocol with Third Party Tools” on page 1-60
• “Using the IQmath Library” on page 1-62
• “Configuring LIN Communications” on page 1-70
• “Tips and Limitations” on page 1-72

1

Install Support for Texas Instruments C2000 Processors
In this section...
“Install, Update, or Uninstall Support Package” on page 1-2
“Hardware Setup” on page 1-3
“Install Code Composer Studio” on page 1-4

Before you install the software, if you install the Texas Instruments (TI) Code Composer
Studio™ on Windows®, then, make sure that:

• You have administrator privileges
• You have set the User Account Control (UAC) settings to the lowest level
• You install in a folder other than Program Files

Using this installation process, you can download and install the following items on your
host computer:

• Support for Texas Instruments C2000 processors and its features.
• Simulink® block library Embedded Coder Support Package for Texas Instruments

C2000 Processors.
• Examples that show you how to use the Texas Instruments C2000 processor.

Install, Update, or Uninstall Support Package
Install Support Package

1 On the MATLAB® Home tab, in the Environment section, select Add-Ons > Get
Hardware Support Packages.

1 Working with Texas Instruments C2000 Processors

1-2

2 In the Add-On Explorer window, click the support package and then click Install.

Update Support Package

On the MATLAB Home tab, in the Environment section, select Help > Check for
Updates.

Uninstall Support Package

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

2 In the Add-On Manager window, find and click the support package, and then click
Uninstall.

Hardware Setup
Hardware boards and devices supported by MathWorks® require additional configuration
and setup steps to connect to MATLAB and Simulink. Each support package provides a
hardware setup process that guides you through registering, configuring, and connecting
to your hardware board.

 Install Support for Texas Instruments C2000 Processors

1-3

If the support package is already installed, you can start the hardware setup by opening
the Add-On Manager.

In the Add-On Manager, start the hardware setup process by clicking the Setup button,

.

After starting, the Hardware Setup window provides instructions for configuring the
support package to work with your hardware.

Follow the instructions on each page of the Hardware Setup window. When the hardware
setup process completes, you can open the examples to get familiar with the product and
its features.

Install Code Composer Studio
The C2000 support package supports CCS v3.3 and the later versions. However, CCS v3.3
does not support auto-download feature.

Install the Code Composer Studio (CCS) version that supports your hardware board. For
example, install CCS v6 or later versions to work on Texas Instruments C2000 F2807x,
Texas Instruments C2000 F2837xD, and Texas Instruments C2000 F2837xS processors.

See Also
“Modeling”

1 Working with Texas Instruments C2000 Processors

1-4

Supported Texas Instruments C2000 Processors
Processor Family Processors
TI Delfino F28377S LaunchPad F28377S
TI Delfino F2837xS F28379S, F28377S, F28376S, F28375S, and

F28374S
TI Delfino F28379D LaunchPad F28379D
TI Delfino F2837xD F28379D, F28377D, F28376D, F28375D, and

F28374D
TI Delfino F2833x F28335, F28334, and F28332
TI Delfino C2834x C28346, C28345, C28344, C28343, C28342, and

C28341
TI Piccolo F280049C LaunchPad F280049C
TI Piccolo F28004x F280049M, F280049C, F280049, F280048C,

F280048, F280045, F280041C, F280041,
F280040C, and F280040

TI Piccolo F2807x F28075 and F28074
TI Piccolo F2806x F28069M, F28069, F28068, F28067, F28066,

F28065, F28064, F28063, and F28062
TI Piccolo F28069M LaunchPad F28069M
TI Piccolo F2805x F28055, F28054, F28053, F28052, F28051, and

F28050
TI Piccolo F2803x F28035, F28034, F28033, F28032, F28031, and

F28030
TI Piccolo F2802x F28027, F28026, F28023, F28022, F28021,

F28020, and F280200
TI Piccolo F28027/F28027F
LaunchPad

F28027

TI F280x F2809, F2808, F2806, F2802, F2801, F28016, and
F28015

TI F28044 F28044
TI F281x F2812, F2811, and F2810

 Supported Texas Instruments C2000 Processors

1-5

Processor Family Processors
TI F2838x (C28x) F28388D, F28388S, F28386D, F28386S, F28384D,

and F28384S

See Also
“Install Support for Texas Instruments C2000 Processors” on page 1-2

1 Working with Texas Instruments C2000 Processors

1-6

Set Up Serial Communication with Target Hardware
This section explains how to establish the serial communication between the host
computer and the C2000 target hardware.

There are different control card versions available for C2000 processors. In some control
cards, the SCI_A module pins are directly connected to the USB docking station. Some
other control cards have a MAX32xx chip for RS–232 communication on the control card.
These control cards have a ‘switch’ to connect or disconnect the Rx (Receive) line
between the USB docking station and the MAX32xx chip.

You can establish a serial communication with the target hardware using RS-232 or Serial
over USB as shown below.

Serial over RS-232

Serial over USB

 Set Up Serial Communication with Target Hardware

1-7

Note To use a USB JTAG on the USB docking station that is connected to SCI_A, use the
switch to disconnect the Rx line that comes from the MAX3221 as it conflicts with the
data you send to SCI_A.

While connecting a C2000 Launchpad to the host computer, ensure that:

• For F28027, the S4 switch is on.
• For F28069, if you are using the default GPIO pins for transmit/receive (GPIO28/

GPIO29), the jumper pin JP6 is open and the jumper pin JP7 is closed.
• The DIP switch (SW1) on the control card is in off position to enable the serial

emulation using the FTDI chip.
• The J9 jumper on the docking station is closed.
• The GPIO pins using which the SCI_A module connects to the FTDI chip are
configured correctly.

• The CCS tool is closed before running the program in external mode. You can use a
tool such as PuTTY to test the basic working of Rx and Tx before trying the external
mode.

• The COM port set at Configuration Parameters > Hardware Implementation >
Target hardware resources > External mode is the same as the COM port of the
serial interface on Windows.

1 Working with Texas Instruments C2000 Processors

1-8

For more information, see http://processors.wiki.ti.com/index.php/
Using_the_serial_adapter_of_XDS100.

 Set Up Serial Communication with Target Hardware

1-9

http://processors.wiki.ti.com/index.php/Using_the_serial_adapter_of_XDS100
http://processors.wiki.ti.com/index.php/Using_the_serial_adapter_of_XDS100

Set Up CAN Communication with Target Hardware
This section describes how to set up CAN communication with C2000 target hardware.

Follow these steps to set up CAN communication between the target hardware and your
host computer.

1 Make sure that the Vector Hardware is installed properly in the Windows Device
Manager.

2 Open the c28x_CAN_Tx model that sends message from the board to the host.
3 Select the target hardware that you are using. The model is set to use a CAN baud of

1Mbit/ sec; you can change the baud settings in the Target Preferences settings.
4 Use btest32.exe (Vector tool) on the host to receive the messages. ‘btest32.exe’

comes with the Vector drivers that you can find in the driver installation zip file from
vector.

Make sure that ‘btest32’ returns the message values with no errors.
5 Set the baud for btest32 as follows:

For 1 Mbit/s: btest32.exe 1000000

1 Working with Texas Instruments C2000 Processors

1-10

matlab:c28x_CAN_Tx

This confirms the following:

The Vector CAN card drivers are working on the host.

The CAN settings, connection, and the cable on the target are working properly.
6 Download and install the latest version of the Vector XL Library from the Vector

Web site. After installing the library, copy the file vxlapi64.dll from the installation
folder (for example C:\Softwares\Vector_Driver_Setup_9_3_0\Common) to the
windows root\system32 folder.

This folder name may vary depending on the Windows OS (for example C:\Windows
\Sys32).

7 Run the vcanconf.exe in the vector driver installation.
8 Right-click the application and select "Add application".

a Name the application as ‘MATLAB’ and keep the default settings.
b Right-click the first CAN piggy hardware device, select MATLAB, and pick CAN

1.
c Right-click the first CAN piggy hardware device again and click Default baud

rate to change the baud.

This baud has to match your Simulink model CAN baud that you can change
using the Target Preferences settings.

The Vector Hardware Config window is shown.

 Set Up CAN Communication with Target Hardware

1-11

https://vector.com/vi_downloadcenter_en.html
https://vector.com/vi_downloadcenter_en.html

9 Open the CCP example model c28x_ccp_ert. Open the Configuration Parameters
dialog box to select the desired processor and verify the CAN baud. The default baud
is 1 Mbits/sec.

10 To run the model in External mode, click Run.

CAN communication is now set up between your host computer and the C2000 target
hardware. Click the Info button on the model to get help on this example.

1 Working with Texas Instruments C2000 Processors

1-12

matlab:c28x_ccp_ert

Data Type Support
Texas Instruments C2000 MCUs support 16-bit and 32-bit data types, but do not support
native 8-bit data types. Simulink models and Embedded Coder software support many
data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation runs with 8-bit data, but in the
generated code this data is represented as 16-bit. This may cause instances where data
overflow and wraparound occurs in the simulation, but not in the generated code.

For example, to make the overflow behavior of the simulation and generated code match
for a Simulink Add block in your model, select Saturate on integer overflow in that
block.

In C2000 devices, in the generated code, the double data type is represented as single
precision floating point values (32-bit). This representation results in a difference in data
values in the simulation and the generated code.

 Data Type Support

1-13

Scheduling and Timing
Often, developers choose to run the code generated by Embedded Coder in the context of
a timer interrupt. Model blocks run in a periodical fashion clocked by the periodical
interrupt whose period is tied to the base sample time of the model.

This execution scheduling model is not flexible enough for many systems, especially
control and communication systems, which must respond to external events in real time.
Such systems require the ability to handle various hardware interrupts in an
asynchronous fashion.

Embedded Coder software lets you model and generate code for such systems by creating
tasks driven by Hardware Interrupt blocks in addition to the tasks that are left to be
handled in the context of the timer interrupt.

Timer-Based Interrupt Processing
For code that runs in the context of the timer interrupt, each iteration of the model solver
is run after an interrupt has been posted and serviced by an interrupt service routine
(ISR). The code generated for the C2000 processors uses CPU_timer0 by default.

The timer is configured so that the base rate sample time of the model corresponds to the
interrupt rate. The timer period and prescaler are calculated and set up to produce the
desired rate as follows:

The minimum achievable base rate sample time depends on the model complexity. The
maximum value depends on the maximum timer period value (232-1) and the CPU clock
speed .

If the blocks in the model inherit their sample time value, and a sample time is not
explicitly defined, the default value is 0.2 s.

For more information about timer-based interrupt processing, see “C28x-Scheduler
Options”.

High-Speed Peripheral Clock

The Event Managers and their general-purpose timers, which drive PWM waveform
generation use the high-speed peripheral clock (HISCLK). By default, this clock is

1 Working with Texas Instruments C2000 Processors

1-14

selected in Embedded Coder software. This clock is derived from the system clock
(SYSCLKOUT):

HISCLK = [SYSCLKOUT / (high-speed peripheral prescaler)]

The high-speed peripheral prescaler is determined by the HSPCLK bits set in SysCtrl. The
default value of HSPCLK is 1, which corresponds to a high-speed peripheral prescaler
value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

External Interrupt Processing
For code that runs in the context of an external interrupt, the model uses the C28x
Hardware Interrupt block. Configure the interrupt operation with Configuration
Parameters > Hardware Implementation > Hardware board settings > Target
hardware resources > External Interrupt. For more information, see “Hardware
Implementation Pane: Texas Instruments C2000 Processors”.

 Scheduling and Timing

1-15

Sharing General Purpose Timers Between C281x
Peripherals

In this section...
“Sharing General Purpose Timers Between CAP and eCAN” on page 1-17
“Sharing General Purpose Timers Between CAP and SPI” on page 1-20

TMS320x281x DSP devices have four General Purpose (GP) timers. Each Event Manager
(EV) module includes two GP timers:

• EVA includes GP Timer 1 and GP Timer 2.
• EVB includes GP Timer 3 and GP Timer 4.

You can use the GP Timers independently or to operate peripherals associated with the
EV Manager, such as PWM, QEP, and CAP.

The following table describes the timer-peripheral mapping of the c281xlib block library.

GP Timer Use for C281x Peripheral Blocks

 GP Timer 1 GP Timer 2 GP Timer 3 GP Timer 4
PWM1-PWM6 ✓
PWM7-PWM12 ✓
QEP1-QEP2 ✓
QEP3-QEP4 ✓

CAP1-CAP3 ✓ ✓
CAP4-CAP6 ✓ ✓

Each PWM or QEP peripheral has access to only one timer, while each CAP peripheral has
access to two timers. In the PWM and QEP blocks, you can set the Module option to A or
B to determine which unique timer-peripheral combination the block configures. By
comparison, in the CAP block, you can use the Time base option to select one of two
timers for each CAP peripheral.

Each GP timer is available to multiple peripherals. For example:

• PWM1-PWM6 and CAP1-CAP3 share GP Timer 1

1 Working with Texas Instruments C2000 Processors

1-16

• PWM7-PWM12 and CAP4-CAP6 share GP Timer 3
• QEP1-QEP2 and CAP1-CAP3 share GP Timer 2
• QEP3-QEP4 and CAP4-CAP6 share GP Timer 4

The PWM, QEP, CAP, and Timer blocks each provide independent access to key timer
registers. If the blocks in your model share a specific GP timer, check that the timer-
related settings are compatible. If the peripheral settings for a shared timer are not
compatible, the software generates an error when you update the model or generate
code.

Sharing General Purpose Timers Between CAP and eCAN

The model contains Timer and CAP blocks that both use Timer 1 (GP Timer 1).

 Sharing General Purpose Timers Between C281x Peripherals

1-17

1 Working with Texas Instruments C2000 Processors

1-18

Both blocks have the same values for Timer prescaler and Counting mode. However,
each block has different values for Timer period. The value of Timer period for Timer 1
is 65535 in the CAP block and 10000 in the Timer block.

 Sharing General Purpose Timers Between C281x Peripherals

1-19

Since both blocks configure the same timer, and settings conflict, the software generates
an error when you update the model.

Sharing General Purpose Timers Between CAP and SPI

1 Working with Texas Instruments C2000 Processors

1-20

The model contains QEP and CAP blocks that both use Timer 2. In the CAP block, the
Time base option shows which timer the block uses. In the QEP block, setting Module to
A configures the block to use QEP1–QEP2. GP Timer Use for C281x Peripheral Blocks
shows that QEP1–QEP2 use Timer 2.

 Sharing General Purpose Timers Between C281x Peripherals

1-21

1 Working with Texas Instruments C2000 Processors

1-22

Currently, both blocks define different clock sources for Timer 2. The CAP block uses
Internal as a Clock source. The QEP block, which does not have a configurable Clock
source setting, uses the QEP circuit as a clock source. If you build the model, the
software generates the following error message.

To avoid generating errors when you build the model, change Clock source in the CAP
block to QEP device.

 Sharing General Purpose Timers Between C281x Peripherals

1-23

Overview of Creating Models for C2000 Processors
In this section...
“Accessing the Embedded Coder Block Library” on page 1-24
“Building Your Model” on page 1-24

Accessing the Embedded Coder Block Library
1 After you have installed the supported development board, start MATLAB.
2 Open the c2000lib blockset in the Simulink library browser, or type in the following

command at the MATLAB command prompt:

c2000lib
3 Create your real-time model for your application the same way you create other

Simulink models. Select blocks to build your model from the following sources or
products:

• The libraries in the c2000lib block library (for handling input and output
functions for on your target hardware)

• Simulink Coder™ software
• Discrete time blocks from Simulink
• Another blockset that meets your needs and operates in the discrete time domain

Note Rapid Accelerator simulation is not supported by Embedded Coder Support
Package for Texas Instruments C2000 Processors.

Building Your Model
With this configuration, you can generate a real-time executable and download it to your
Texas Instruments development board. Simulink Coder software automatically generates
C code and inserts the I/O device drivers as specified by the hardware blocks in your
block diagram. These device drivers are inserted in the generated C code.

When you are creating a custom device driver block using S-function, use the
MATLAB_MEX_FILE macro to differentiate between simulation and code generation
behaviors. For example, when you include the Texas Instruments header file in the

1 Working with Texas Instruments C2000 Processors

1-24

generated code for creating the MEX file, use the #else section to avoid compilation
errors, as shown:

#ifdef MATLAB_MEX_FILE /*
/* Simulation behavior */
#else
/* Code generation behavior*/
#endif

During the build operation, the Texas Instruments cross-compiler builds an executable file
from the generated code. If you select the Build, load and run option in
Hardware Implementation > Target Hardware Resources > Build options
> Build action parameter then the generated executable is automatically
downloaded to the target. For CCS v5 and the later versions, a CCS project file is also
generated during the build process. You can use this project file for debugging in the CCS
IDE.

 Overview of Creating Models for C2000 Processors

1-25

Creating CCS Project from a Model
You can create a Code Composer Studio project from a model. To create CCS project and
open the project, follow the steps given.

1 Install the TI C2000 support package and complete the additional setup tasks
mentioned in “Install Support for Texas Instruments C2000 Processors” on page 1-2 .

2 Open the model c28x_LedBlink_ert.slx.

This model is configured for a default target hardware (TI Piccolo F28035). To select
a different target hardware, go to Configuration Parameters > Hardware
Implementation > Hardware board.

3 If you select a different processor, make sure to replace the GPIO blocks and the
GPIO pins connected to the LED with the GPIO blocks of the selected processor.

1 Working with Texas Instruments C2000 Processors

1-26

4 By default, the model is configured with the Texas Instruments Code Composer
Studio (C2000) toolchain to build, load, and run.

 Creating CCS Project from a Model

1-27

5 Click Build Model to build, load, and run the program and to create the CCS project.
6 Click ‘View Diagnostics’ to open the Diagnostic Viewer.
7 Under the Code Composer Studio Project section in the Diagnostic Viewer, click the

link 'Open Project in Code Composer Studio'.

1 Working with Texas Instruments C2000 Processors

1-28

The Code Composer Studio IDE launches with the generated project.
8 Open the 'Project Explorer' from View tab in CCS.
9 Right-click the Target Configuration File (.ccxml) and click 'Set as Active Target

Configuration'.

10 On Project Explorer pane, right-click the project in CCS and click 'Build Project' to
start the build process.

Make sure that the target hardware is connected to the host computer.
11 Click Run in CCS and click Debug (F11) to start the debug session.

 Creating CCS Project from a Model

1-29

12 Click the Play icon in the Debug mode to execute the code on the target hardware.

Note

• CCS project creation feature is not supported with CCS v3.3 and CCS v4.
• For CCS v5, the compiler and linker settings are not reflected in the CCS GUI, even

though these flags are visible in the ‘Summary of flags set’ section. However, these
flags are considered while building the CCS project.

• Compiler tools that are installed outside the CCS Installation directory are not
detected automatically. Add the Code generation tool path manually from the CCS GUI
path:

Window > Preferences > Code Composer Studio> Build > Compilers > Tool Discovery.
• You can open only one instance of CCS at a time. To open a new project in CCS, use

the ‘Restart CCS’ option in the MATLAB prompt that shows while clicking the
diagnostic Viewer link. The current instance is closed and a fresh instance of CCS with
the new project is opened.

1 Working with Texas Instruments C2000 Processors

1-30

Apply the c2000lib Blockset
In this section...
“Introduction” on page 1-31
“Hardware Setup” on page 1-31
“Starting the c2000lib Library” on page 1-32
“Setting Up the Model” on page 1-32
“Adding Blocks to the Model” on page 1-33
“Generating Code from the Model” on page 1-35

Introduction
This section uses an example to show how to create a Simulink model that uses
Embedded Coder Support Package for Texas Instruments C2000 Processors blocks to
target your board. The example creates a model that performs PWM duty cycle control
via pulse width change. It uses the C2812 ADC block to sample an analog voltage and the
C2812 PWM block to generate a pulse waveform. The analog voltage controls the duty
cycle of the PWM and you can observe the duty cycle change on the oscilloscope.

Hardware Setup
The following hardware is required for this example:

• Spectrum Digital eZdsp F2812
• Function generator
• Oscilloscope and probes

To connect the target hardware:

1 Connect the function generator output to the ADC input ADCINA0 on the eZdsp
F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of the
oscilloscope.

3 Connect VREFLO to AGND on the eZdsp F2812. See the section on the Analog
Interface in Chapter 2 of the eZdsp F2812 Technical Reference, available from the
Spectrum Digital website at https://c2000.spectrumdigital.com/ezf2812/

 Apply the c2000lib Blockset

1-31

https://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type the following command:

c2000lib

This command opens the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

Setting Up the Model
Preliminary tasks for setting up a new model include configuring your model for the
target hardware and setting the simulation parameters.

To configure your model with ert.tlc system target file:

1 In the Simulink Editor of your model, select Simulation > Model Configuration
Parameters > Hardware Implementation.

2 Select a TI C2000 Hardware board. The Texas Instruments Code Composer
Studio (c2000) option automatically gets selected for Toolchain.

The following default settings in the Simulation > Model Configuration
Parameters dialog box appear when you select your C2000 hardware board.

Pane Field Setting
Solver Type Fixed-step
Solver Solver discrete (no

continuous
states)

Solver Higher priority value
indicates higher task priority

Value is 'off'
and the parameter
is disabled

Code Generation >
Optimization

Remove internal data zero
initialization

Value is 'off'
and the parameter
is disabled

Code Generation >
Optimization

Maximum stack size (bytes) 512 (MAU)

1 Working with Texas Instruments C2000 Processors

1-32

Pane Field Setting
Hardware
Implementation

Device vendor Texas Instruments

Hardware
Implementation

Device type C2000

Hardware
Implementation

Support long long Selected by
default

Code Generation >
Interface

Code replacement library TI C28x

3 Click Apply.

Note The generated code does not honor Simulink ‘stop time’ from the simulation. The
‘stop time’ is interpreted as inf. To implement a stop in the generated code, you must put
a Stop Simulation block in your model.

Adding Blocks to the Model
1 Open or double-click the C281x library, c281xlib.
2 Drag the ADC block into your model. Double-click the ADC block in the model and set

Sample time to 64/80000.
3 Drag the PWM block into your model. Double-click the PWM block in the model and

set the following parameters.

Pane Field Parameter
Timer Module A

Waveform period
source

Specify via dialog

Waveform period
units

Clock cycles

Waveform period 64000
Waveform type Asymmetric

Outputs Enable PWM1/
PWM2

Selected

 Apply the c2000lib Blockset

1-33

Pane Field Parameter
Duty cycle source Input port

Logic PWM1 control
logic

Active high

PWM2 control
logic

Active low

Deadband Use deadband for
PWM1/PWM2

Selected

Deadband
prescaler

16

Deadband period 12
ADC Control ADC start event Period interrupt

4 Enter simulink in the MATLAB Command Window to open the Simulink Library
browser. Drag a Gain block from the Math Operations library into your model.
Double-click the Gain block in the model and set the following parameters in the
Function Block Parameters dialog box. Click OK.

Pane Field Parameter
Main Gain 30

Multiplication Element-wise(K.*u)
Sample time -1

Signal Attributes Output data type mode uint(16)
Integer rounding mode Floor

Parameter Attributes Parameter data type
mode

Inherit from input

5 Connect the ADC block to the Gain block and the Gain block to the PWM block.

1 Working with Texas Instruments C2000 Processors

1-34

Generating Code from the Model
This section summarizes how to generate code from your real-time model.

There are three ways to start the automatic code generation process:

• In the Simulink Editor, click Build Model or Deploy to Hardware .
• On your model, press Ctrl+B.
• Press the Build button on the Code Generation pane of the Configuration Parameters

dialog box.

 Apply the c2000lib Blockset

1-35

Configuring Timing Parameters for CAN Blocks
In this section...
“The CAN Blocks” on page 1-36
“Setting Timing Parameters” on page 1-36

The CAN Blocks
The bit rate of these four CAN blocks cannot be set directly:
C281x eCAN Receive
C281x eCAN Transmit
C280x/C28x3x eCAN Receive
C280x/C28x3x eCAN Transmit

Setting Timing Parameters
• “Accessing the Timing Parameters” on page 1-36
• “Determining Timing Parameter Values” on page 1-38
• “Working with CAN Bit Timing” on page 1-40

Accessing the Timing Parameters

To set the Bitrate for a block whose bitrate cannot be set directly:

1 Configure the Target Hardware Resources tab.
2 Under the Peripherals tab, use the TSEG1, TSEG2, and BaudRatePrescaler

(BRP) parameters to set the bitrate.

For example, the Target Hardware Resources tab for the F2812 eZdsp shown in the
following figure.

1 Working with Texas Instruments C2000 Processors

1-36

The C280x/C28x3x blocks have two independent eCAN modules.

 Configuring Timing Parameters for CAN Blocks

1-37

The following sections describe the series of steps and rules that govern the process of
setting these timing parameters.

Determining Timing Parameter Values

To determine the values for the timing parameters, complete the following steps:

1 Determine the CAN Bitrate specification based on your application.
2 Determine the frequency of the CAN module clock. For example:

• CAN module clock = 100 MHz for the F2808 (Same as SYSCLKOUT)
• CAN module clock = 150 MHz for the F2812 (Same as SYSCLKOUT)
• CAN module clock = 75 MHz for the F28x3x (150 SYSCLKOUT/2)

1 Working with Texas Instruments C2000 Processors

1-38

3 Estimate the value of the BaudRatePrescaler (BRP).
4 Solve this equation for BitTime:

BitTime = CAN module clock frequency/(BRP * Bitrate)
5 Solve this equation for Bitrate:

Bitrate = CAN module clock frequency/(BRP * BitTime)
6 Estimate values for TSEG1 and TSEG2 that satisfy BitTime = TSEG1 + TSEG2 + 1.
7 Use the following rules to determine the values of TSEG1 and TSEG2:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min (4 TQ, TSEG2)

where IPT is Information Processing Time, TQ is Time Quanta, and SJW is
Synchronization Jump Width, also set in the Target Hardware Resources dialog box.

8 Iterate steps 4 through 7 until the values selected for TSEG1, TSEG2, and BRP meet
the criteria.

The following illustration shows the relationship between the eCAN bit timing
parameters.

 Configuring Timing Parameters for CAN Blocks

1-39

Working with CAN Bit Timing

Assume that CAN Module Clock Frequency = 75 MHz, and a Bitrate of 1 Mbits/s is
required.

1 Set the BRP to 5. Then substitute the values of CAN Module Clock Frequency, BRP,
and Bitrate into the following equation, solving for BitTime:

BitTime = CAN Module Clock Frequency / (BRP * Bitrate)

BitTime = 75e6/(5 *1e6) = 15TQ
2 Set the values of TSEG1 and TSEG2 to 8TQ and 6TQ respectively. Substitute the

values of BitTime from the previous equation, and the chosen values for TSEG1 and
TSEG2 into the following equation:

BitTime = TSEG1 + TSEG2 + 1

15TQ = 8TQ + 6TQ + 1
3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/10 = .3
IPT <= TSEG1 <= 16 TQ True! .3<=8TQ<=16TQ
IPT <= TSEG2 <= 8TQ True! .3 <= 6TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2) which means that SJW can be set to either
2, 3, or 4

4 When the chosen values satisfy the criteria, so further iteration is not required.

The following table provides example values for several bit rates when CAN Module Clock
Frequency = 75 MHz, as it is with the F28335. Other combinations of the register values
are possible.

Bitrate TSEG1 TSEG2 Bit Time BRP SJW
0.25 Mbit/s 8 6 15 20 2
0.5 Mbit/s 8 6 15 10 2
1 Mbit/s 8 6 15 5 2

The following table provides example values for several bit rates when CAN Module Clock
Frequency = 100 MHz, as it is with the F2808. Other combinations of the register values
are possible.

1 Working with Texas Instruments C2000 Processors

1-40

Bitrate TSEG1 TSEG2 Bit Time BRP SJW
0.25 Mbit/s 6 3 10 40 2
0.5 Mbit/s 5 4 10 20 2
1 Mbit/s 6 3 10 10 2

The following table provides example values for several bit rates when CAN Module Clock
Frequency = 150 MHz, as it is with the F2812. Other combinations of the register values
are possible.

Bitrate TSEG1 TSEG2 Bit Time BRP SJW
0.25 Mbit/s 8 6 10 40 2
0.5 Mbit/s 7 7 10 20 2
1 Mbit/s 8 6 10 10 2

 Configuring Timing Parameters for CAN Blocks

1-41

Configuring Acquisition Window Width for ADC Blocks
In this section...
“What Is an Acquisition Window?” on page 1-42
“Configuring ADC Parameters for Acquisition Window Width” on page 1-44

What Is an Acquisition Window?
ADC blocks take a signal from an analog source and measure it with a digital device. The
digital device does not measure in a continuous process, but in a series of discrete
measurements, close enough together to approximate the source signal with the required
accuracy.

Analog Signal Digital Measurement

The digital measurement itself is not an instantaneous process, but is a measurement
window, where the signal is acquired and measured, as shown in the following figure.

1 Working with Texas Instruments C2000 Processors

1-42

Source
Signal

Measurement Measurement
Acquisition
Window

Ideally, when the measurement window is opened, the actual signal coming in would be
measured perfectly. In reality the signal does not reach its full magnitude immediately.
The measurement process can be modeled by a circuit similar to the one shown in the
following figure for the ADC found on the F2812 eZdsp,

where the measurement circuit is characterized by a certain capacitance. In the
preceding figure, when the switch is closed, the measurement begins. In this circuit,
which is characterized by its capacitance, the signal received is not in a form of a step
function as shown by the ideal measurement, but a ramp up to the true signal magnitude.
The following figure shows what happens to the signal when the sampler switch is closed
and the signal is received to be measured.

 Configuring Acquisition Window Width for ADC Blocks

1-43

Actual Signal
Acquisition
Window
Width

Because the signal acquisition is not instantaneous, it is very important to set a wide
enough acquisition window to allow the signal to ramp up to full strength before the
measurement is taken. If the window is too narrow, the measurement is taken before the
signal has reached its full magnitude, resulting in erroneous data. If the window is too
wide, the source signal itself may change, and the sampling may be too infrequent to
reflect the actual value, also resulting in erroneous data. You must calculate the width of
the acquisition window based on the circuit characteristics of resistance and capacitance
of your specific circuit. Then, using the ADC parameters described in the following
section, you can configure the acquisition window width.

Configuring ADC Parameters for Acquisition Window Width
• “Accessing the ADC Parameters” on page 1-44
• “Configure Acquisition Window Width Using ADC Parameters” on page 1-46

Accessing the ADC Parameters

The ADC parameters can be set from the Peripherals tab of the Target hardware
resources tab.

• You can set ACQ_PS — Acquisition Prescaler — to a value from 0 to 15. To obtain the
actual value, increment the setting by 1. This increment produces an actual range
from 1 to 16.

• You can set ADCLKPS — AD Clock Prescaler — to a value from 0 to 15. To obtain the
actual value, increment the setting by 1. This increment produces an actual range
from 1 to 16.

• You can set CPS — Clock Prescaler — to a value from 0 to 1. To obtain the actual
value, increment the setting by 1. This increment produces an actual range from 1 to
2.

1 Working with Texas Instruments C2000 Processors

1-44

These three prescalers serve to reduce the speed of the clock and to set the acquisition
window width. The following diagram shows how these prescalers are used.

 Configuring Acquisition Window Width for ADC Blocks

1-45

ADCLKPS
1 - 16
(4 bit clock
divider)

HISPCLK
(high speed
peripheral
clock)

ADCLKPS -
reduces the
incoming clock
frequency by a
factor of 1 to 16

CPS

CPS

CPS -
further reduces
the clock
frequency by a
factor of 1 or 2

ACQ_PS

ADCCLK -
this is the
ADC clock
signal

ACQ_PS -
Acquisition
Prescaler -
indicates
how many
ADCCLK
ticks will
comprise
the window

Sample
Hold
clock
pulse

In the preceding diagram, the high-speed peripheral clock frequency is received and then
divided by the ADCLKPS. The reduced clock frequency is then further divided by CPS.
The resulting frequency is the ADCCLK signal. The value of ACQ_PS then determines
how many ADCCLK ticks comprise one S/H (sample and hold) period, or in other words,
the length of the acquisition window.

Configure Acquisition Window Width Using ADC Parameters

The following examples show how you can use ADC parameters to configure the
acquisition window width:

Example 1:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the result is 15 MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5 MHz.

If ACQ_PS = 0 (which is a value of 1), then the sample/hold period is 1 ADCCLK tick,
or .1333 microseconds.

Example 2:

1 Working with Texas Instruments C2000 Processors

1-46

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the result is 15 MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5 MHz.

If ACQ_PS = 15 (which is a value of 16), then the sample/hold period is 16 ADCCLK ticks,
or 2.1333 microseconds.

Note HISPCLK is set automatically for the user, and it is not possible to change the rate.
For more information, see “High-Speed Peripheral Clock” on page 1-14

 Configuring Acquisition Window Width for ADC Blocks

1-47

Parameter Tuning and Signal Logging over Serial
Communication

In this section...
“Monitor and Tune over Serial Communication” on page 1-48
“Monitor and Tune over CCP” on page 1-51

With Monitor & Tune (External Mode), you can log signals and tune parameters while
the model is running on the target hardware in real time. When you change parameter
values from within Simulink, the modified parameter values are communicated to the
target hardware immediately. Also, you can monitor the effects of the parameters tuning
activity by viewing the algorithm signals on the scopes.

You can run your model on the external mode via two communication interfaces, serial or
CAN.

For external mode with serial communication, you have a ready-to-use COM port on the
USB drive if your target hardware supports it or the COM1 port on your computer with
RS–232 cable. For more information on how to set up serial communication, see “Set Up
Serial Communication with Target Hardware” on page 1-7. You can configure the external
mode for different baud rates that your communication interface supports.

To run your model in external mode with CAN Calibration Protocol(CCP), use the CAN
Calibration Protocol block and a Vector CAN case hardware. External mode uses the
eCAN module to run external mode. You can configure the external mode with any
available eCAN module. For more information, see “Set Up CAN Communication with
Target Hardware” on page 1-10. You can configure the baud for eCAN.

The external mode with ‘ert.tlc’ downloads the executable, runs the model, and
establishes external mode connection in a single step.

Monitor and Tune over Serial Communication
Monitor and Tune (External Mode) over Serial Communication can be done using either
of the two available protocols:

• Classic External Mode

1 Working with Texas Instruments C2000 Processors

1-48

In this method, you will setup Serial communication between Simulink and Texas
Instruments C2000 board to tune the parameters and monitor the signal of an
algorithm running on the board.

• External Mode over Universal Measurement and Calibration (XCP)

Simulink provides these additional features for the targets that support XCP:

• Dashboard objects such as Slider and Dashboard Scope. For more information, see
Dashboard (Simulink)

• Simulation Data Inspector (SDI) for visualizing the logged signals. For more
information, see Simulation Data Inspector (SDI)

• Running External mode over XCP has a few limitations. For a detailed list, see
External Mode Simulation with XCP Communication(Simulink Coder)

Based on the maximum and the minimum baud that the SCI_A module supports, you can
run your model in external mode over different baud rates.

To prepare your model for external mode with serial communication:

1 In the Configuration Parameters dialog box, select Model Configuration
Parameters > Hardware Implementation .

2 Select a C2000 processor from the Hardware Implementation > Hardware board
drop-down list.

3 Under Target Hardware Resources, select External mode(Classic)/External
Mode over Universal Measurement and Calibration (XCP).

4 In Communication interface drop-down list, select serial.
5 Specify the corresponding COM port that the target hardware uses.

For the COM port on your computer, select Start > Control Panel > Device
Manager > Ports (COM & LPT)

 Parameter Tuning and Signal Logging over Serial Communication

1-49

https://www.mathworks.com/help/simulink/dashboard.html
https://in.mathworks.com/help/simulink/inspect-and-analyze-simulation-results.html
https://www.mathworks.com/help/rtw/ug/external-mode-simulation-with-xcp-communication.html

6 Make sure that the Verbose check box is selected to view the external mode
execution progress and updates in the Diagnostic Viewer or in the Command Window.

7 To execute your model with a specific baud:

Under Target Hardware Resources, select the SCI_A pane and then specify the
desired baud in Desired baud rate in bits/sec parameter.

The default baud is 115200 bits/sec. For better performance, you may increase the
baud to a value that your hardware board permits.

Your model is now ready to perform Monitor and Tune action (External Mode) over serial
communication.

To perform the Monitor and Tune action :

1 Working with Texas Instruments C2000 Processors

1-50

1 Open the Model.

2 Go to theHardware tab and click Monitor & Tune.

For more information, see “Parameter Tuning and Signal Logging with Serial
Communication”

Note

• For targets with small RAM such as F28027, the code has to be booted from flash. To
boot the code from flash, select TI Piccolo F2802x (boot from flash) in Hardware
Implementation > Hardware board drop-down list

• Parameter tuning and signal logging for 8-bit data type is not supported in external
mode over serial

Monitor and Tune over CCP
You can tune parameters and log signals (External Mode) using Simulink external mode
with CCP. For signal logging and parameter tuning with a third-party calibration tool, see
“CAN Calibration Protocol with Third Party Tools” on page 1-60.

The external mode is supported using the CAN Calibration Protocol block and ASAP2
interface. The ASAP2 interface is used to get information about where a parameter or
signal exists in the target memory. The CAN Calibration Protocol block is used to
communicate with the target, download parameter updates, and upload signal
information.

To prepare your model for external mode over CCP, perform these tasks:

 Parameter Tuning and Signal Logging over Serial Communication

1-51

1 To set up external mode, see “Set Up Your Model for External Mode” on page 1-52.
2 To run your model in external mode with ert.tlc, see “Monitor and Tune Your Model

(External Mode)” on page 1-53.
3 To tune your parameters, see “Tuning Parameters” on page 1-55.

For more information, see:

• “Configuring the Host Vector CAN Application Channel” on page 1-53
• “Using Supported Objects and Data Types” on page 1-54
• “Tuning Parameters” on page 1-55
• “Viewing and Storing Signal Data” on page 1-55
• “Limitations” on page 1-59

Set Up Your Model for External Mode

1 Add a CCP driver block to your model from the Simulink Block Library.
2 Identify signals that you want to tune. Associate them with Simulink.Parameter or

canlib.Parameter objects with ExportedGlobal storage class. Set the data type
and value of the object. See “Using Supported Objects and Data Types” on page 1-
54.

3 Identify signals you want to log. Associate them with canlib.Signal objects. Set
the data type of the canlib.Signal. See “Using Supported Objects and Data Types”
on page 1-54.

For information about visualizing logged signal data, see “Viewing and Storing Signal
Data” on page 1-55.

4 Load the Simulink.Parameter or canlib.Parameter and canlib.Signal data
objects into the base workspace.

5 Select Simulation > Model Configuration Parameters.
6 In the Configuration Parameters dialog box, select Optimization > Signals and

Parameters pane.
7 Select Default parameter behavior > Inlined and click Configure.
8 In the Model Parameter Configuration dialog box that opens, define the (global)

tunable parameters for your models.
9 In the Configuration Parameters dialog box, select Code Generation > Interface

pane.

1 Working with Texas Instruments C2000 Processors

1-52

10 Set the Interface parameter to ASAP2.

Monitor and Tune Your Model (External Mode)

To perform Monitor & Tune action :

1 Open the Model.

2 Go to the Hardware tab and click Monitor & Tune.

Your model now runs in the external mode over CCP.

Configuring the Host Vector CAN Application Channel

For external mode, the host-side CAN connection must use the 'MATLAB 1' application
channel. To configure the application channel that the Vector CAN drivers use, in the
Command Window:
TargetsComms_VectorApplicationChannel.configureApplicationChannels

Use this tool to configure your host-side CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1', you see the
following warning:

Warning:
It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

If you have not already installed the Vector CAN drivers, you get the following error
message in the command window:
??? Error using ==>
TargetsComms_VectorApplicationChannel.TargetsComms_VectorApplicationChannel>
TargetsComms_VectorApplicationChannel.configureApplicationChannels at 40

 Parameter Tuning and Signal Logging over Serial Communication

1-53

Unable to launch the application channel configuration utility.
The "vcanconf" utility was not found on the Windows System Path.
To fix this error, make sure the required CAN drivers are installed on this computer;
refer to the product documentation for details.

If you want to use CAN to transmit or receive CAN messages between your host PC and
your target, you need VN1600 supported by the Vector CAN Driver Library. Choose the
driver libraries to support profiling, downloading, and external mode. Make sure that the
library, vcand32.dll, is placed in the Windows system32 folder.

Using Supported Objects and Data Types

Supported objects are:

• Simulink.Parameter or canlib.Parameter for parameter tuning
• canlib.Signal for signal logging

Supported data types are:

• uint8, int8
• uint16, int16
• uint32, int32
• single

Define data objects for the signals and parameters of interest for ASAP 2 file generation.
For ease of use, create a MATLAB file to define the data objects so that you only have to
set up the objects only once.

To set up tunable parameters and signal logging:

1 Associate the parameters that you want to tune with Simulink.Parameter or
canlib.Parameter objects with ExportedGlobal storage class. It is important to set
the data type and value of the parameter object. For an example of how to create
such a Simulink.Parameter object for tuning, see the following code:

stepSize = Simulink.Parameter;
stepSize.DataType = 'uint8';
stepSize.CoderInfo.StorageClass = 'ExportedGlobal';
stepSize.Value = 1;

2 Associate the signals that you want to log with canlib.Signal objects.Set the data type
of the canlib.Signal. The following code example shows how to declare such a
canlib.Signal object for logging.

1 Working with Texas Instruments C2000 Processors

1-54

https://vector.com/vi_vn1600_en.html

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects that you defined in the MATLAB file with parameters or
signals in the model. For the previous code examples, you can set the Constant
value in a Source block to stepSize, and set a Signal name to counter in the
Signal Properties dialog box. stepSize and counter are the data objects defined in
the code.

Tuning Parameters
1 In the workspace, set dataobject.value while the model is running in external

mode. For example, to tune the parameter stepSize (that is, to change its value)
from 1 to 2, at the command line, enter:

stepSize.value = 2

You see output similar to the following:

stepSize =

 Parameter with properties:

 Value: 2
 CoderInfo: [1×1 Simulink.CoderInfo]
 Description: ''
 DataType: 'uint8'
 Min: []
 Max: []
 Unit: ''
 Complexity: 'real'
 Dimensions: [1 1]

2 Update the model (press Ctrl+D) to apply the changed parameter.

Viewing and Storing Signal Data

To view the logged signals, attach a supported scope type to the signal.

To customize the signals that are logged:

1 In the Simulink Editor, select Code > External Mode Control Panel.
2 In External Mode Control Panel, click Signal & Triggering.
3 In External Signal & Triggering box, clear the check boxes for scope data that you do

not want to log.

 Parameter Tuning and Signal Logging over Serial Communication

1-55

Storing signal data for further analysis. You can further analyze the logged data in
MATLAB.

1 To use the data archiving in external mode, in the External Mode Control Panel, click
Data Archiving.

1 Working with Texas Instruments C2000 Processors

1-56

a In the Enable Data Archiving dialog box, select the check box Enable archiving.
b Edit the Directory and File fields. Review the other settings.
c Click Apply and close the dialog box.

2 Open the Scope parameters by clicking the scope parameters icon in the scope
window toolbar.

Select the check box Save data to workspace.

 Parameter Tuning and Signal Logging over Serial Communication

1-57

3 In the Variable name field, edit the variable name. The data that is displayed in the
scope at the end of the external mode session is available in the workspace with this
variable name.

The data that was previously displayed in the scope is stored in .mat files.

For example, at the end of an external mode session, the following variable and files
are available in the workspace and the current folder:

• A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5

ScopeData5 =

 time: [56x1 double]
 signals: [1x1 struct]
 blockName: 'c28x_ccp_ert/Scope1'

• In the current folder, .mat files for the three previous durations of scope data:

1 Working with Texas Instruments C2000 Processors

1-58

ExternalMode_0.mat
ExternalMode_2.mat
ExternalMode_1.mat

Limitations

Multiple signal sinks (for instance, scopes) are not supported.

Only the following kinds of scopes are supported with external mode logging:

• Simulink Scope block
• Simulink Display block
• Viewer type: scope — To use this option in your model, right-click a signal in the

model, and select Create & Connect Viewer > Simulink > Scope. The other scope
types listed are not supported (for instance, floating scope).

Before connecting to external mode, right-click the signal and select Signal
Properties. In the dialog box, select the Test point check box, and click OK.

• GRT is supported only for parameter tuning.
• You cannot log signals with sample rates more than 10 kHz.
• Top-level builds are supported for external mode. Subsystem builds are not supported

for external mode.
• Logging and tuning of nonscalars is not supported. It is possible to log nonscalar

signals by breaking down the signal into its scalar components. For an example of how
to do this signal deconstruction, see the CCP example models, which use a Demux and
Signal Conversion block with contiguous copy.

• Logging and tuning of complex numbers is not supported. It is possible to work with
complex numbers by breaking down the complex number into its real and imaginary
components. You can perform this breakdown using the following blocks in the
Simulink Math Operations library: Complex to Real-Imag, Real-Imag to Complex,
Magnitude-Angle to Complex, and Complex to Magnitude-Angle.

See Also
“Parameter Tuning and Signal Logging with Serial Communication”

 See Also

1-59

CAN Calibration Protocol with Third Party Tools
Embedded Coder allows an ASAP2 data definition file to be generated during the code
generation process. This file can be used by a third-party tool to access data from the
real-time application while it is executing.

ASAP2 is a data definition standard by the Association for Standardization of Automation
and Measuring Systems (ASAM). ASAP2 is a standard description for data measurement,
calibration, and diagnostic systems. Embedded Coder software lets you export an ASAP2
file containing information about your model during the code generation process.

Before you generate ASAP2 files with Embedded Coder software, see “Generating an
ASAP2 File” in the Simulink Coder help. The help describes how to define the signal and
parameter information required by the ASAP2 file generation process.

Before the build process, select the ASAP2 option:

1 Select Simulation > Model Configuration Parameters.

The Configuration Parameters dialog box appears.
2 In the Configuration Parameters dialog box, select Code Generation > Interface pane.
3 From the Interface drop-down list, in the Data exchange frame, select the ASAP2

option.
4 Click Apply.

The build process creates an ASAM-compliant ASAP2 data definition file for the generated
C code.

• The standard ASAP2 file generation does not include the memory address attributes in
the generated file. Instead, it leaves a placeholder that you must replace with the
actual address by postprocessing the generated file.

• The map file options in the project template has to be set up a certain way for this
procedure to work. If you have created your own project templates, and you do not
have the correct settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your IDE project template is not
configured to generate a .map file in the correct format.
To generate a .map file in the correct format you need to
setup the following options in your IDE project template:
Generate section map should be checked on

1 Working with Texas Instruments C2000 Processors

1-60

Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off
Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
 -> Linker/Locator -> Map File -> Map File Format.

Embedded Coder software performs this postprocessing for you. To do the
postprocessing, it first extracts the memory address information from the map file
generated during the link process. Then, it replaces the placeholders in the ASAP2 file
with the actual memory addresses. This postprocessing is performed automatically.

 CAN Calibration Protocol with Third Party Tools

1-61

Using the IQmath Library
In this section...
“About the IQmath Library” on page 1-62
“Fixed-Point Numbers” on page 1-63
“Building Models” on page 1-68

About the IQmath Library
• “Introduction” on page 1-62
• “Common Characteristics” on page 1-63
• “References” on page 1-63

Introduction

The C28x IQmath Library blocks perform processor-optimized fixed-point mathematical
operations. These blocks correspond to functions in the Texas Instruments C28x
IQmath Library, an assembly-code library for the TI C28x family of digital signal
processors.

Note Implementation of this library for the TI C28x processor produces the same
simulation and code-generation output as the TI version of this library, but it does not use
a global Q value, as does the TI version. The Q format is dynamically adjusted based on
the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types and use
numbers in Q format. The C28x IQmath Library block reference pages discuss the data
types accepted and produced by each block in the library. For more information, consult
the “Fixed-Point Numbers” on page 1-63 and “Q Format Notation” on page 1-65 topics,
as well as the Fixed-Point Designer™ product documentation, which includes more
information on fixed-point data types, scaling, and precision issues.

You can use IQmath Library blocks with some core Simulink blocks and Fixed-Point
Designer blocks to run simulations in Simulink models before generating code. Once you
develop your model, you can generate equivalent code that is optimized to run on a TI
C28x DSP. During code generation, a call is made to the IQmath Library for each IQmath

1 Working with Texas Instruments C2000 Processors

1-62

Library block in your model to create target-optimized code. To learn more about creating
models that include IQmath Library blocks and blocks from other blocksets, consult
“Building Models” on page 1-68.

Common Characteristics

The following characteristics are common to IQmath Library blocks:

• Sample times are inherited from driving blocks.
• Blocks are single rate.
• Parameters are not tunable.
• Blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, see the
individual block reference pages.

References

For detailed information on the IQmath library, see the user guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments website. The user guide is included in the zip file download that also
contains the IQmath library (registration required).

Fixed-Point Numbers
• “Notation” on page 1-63
• “Signed Fixed-Point Numbers” on page 1-64
• “Q Format Notation” on page 1-65

Notation

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length
sequence of binary digits (1s and 0s). How hardware components or software functions
interpret this sequence of 1s and 0s is defined by the data type.

Binary numbers are used to represent either fixed-point or floating-point data types. A
fixed-point data type is characterized by the word size in bits, the binary point, and
whether it is signed or unsigned. The position of the binary point is the means by which
fixed-point values are scaled and interpreted.

 Using the IQmath Library

1-63

For example, a binary representation of a fractional fixed-point number (either signed or
unsigned) is shown below:

where

• bi is the ith binary digit.
• ws is the word size in bits.
• bws–1 is the location of the most significant (highest) bit (MSB).
• b0 is the location of the least significant (lowest) bit (LSB).
• The binary point is shown four places to the left of the LSB. In this example, therefore,

the number is said to have four fractional bits, or a fraction length of 4.

Note For Embedded Coder, the results of fixed-point and integer operations in
MATLAB/Simulink match the results on the hardware target down to the least
significant bit (bit-trueness). The results of floating-point operations in MATLAB/
Simulink do not match those on the hardware target, because the libraries used by the
third-party compiler may be different from those used by MATLAB/Simulink.

Signed Fixed-Point Numbers

Signed binary fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude
• One's complement
• Two's complement

Two's complement is the most common representation of signed fixed-point numbers and
is used by TI digital signal processors.

Negation using signed two's complement representation consists of a bit inversion
(translation to one's complement representation) followed by the binary addition of a 1.
For example, the two's complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the LSB)

1 Working with Texas Instruments C2000 Processors

1-64

Q Format Notation

The position of the binary point in a fixed-point number determines how you interpret the
scaling of the number. When it performs basic arithmetic such as addition or subtraction,
hardware uses the same logic circuits regardless of the value of the scale factor. In
essence, the logic circuits do not have knowledge of a binary point. They perform signed
or unsigned integer arithmetic — as if the binary point is to the right of b0. Therefore, you
determine the binary point.

In the IQmath Library, the position of the binary point in the signed, fixed-point data types
is expressed in and designated by Q format notation. This fixed-point notation takes the
form

Qm.n

where

• Q designates that the number is in Q format notation — the Texas Instruments
representation for signed fixed-point numbers.

• m is the number of bits used to designate the two's complement integer portion of the
number.

• n is the number of bits used to designate the two's complement fractional portion of
the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is designated as the sign bit. Representing a signed
fixed-point data type in Q format requires m+n+1 bits to account for the sign.

Note The range and resolution varies for different Q formats. For specific details, see
Section 3.2 in the Texas Instruments C28x Foundation Software, IQmath Library Module
User's Guide.

When converting from Q format to floating-point format, the accuracy of the conversion
depends on the values and formats of the numbers. For example, for single-precision
floating-point numbers that use 24 bits, the resolution of the corresponding 32-bit number
cannot be achieved. The 24-bit number approximates its value by truncating the lower
end. For example:
32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

 Using the IQmath Library

1-65

Expressing Q Format — Q.15

For example, a signed 16-bit number with n = 15 bits to the right of the binary point is
expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional bits) = 16
bits total in the data type. In Q format notation, the m = 0 is often implied, as in

Q.15

In Fixed-Point Designer software, this data type is expressed as

sfrac16

or

sfix16_En15

In DSP System Toolbox™ software, this data type is expressed as

[16 15]

Expressing Q Format — Q1.30

Multiplying two Q0.15 numbers yields a product that is a signed 32-bit data type with n =
30 bits to the right of the binary point. One bit is the designated sign bit, thereby forcing
m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Fixed-Point Designer software, this data type is expressed as

sfix32_En30

In DSP System Toolbox software, this data type is expressed as

[32 30]

1 Working with Texas Instruments C2000 Processors

1-66

Expressing Q Format — Q-2.17

Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17 bits to the
right of the binary point, meaning that the most significant bit is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example, consider a 4-
bit two's complement number 1011. When this number is extended to 7 bits with sign
extension, the number becomes 1111101 and the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Fixed-Point Designer software, this data type is expressed as

sfix16_En17

In DSP System Toolbox software, this data type is expressed as

[16 17]

Expressing Q Format — Q17.-2

Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that the binary
point is implied to be 2 bits to the right of the 16 bits, or that there are n = -2 bits to the
right of the binary point. One bit must be the sign bit, thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Fixed-Point Designer software, this data type is expressed as

sfix16_E2

In DSP System Toolbox software, this data type is expressed as

[16 -2]

 Using the IQmath Library

1-67

Building Models
• “Overview” on page 1-68
• “Converting Data Types” on page 1-68
• “Using Sources and Sinks” on page 1-68
• “Choosing Blocks to Optimize Code” on page 1-68
• “Double and Single-Precision Parameter Values” on page 1-69

Overview

You can use IQmath Library blocks in models along with certain core Simulink, Fixed-
Point Designer, and other blockset blocks. This section discusses issues you should
consider when building a model with blocks from these different libraries.

Converting Data Types

It is vital to make sure that blocks you connect in a model have compatible input and
output data types. In most cases, IQmath Library blocks handle only a limited number of
specific data types. You can refer to the block reference page for a discussion of the data
types that the block accepts and produces.

When you connect IQmath Library blocks and Fixed-Point Designer blocks, you often need
to set the data type and scaling in the block parameters of the Fixed-Point Designer block
to match the data type of the IQmath Library block. Many Fixed-Point Designer blocks
allow you to set their data type and scaling through inheritance from the driving block, or
through backpropagation from the next block. This can be a good way to set the data type
of a Fixed-Point Designer block to match a connected IQmath Library block.

Some DSP System Toolbox blocks and core Simulink blocks also accept fixed-point data
types. Choose the right settings in these blocks' parameters when you connect them to an
IQmath Library block.

Using Sources and Sinks

The IQmath Library does not include source or sink blocks. Use source or sink blocks
from the core Simulink library or Fixed-Point Designer in your models with
IQmath Library blocks.

Choosing Blocks to Optimize Code

In some cases, blocks that perform similar functions appear in more than one blockset.
For example, the IQmath Library and Fixed-Point Designer software have a Multiply

1 Working with Texas Instruments C2000 Processors

1-68

block. When you are building a model to run on C2000 DSP, choosing the block from the
IQmath Library yields better optimized code. You can use a similar block from another
library if it gives you functionality that the IQmath Library block does not support, but
you will generate code that is less optimized.

Double and Single-Precision Parameter Values

When you enter double-precision floating-point values for parameters in the IQ Math
blocks, the software converts them to single-precision values that are compatible with the
behavior on c28x processor. For example, with the Ramp Generator block, the software
converts the value of the Maximum step angle parameter to a single-precision value.

 Using the IQmath Library

1-69

Configuring LIN Communications
In this section...
“Overview” on page 1-70
“Configuring Your Model” on page 1-70

Overview
The LIN communications architecture supports a single master node and up to 16 slave
nodes on a LIN network.

LIN nodes use message frames to exchange data. The message has two parts:

• Frame header, generated by the Master node.
• Frame response, which contains data generated by either Slave node or a slave task

on a Master node (but not both).

Configuring Your Model
First, study, and understand the LIN addressing system. See the “Message Filtering and
Validation” topic in the TMS320F2803x Piccolo Local Interconnect Network (LIN)
Module, Literature Number: SPRUGE2A.

Configure the LIN node in your model as a master or slave node:

1 Configure the Target Hardware Resources tab, as described in “Configure Target
Hardware Resources” (Embedded Coder).

2 In the Target Hardware Resources tab, select the Peripherals tab, and then select
LIN.

3 Set LIN mode to Master or Slave.

If the LIN node is a Master node:

• Add a LIN Transmit block to the model. This block enables the Master to generate
message headers.

• To send data, set the ID input and Tx ID Mask input to make Tx ID Match happen on
this node.

1 Working with Texas Instruments C2000 Processors

1-70

https://www.ti.com/lit/pdf/spruge2

• To receive data, place LIN Receive block in the model. Set the Rx ID Mask input to
make Rx ID Match happen on this node.

For example, to configure a model with a master node that receives data from a slave
node:

• Add a LIN Transmit block and a LIN Receive block to the model.
• In the Target Hardware Resources tab, configure the ID Slave Task Byte.
• For the LIN Transmit block, set the ID input.
• For the LIN Receive block, set the Rx ID Mask input so that: Rx ID Mask = ID XOR

Slave Task ID Byte.

If the LIN node is a Slave node:

• To send data, place LIN Transmit block in the model. Set the ID input to match the
LIN frame header issued by the remote Master. Set Tx ID Mask to make a Tx ID
Match happen on this node.

• To receive data, place LIN Receive block in the model. Set the Rx ID Mask input to
make an Rx ID Match happen on this node.

For example, to configure a model with a slave node that transmits data to a master node:

• Add a LIN Transmit block to the model.
• In the Target Hardware Resources tab, configure the ID byte or ID Slave Task Byte

(depending on the ID filtering option).
• In the LIN Transmit block, set the ID input and Tx ID Mask input so that: Tx ID

Mask = ID XOR (ID Byte or ID Slave Task Byte).

Set the Data type and Data length values in your LIN Receive blocks to match the type
and length of the transmitted data. These values enable the receive block reconstruct the
data from the message frames.

Note The LIN Transmit block inherits the data type and length from its input.

 Configuring LIN Communications

1-71

Tips and Limitations

1 Working with Texas Instruments C2000 Processors

1-72

MAT-File Logging on SD Card

2

Log Signals on an SD Card
You can use SD card logging to save signals from Simulink models on an SD card
mounted on a Texas Instruments C2000 hardware. The signals from these models are
saved as data points in MAT-files. With the data you log, you can apply fault analysis,
search for transient behavior, or analyze sensor data collected over a long period. The
data points can be saved in: Structure, Structure with time, or Array format.
Simulink supports logging signals on the target hardware from only these three blocks:

• Scope
• To Workspace
• Outport

This topic is for Embedded Coder Support Package for Texas Instruments C2000
Processors. This uses Embedded Coder

Without MAT-file logging on SD card, you can only log and analyze the data on the target
hardware through External mode or by sending the signal to a computer (using Serial)
and storing it in MATLAB. These mechanisms need an active connection between a
computer and the target hardware when logging data. With SD card logging, you can log
data without any need to connect the target hardware to a computer. Other advantages of
logging data to SD card over other mechanisms are:

2 MAT-File Logging on SD Card

2-2

• The ability to collect data over a long duration for analysis.
• The ability to store the data in a well-structured MAT-file, including timestamp

information.

Note

• The SD card should be formatted with FAT32 format to support the logging from
C2000 processors.

• MAT-File Logging on SD Card does not support PIL (Processor in the loop) Mode
simulation.

• SD card logging does not support F2802x and F281x processors.

Before you start to save the signals from Simulink models on an SD card, complete the
steps listed in “Prerequisites for Logging Signals” on page 2-4.

1 “Configure Board Parameters and Enable MAT-File Logging” on page 2-5: To save
MAT-files on an SD card, the MAT-file logging option in the Configuration
Parameters dialog box must be selected. Also, the target hardware parameters must
be specified.

2 “Configure Model to Log Signals on SD Card” on page 2-7: SD card logging is
supported in models containing To Workspace, Scope, or Outport blocks. You must
specify the values for several block parameters.

3 “Run Model on Target Hardware” on page 2-17: Simulink deploys code and logs
signals on the SD card. These signals are saved as MAT-files on the target hardware.

4 “Import MAT-Files into MATLAB” on page 2-18: After logging is complete, you can
open MAT-files in MATLAB and use them for further analysis.

See Also

Related Examples
• “MAT-file Logging on SD Card for Texas Instruments C2000 Processors” on page 4-

112
• “Memory and Signal Logging limitations on SD Card” on page 3-2

 See Also

2-3

Prerequisites for Logging Signals
Before logging signals:

1 Connect the target hardware to a computer.
2 Create or open a Simulink model. To log signals, the model must have at least one of

these blocks.

Block Name Block Icon
To Workspace block

Scope block

Outport block

2 MAT-File Logging on SD Card

2-4

Configure Board Parameters and Enable MAT-File
Logging

To save signals on an SD card, the target hardware details must be specified.

1 In your model window, open the Configuration Parameters dialog box, go to the
Hardware Implementation pane, and select the name of the target hardware from
the Hardware board list.

2 In the Hardware board settings pane, expand Target hardware resources and
select SD card logging.

3 Select Enable MAT-file logging on SD card option.

Note

• For C2000 hardware boards, it is advisable to limit the data points for the signals
to be logged as C2000 hardware boards have limited memory. In case of memory
allocation failure, set *Limit data points to last* to lesser than |512| value.

• For F2803x, F2805x, F2833x, F280x and Concerto(35x and 36x) processors, select
Save format as |Array| to avoid memory overflow.

4 From the SPI module list, select the desired SPI module.

The default values vary based on the Hardware board selected.
5 From the SPI baud rate list, select

• Inherit from SPI settings - Inherits the value from the Desired baud rate in
bits/sec set in the corresponding SPI_x pane.

• Maximum achievable supported by the inserted SD Card - The baud rate for
SPI interface is automatically selected based on the SD card inserted on the
C2000 hardware. In this case, the Desired baud rate in bits/sec set in the
corresponding SPI_x pane is overwritten.

6 Click Apply. Click OK to save your changes.

 Configure Board Parameters and Enable MAT-File Logging

2-5

See Also

Related Examples
• “Memory and Signal Logging limitations on SD Card” on page 3-2

2 MAT-File Logging on SD Card

2-6

Configure Model to Log Signals on SD Card
SD card logging is supported in models containing To Workspace, Scope, or Outport
blocks. You must specify the values for several block parameters.

To configure a Simulink model to run on the target hardware, perform these steps:

1 On the Modeling tab, in the Simulate section, set the Stop Time. The signals are
logged for the time period specified in the Stop Time parameter. The default value is
Inf. Enter time in seconds to log signals for that time period.

2 In the Simulink model, set the parameter values of To Workspace, Scope, and Outport
blocks.

To Workspace Block
To set the parameter values of the To Workspace block:

1 Double-click the block, and specify these parameters in the Block Parameter dialog
box.

Parameter Description
Variable name Specify a variable name for the logged

data.
Limit data points to last Specify the number of data points to be

logged in the MAT-file. The maximum
number of data points that a MAT-file
can contain is 512.

 Configure Model to Log Signals on SD Card

2-7

Parameter Description
Decimation Use this parameter for the block to

write data points at every nth sample,
where n is the decimation factor. The
default decimation, 1, writes data at
every time sample.

For example, if you specify
Decimation as 5, the block writes data
at every fifth sample. For example, if
the block sample time is 0.1 and
Decimation is 5, the data points at 0,
0.5, 1, 1.5, ... seconds are logged. The
data points are logged until the
Simulation stop time is reached.

Save format Select a format of the variable to which
you save data. SD card logging
supports only these three formats:
Array, Structure with Time, or
Structure.

• Array: Save data as an array with
associated time information. This
format does not support variable-
size data.

• Structure with Time: Save data
as a structure with associated time
information.

• Structure: Save data as a
structure.

Sample time (–1 for inherited) Specify an interval at which the block
reads data. When you specify this
parameter as –1, the sample time is
inherited from the driving block.

2 MAT-File Logging on SD Card

2-8

Scope Block
To set the parameter values of the Scope block:

1 Double-click the block, and click the Configuration Properties button.
2 In the Main tab, specify the Sample time parameter. When you specify this

parameter as –1, the sample time is inherited from the driving block.
3 In the Logging tab, set the block parameters listed in this table.

 Configure Model to Log Signals on SD Card

2-9

Parameter Description
Limit data points to last Specify the number of data points to be

logged in the MAT-file. The maximum
number of data points that a MAT-file
can contain is 512.

Decimation Use this parameter for the block to
write data points at every nth sample,
where n is the decimation factor. The
default decimation, 1, writes data at
every time sample.

For example, if you specify
Decimation as 5, the block writes data
at every fifth sample. For example, if
the block sample time is 0.1 and
Decimation is 5, the data points at 0,
0.5, 1, 1.5, ... seconds are logged. The
data points are logged until the
Simulation stop time is reached.

Log data to workspace Select this parameter to enable data
logging. When you select this
parameter, the Variable name and
Save format parameters become
available.

Variable name Specify a variable name for the logged
data.

2 MAT-File Logging on SD Card

2-10

Parameter Description
Save format Select a format of the variable to which

you save data. SD card logging
supports only these three formats:
Array, Structure with Time, or
Structure.

• Array: Save data as an array with
associated time information. This
format does not support variable-
size data.

• Structure with Time: Save data
as a structure with associated time
information.

• Structure: Save data as a
structure.

 Configure Model to Log Signals on SD Card

2-11

Outport Block
To set the parameter values of the Outport block:

1 Double-click the block, select the Signal Attributes tab, and specify the Sample
time parameter. When you specify this parameter as –1, the sample time is inherited
from the driving block.

2 MAT-File Logging on SD Card

2-12

2 In the model window, open the Configuration Parameters dialog box and select
Data Import/Export.

 Configure Model to Log Signals on SD Card

2-13

3 Set the block parameters listed in this table:

Parameter Description
Time Saves time data to the specified

variable.
Output Saves signal data to the specified

variable.

2 MAT-File Logging on SD Card

2-14

Parameter Description
Format Select a format of the variable to which

you save data. SD card logging
supports only these three formats:
Array, Structure with Time, or
Structure.

• Array: Save data as an array with
associated time information. This
format does not support variable-
size data.

• Structure with Time: Save data
as a structure with associated time
information.

• Structure: Save data as a
structure.

Limit data points to last Specify the number of data points to be
logged in a MAT-file. The maximum
number of data points that a MAT-file
can contain is 512.

Decimation Use this parameter for the block to
write data points at every nth sample,
where n is the decimation factor. The
default decimation, 1, writes data at
every time sample.

For example, if you specify
Decimation as 5, the block writes data
at every fifth sample. For example, if
the block sample time is 0.1 and
Decimation is 5, the data points at 0,
0.5, 1, 1.5, ... seconds are logged. The
data points are logged until the
Simulation stop time is reached.

 Configure Model to Log Signals on SD Card

2-15

See Also

Related Examples
• “MAT-file Logging on SD Card for Texas Instruments C2000 Processors” on page 4-

112
• “Memory and Signal Logging limitations on SD Card” on page 3-2

2 MAT-File Logging on SD Card

2-16

Run Model on Target Hardware
Simulink deploys code and logs signals on an SD card. These signals are saved as MAT-
files on the target hardware.

To deploy the code on the target hardware, in the model window, go to Hardware tab. In
the Deploy section, click the Build Deploy & Start button. The lower left corner of the
model window displays status while Simulink prepares, downloads, and runs the model on
the target hardware. Wait for the logging to stop.

Note After the Simulation stop time elapses, the logging of signal stops. However, the
model continues to run. For example, if the Simulation stop time parameter is specified
as 10.0 seconds, the logging stops after 10.0 seconds. However, the model continues to
run for an indefinite time. If the Simulation stop time parameter is specified as Inf, the
logging continues until the SD card memory is full, or you remove the SD card from the
target hardware.

 Run Model on Target Hardware

2-17

Import MAT-Files into MATLAB
After logging is complete, you can open MAT-files in MATLAB, and use them for further
analysis. Since the data points are stored in MAT files, you can directly open the files in
MATLAB without converting them into any other format.

In C2000, remove the SD Card from the board, connect it to a computer and read
the .mat files from the explorer.

The files are named as <modelname>_<runnumber>_<indexnumber>.mat. The name
of your Simulink model is modelname. runnumber is the number of times the model is
run. runnumber starts with 1 and is incremented by one for every successive run.
indexnumber is the MAT-file number in a run. indexnumber starts with 1 and is
incremented by one for every new file that is created in the same run.

Suppose that the name of the model is sdcard. In the first run, Simulink creates
sdcard_1_1.mat file and starts logging data in this file. After the logging in the first file
is completed, Simulink creates sdcard_1_2.mat file and continues logging data in this
file. Likewise, the logging continues in mutiple MAT-files until the Simulation stop time
is elapsed. If the same model is run again, the new files are named as sdcard_2_1.mat,
sdcard_2_2.mat, and so on.

Note Data loss occurs when:

• The total file size exceeds the available SD card storage capacity.
• The signal logging rate is faster than the SD card writing speed.

2 MAT-File Logging on SD Card

2-18

See Also

Related Examples
• “MAT-file Logging on SD Card for Texas Instruments C2000 Processors” on page 4-

112
• “Memory and Signal Logging limitations on SD Card” on page 3-2

 See Also

2-19

SD Card Logging Troubleshooting

3

Memory and Signal Logging limitations on SD Card
SD Card Logging Memory Limitation: SD Card logging allocates static memory for all
the signal that is logged. The memory allocated is based on the type of logging i.e. Save
Format, Sample Time, Model stop time, Decimation and Limit data points
to last. Since the RAM size for C2000 processors is limited, there are chances of
memory allocation failure when SD card logging is enabled. See Enable MAT-File Logging
on page 2-5 .

• Data memory allocation failure when SD card logging is enabled

Try the following steps, in case of data memory allocation failure:

• Select lower value for Limit data points to last . Lower value can result in
smaller static memory allocation

• Set the logging type as Array instead of structure or structure with
time.

• Reduce the number of signals that can be logged in the model
• Reduce the sample rate for logging either by using rate transition blocks or

decimation parameter

• Code memory allocation failure

Code memory allocation fails when the SD Card feature and the algorithm together is
generating code bigger than the allocated code memory. This can happen for the
processors with low RAM memory like F280x, F2803x, F2805x, F2833x and Concerto
(35x and 36x).

Try the following steps in case of code memory failure:

• Use the Boot From Flash option for the target
• Reduce the size of the model there by reducing the code generated

SD Card Logging Connection Limitation: SD card logging uses SPI (Serial Peripheral
Interface) to send the data between processor and memory. The data logging will be
affected based on the SPI connections and SPI parameter settings. Very few control cards
offer dedicated SD card logging slots (like F2837xD) to place the SD card. You have to use
external SD card module to log data for other control card.

If the signals are not logging on SD card, try the following steps:

3 SD Card Logging Troubleshooting

3-2

• Ensure proper SPI module is selected for SD card logging
• If you are using the external SD card interface, ensure the connections for SPIMO,

SOMI, CLK and STE pins are correct
• Ensure correct supply and ground is connected for the external SD card interface
• Ensure the GPIO pins configurations for the selected SPI_x module in configuration

parameters are correct
• Start with lower baud rate for SPI. Change the SPI baud rate setting in Configuration

parameters to Inherit from SPI settings and start with low value like 1000000
MHz (Desired baud rate in bits per sec in SPI_x module)

• Ensure that you are not using the GPIO pins and the SPI module dedicated to SD card
with other peripherals . This will cause conflict and the logging will fail

See Also
“MAT-file Logging on SD Card for Texas Instruments C2000 Processors” on page 4-112

 See Also

3-3

Examples

<xi:include href="urn:mathworks:ex:texasinstrumentsc2000/PFCMultiAxisKitExample.xml" xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:fallback><!-- Fallback for texasinstrumentsc2000/PFCMultiAxisKitExample --><link xmlns="http://docbook.org/ns/docbook"/></xi:fallback>
</xi:include>

4

ADC-PWM Synchronization Using ADC Interrupt
This example shows how to use the ADC block to sample an analog voltage and use the
PWM block to generate a pulse waveform. This example also shows how to use the
Hardware Interrupt block to synchronize the change in the PWM duty cycle with analog
to digital conversion of voltage. In the generated code, changes in the voltage of the ADC
input alter the duty cycle of the PWM output. The period of the PWM waveform remains
constant.

Required Hardware

• Spectrum Digital F2808/F2812/F28335 eZdsp or Texas Instruments™ LaunchPad/
controlSTICK/controlCARD with docking station

• Oscilloscope and probes
• Function generator

Hardware Connections

Connect the function generator output to the ADC input (ADCINA0) on the board.
Connect the GPIO pin corresponding to PWM1A to the analog input of the oscilloscope.

Available Models

These are the Simulink models available for different C2000 processors:

• F281x-based board: c281x_adcpwmasynctest_ert.slx
• F280x/F2823x/F2833x-based board: c280x_2833x_adcpwmasynctest_ert.slx
• Piccolo F2802x/F2803x/F2806x or Concerto F28M35x/F28M36x-based board:

c280xx_adcpwmasynctest_ert.slx
• Piccolo F2807x or Delfino F2837xS/F2837xD-based board:

c2807x_2837xx_adcpwmasynctest_ert.slx
• Piccolo F28004x-based board: c28004x_adcpwmasynctest_ert.slx

Note: To use the F28M35x/F28M36x controlCARD, you need Embedded Coder® Support
Package for Texas Instruments C2000™ F28M3x Concerto™ Processors.

Model

The following figure shows the example model.

4 Examples

4-2

matlab:c281x_adcpwmasynctest_ert
matlab:c280x_2833x_adcpwmasynctest_ert
matlab:c280xx_adcpwmasynctest_ert
matlab:c2807x_2837xx_adcpwmasynctest_ert
matlab:c28004x_adcpwmasynctest_ert

The analog voltage from the function generator controls the duty cycle of the PWM
waveform. Duty cycle changes can be observed on the oscilloscope. The Hardware
Interrupt block triggers an interrupt service routine (ISR) and schedules the execution of
the connected subsystem (ADC-PWM Subsystem) when the processor receives the ADC
interrupt (ADCINT).

The ADC-PWM Subsystem consists of an ADC block that drives the duty cycle input port
of the PWM block. The PWM block is configured to trigger the start of conversion (SOC)
of the ADC block.

Run the Model on the Hardware Board

1 Open the model corresponding to the target hardware you are using. Each model is
configured for a default target hardware. To select a different target hardware,
browse to Configuration Parameters > Hardware Implementation > Hardware
board.

2 On the Hardware tab, Click Build, Deploy & Start > Build Stand-Alone to
generate, build, load, and run the program.

 ADC-PWM Synchronization Using ADC Interrupt

4-3

3 Observe the changes to the PWM waveform on the oscilloscope.

More About

• C281x ADC
• C281x PWM
• C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/

F2837xS/F2838x/F28004x ePWM
• C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x

ADC
• C28x Hardware Interrupt

4 Examples

4-4

LIN-Based Control of PWM Duty Cycle
This example shows how to use the C28035 LIN Receive, LIN Transmit, and PWM blocks
to generate a pulse waveform.

Required Hardware

• Texas Instruments™ F28035 controlCARD with docking station
• Oscilloscope and probes

Available Models

• Texas Instruments F28035 controlCARD: c28035lintest.slx

Example Model

This example model runs a single LIN node in loopback mode. The Read Duty Cycle
subsystem passes the duty cycle values to the LIN Transmit block. The LIN Transmit
block transmits the values to the LIN Receive block, which sends them to the ePWM
Output block. The Verify Data block compares the original duty cycle values with the
values from the LIN Receive block. If the values do not match, the Data Non-Match LD3
block flashes the LD3 LED on the C28035 controlCARD. In addition, a LIN_STAT signal is
attached to the Status output from the LIN Receive block. To know the LIN

 LIN-Based Control of PWM Duty Cycle

4-5

matlab:c28035lintest

communication status, you can check the LIN_STAT variable in the generated code
running in Texas Instruments Code Composer Studio™.

The duty cycle of the generated pulse waveform is determined by the relative ratio of the
received pulse width value and the pulse period, which is fixed at 64,000 clock cycles. The
duty cycle toggles between 25%, 50%, and 75% based on the selection.

PWM duty cycle can be changed by double-clicking the Read Duty Cycle subsystem and
selecting either 25%, 50%, or 75% value from the window that opens up.

Hardware Connections

Connect the output of PWM1 on the board to the analog input of the oscilloscope.

The LIN module is set to work in loopback mode. No external LIN hardware is needed
because the LIN TX/RX signals are emulated in the software.

Setup LIN Loopback Mode

1 Browse to Configuration Parameters > Hardware Implementation > Target
hardware resources.

2 Set LIN mode to Master in LIN page.
3 Select Enable loopback on the LIN page.
4 Set ID slave task byte to a value between 0x00 and 0xFF.

For the LIN Transmit and LIN Receive blocks:

• Use the same ID Mask as input for both LIN TX ID Mask and RX ID Mask.
• Use LIN ID to make (LIN ID XOR ID Mask) == ID-Slave Task Byte.

For information about how to setup the LIN peripheral, see “Configuring LIN
Communications” on page 1-70.

Monitor and Tune the Model

1 Open the model, double-click the Duty Cycle block, and select a new duty cycle
value.

2 In the Configuration Parameters window, click Hardware Implementation and
go to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows.
For more information, see

4 Examples

4-6

3 Go to Hardware tab and click Monitor & Tune.
4 Use the diagnostic viewer to follow the build progress, and wait until the code loads

and runs on the target hardware.
5 Observe the change of the PWM waveform on the oscilloscope.
6 Change the duty cycle while in External mode and observe the changes in the PWM

waveform on the oscilloscope.

More About

• C2803x LIN Receive
• C2803x LIN Transmit

 LIN-Based Control of PWM Duty Cycle

4-7

Asynchronous Scheduling
This example shows how to use the Texas Instruments™ c28x peripherals and Hardware
Interrupt blocks to control the real-time execution of Simulink® function-call subsystems
in an asynchronous fashion.

Required Hardware

• Spectrum Digital F2808/F2812/F28335 eZdsp or Texas Instruments LaunchPad/
controlSTICK/controlCARD with docking station

• Oscilloscope and probes

Available Models

These are the Simulink models available for different C2000 processors:

• F281x-based board: c281x_asyncscheduling_ert.slx
• F280x/F2823x/F2833x-based board: c280x_2833x_asyncscheduling_ert.slx
• Piccolo F2803x/F2806x-based board: c280xx_asyncscheduling_ert.slx
• Concerto F28M35x/F28M36x- based board: c28M3xx_asyncscheduling_ert.slx
• Piccolo F2807x/F28004x or Delfino F2837xS/F2837xD-based board:

c2807x_2837xx_asyncscheduling_ert.slx

Note: To use the F28M35x/F28M36x controlCARD, you need Embedded Coder® Support
Package for Texas Instruments C2000™ F28M3x Concerto™ Processors.

4 Examples

4-8

matlab:c281x_asyncscheduling_ert
matlab:c280x_2833x_asyncscheduling_ert
matlab:c280xx_asyncscheduling_ert
matlab:c2807x_2837xx_asyncscheduling_ert

Example Model

The EV Timer or ePWM blocks are used to configure the timer interrupts. The timer
interrupts are triggered based on the timer period, and the eCAN message receive
interrupt is triggered when a message is received. The Hardware Interrupt block triggers
the interrupt service routines (ISR) for the timer interrupts as well as for the eCAN
message receive interrupt. The ISRs in turn call the function-call subsystems connected
to the Hardware Interrupt block output ports.

The outputs of the first two subsystems are free-running counters. The sum of the
counters is used to control the duty cycle of PWMB for F2812 or ePWM2 for F2808/
F28335. The PWM waveform duty cycle increases linearly from 0 to 100%. The third

 Asynchronous Scheduling

4-9

subsystem contains an eCAN Receive block whose message output controls the duty cycle
of the PWM block (PWMA for F2812 or ePWM1 for F2808/F28335). The duty cycle varies
from 0 to 100% because the eCAN messages are received from the eCAN Transmit block.

Note: The Self-Test mode of eCAN_A is enabled to connect the eCAN_A transmitter and
receiver internally to avoid external connection between the transmitter and the receiver.
For disabling the Self-Test mode of eCAN_A, the transmitter and the receiver must be
connected together externally.

Run the Model on the Board

To configure, build, and deploy the application that corresponds to your Simulink model:

1 Open the model corresponding to your target hardware. Each model is configured for
a default target hardware. To select a different target hardware, browse to
Configuration Parameters > Hardware Implementation > Hardware board.

2 Go to Target hardware resources > eCAN_A, select Self-Test Mode, and click OK.
3 On the Hardware tab, Click Build, Deploy & Start > Build Stand-Alone to

generate, build, load, and run the program.
4 Observe the changes of the PWM waveform on the oscilloscope.

More About

• C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x ePWM

• C28x eCAN Transmit

4 Examples

4-10

Using CAN Calibration Protocol for Monitoring and
Tuning

This example shows how to use the CAN Calibration Protocol (CCP) block to monitor
model signals and tune parameter values in the application code running on the target
hardware. You can use either use Monitor and Tune or a third-party calibration tool to
interact with the application. The parameters can be loaded in the hardware flash
memory and copied to the RAM during initialization.

Required Hardware

• Vector-Informatik CAN hardware and drivers must be installed on your host computer,
and the baud rate must be set to 1 MBd to match the processor CAN configurations.
For more information, see “Set Up CAN Communication with Target Hardware” on
page 1-10.

• Spectrum Digital F2812/F2808/F28335 eZdsp board or F2808/F28035/F28044/
F28069/F28335 controlCARD with Peripheral Explorer kit.

Available Models

These are the Simulink models available for different C2000 processors:

• The example model c28x_ccp_ert.slx can be used for Texas Instruments™ Piccolo
F2803x/F2806x, F28x3x, F280x, F281x, F2807x, F2837x, and F28004x target
hardware. By default, the F28335 target hardware is selected.

• To change the target hardware, browse to Configuration Parameters > Hardware
Implementation > Hardware board.

 Using CAN Calibration Protocol for Monitoring and Tuning

4-11

matlab:c28x_ccp_ert

Example Model

During code generation, an ASAP2 file is generated. The ASAP2 file contains symbol and
memory address information. Either External mode or a third-party calibration tool can

4 Examples

4-12

use the generated ASAP2 file to log the signals and update the parameters on the real-
time application generated for the model.

To enable ASAP2 file generation, browse to Configuration Parameters > Code
Generation > Interface and select the ASAP2 interface option.

Run the Model

While opening the model c28x_ccp_ert.slx, a script is processed as a pre-load function
callback. This callback can be viewed by selecting File > Model Properties > Callbacks
> PreLoadFcn.

The c2000_ccp_data.m callback sets the Simulink® signals and parameters, thereby
resolving the Simulink objects needed for the CCP DAQ lists and Simulink tunable
parameters. Now, you can monitor the model signals and tune parameter values in real-
time using CCP.

1 Browse to Configuration Parameters > Hardware Implementation > Hardware
board, and select the required hardware board.

2 Ensure that Communication interface is set to CAN. The selection can be made at
Configuration Parameters > Hardware Implementation > Target hardware
resources > External Mode > Communication interface.

3 Open Hardware tab and click Monitor & Tune.
4 Use the diagnostic viewer to follow the build progress, and wait until the code loads

and runs on the target hardware.
5 Observe the logged data on the scope.

 Using CAN Calibration Protocol for Monitoring and Tuning

4-13

matlab:c28x_ccp_ert

4 Examples

4-14

 Using CAN Calibration Protocol for Monitoring and Tuning

4-15

Signal Logging and Parameter Tuning

The model c28x_ccp_ert.slx contains a variety of signals and parameters that can be
logged or changed in real-time on the target hardware. Parameter tuning and signal
logging are enabled by the CCP block included in the model. Additionally, when the model
is built, it must be configured to generate an ASAP2 file. The ASAP2 file contains
information about the signals and parameters that are available for logging or tuning in
the real-time application.

The model contains a simple counter with parameterized step size, STEP_PARAM.
STEP_PARAM takes advantage of a custom storage class package labeled
tic2000demospkg to load the parameters on the flash memory and run them from the
RAM for calibration using the ramfuncs section available in the memory map.

For this example, a custom storage class package labeled tic2000demospkg has been
created. Run cscdesigner -advanced tic2000demospkg to view the definition of the
tic2000demospkg package.

This model can be run from the flash memory (standalone) and also from the RAM. In
both cases, STEP_PARAM is stored in the ramfuncs section. You can update the parameter

4 Examples

4-16

matlab:c28x_ccp_ert
matlab:cscdesigner%20-advanced%20tic2000demospkg

STEP_PARAM and log the output of the counter, COUNTER_SIGNAL. Additional signals
available for logging are SINE_SIGNAL, PULSE_SIGNAL, and the RANDOMx signals.

To change the parameter STEP_PARAM in the real-time application:

1 Change its value, STEP_PARAM.Value, in the MATLAB workspace.
2 Update the model to apply this new value to the real-time application by selecting

Simulation > Update Diagram or pressing Ctrl+D.

Signal Logging and Parameter Tuning Using a Third-Party Calibration Tool

As an alternative to Monitor and Tune, you can use a third-party calibration tool for
signal logging and parameter tuning. The same signals and parameters that are available
with External mode may be logged or updated using the third-party calibration tool. While
using a third-party calibration tool, ensure that the tool is set in compliance with the word
addressable nature of the Texas Instruments C2000 processors (16-bit addressable).

More About

• C28x CAN Calibration Protocol
• “Set Up CAN Communication with Target Hardware” on page 1-10

 Using CAN Calibration Protocol for Monitoring and Tuning

4-17

Simulation of FOC Using PMSM Model
This example shows how to simulate field-oriented control (FOC) using a Permanent
Magnet Synchronous Machine (PMSM) model. The model is created using the
SimPowerSystems™ toolbox, C28x peripherals, and DMC library blocks.

Using this example, you can:

• Simulate FOC using a PMSM model
• Generate code for the embedded controller

Required Hardware

• Spectrum Digital® F2808 or F2812 eZdsp board
• Digital Motor Controller board: Spectrum Digital® DM550
• Three-phase Permanent Magnet Synchronous Motor with quadrature encoder

Note: The characteristics of the power supply and the amplifier must be the same as the
input characteristics of the selected motor.

Available Models

• Spectrum Digital F2812 eZdsp: c2812pmsmsim.slx
• Spectrum Digital F2808 eZdsp: c2808pmsmsim.slx

Model

The following figure shows the Permanent Magnet Synchronous Motor Field-Oriented
Control example model.

4 Examples

4-18

matlab:c2812pmsmsim
matlab:c2808pmsmsim

Simulate FOC Using a PMSM Model

The c2812 peripheral and DMC library blocks are used to control the speed and torque of
a three-phase Permanent Magnet Synchronous Machine from SimPowerSystems in a
speed-controlled closed-loop fashion using the field-oriented control technique.

To set up the Permanent Magnet Synchronous Machine, double-click the block and
specify the parameters to match your hardware configuration. For more information on
setting up the Permanent Magnet Synchronous Machine, see the SimPowerSystems
documentation.

External torque can be added to the simulation to reproduce the mechanical action on the
shaft of the motor. A default torque is applied at the beginning of the simulation and is

 Simulation of FOC Using PMSM Model

4-19

reversed after 3 seconds of simulation. The controller model executes a speed controller
algorithm and reacts to the torque changes to maintain the desired speed. You can
achieve optimal results by tuning the PID controllers on the Embedded Controller side to
suit the motor.

The following figure shows the speed of the PID controller in the speed controller
subsystem. The desired speed is filtered and ramps up to a defined speed value. This
value stays constant until the end of the simulation. At the beginning of the simulation,
torque is applied on the shaft so that the motor spins by itself in one direction until
enough opposite torque is accumulated in the controller to regulate the speed to the
desired value. At time = 3 seconds, a different value of external torque is applied on the
shaft of the motor, forcing the controller to change its output to maintain the desired
speed.

4 Examples

4-20

Generate Code for the Embedded Controller

To generate code for the Embedded Controller, delete the Plant Model and the Input
Parameters blocks and press Ctrl+B.

Connect the motor to the DM550 Digital Motor Controller and the eZdsp board to the
DM550 Digital Motor Controller, using the standard cables. Follow the instructions given

 Simulation of FOC Using PMSM Model

4-21

by the controller vendor. By default, the model is set up for motors with the following
characteristics:

• 2000 slits/mechanical revolution
• 4 pole pairs
• Encoder index offset: 1850

Change the model parameters to suit the motor. Match the voltage and power
characteristics of the motor with the controller parameters. Use the Edit Parameters
button to change the model parameters of the motor.

The motor is driven by the conventional voltage-source inverter. The controller algorithm
generates six pulse width modulation (PWM) signals using vector PWM technique for six
power switching devices. Two input currents of the motor (ia and ib) are measured from
the inverter and sent to the processor through two analog-to-digital converters (ADCs).

Run the Model

1 Open the model.
2 Remove the Plant Model and Input Parameters blocks.
3 Press Ctrl+B to generate, build, load, and run the controller code.

More About

C2000 PID Controller

4 Examples

4-22

Permanent Magnet Synchronous Motor Field-Oriented
Control

This example shows how to control the speed of a three-phase Permanent Magnet
Synchronous Motor in a closed-loop fashion via Field-Oriented Control (FOC)using the
C28x peripherals and DMC library blocks.

Required Hardware

This example supports multiple hardware configurations:

DM550 Configuration

• Spectrum Digital® F2808-based board, F2808 or F2812 eZdsp board
• Digital Motor Controller board: Spectrum Digital DM550
• Three-phase Permanent Magnet Synchronous Motor with quadrature encoder

DRV8312 Configuration

• TI® DRV8312 Three-Phase Brushless Motor Control Kit (DRV8312-C2-KIT or
DRV8312-69M-KIT) with F28035 or F28069 Piccolo or F28M35x or F28M36x Concerto
processor(To use F28M35x/F28M36x you need Texas Instruments C2000 Concerto
Support Package)

• Three-phase PMSM with optional Hall sensors attached to connector J10 of the
DRV8312EVM board

Dual Motor Control Configuration

• TI Dual Motor Control and PFC Developer's kit TMDS2MTRPFCKIT with F28035
• 2 Three-phase PMSM, one with optional Hall sensors attached to connector J4 of the

DRV8402-based Dual-Axis DMC EVM (TMDS2MTRPFCKIT)

High Voltage Motor Control Configuration

• TI High Voltage Motor Control and PFC Developer's kit TMDSHVMTRPFCKIT with
F28035

• Three-phase PMSM with optional Hall sensors attached to connector H1 of the High
Voltage Motor Control Kit (TMDSHVMTRPFCKIT)

TI C2000 LaunchPad with Motor Drive BoosterPack Configuration

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-23

• Motor Drive BoosterPack featuring DRV8301 (BOOSTXL-DRV8301) with F28027
LaunchPad (LAUNCHXL-F28027)

• Three-phase PMSM

TI LaunchXL-F28379D/F28377S with Motor Drive BoosterPack Configuration

• Motor Drive BoosterPack featuring DRV8305 (BOOSTXL-DRV8305EVM) with
F28379D/F28377S LaunchPad (LAUNCHXL-F28379D/LAUNCHXL-F28377S)

• Two three-phase PMSM coupled to form a Dyno (2MTR-DYNO)

TI LaunchXL-F28069M with Motor Drive BoosterPack Configuration

• Motor Drive BoosterPack featuring DRV8301 (BOOSTXL-DRV8301) with F28069M
LaunchPad (LAUNCHXL-F28069M)

• Two three-phase PMSM coupled to form a Dyno (2MTR-DYNO)

Note: Match the characteristics of the power supply and the amplifier with the input
characteristics of the selected motor.

Available Models

The following are the example models available for different driver-controller
combinations:

• DM550 + F2812 eZdsp: c2812pmsmfoc_ert.slx
• DM550 + F2812 eZdsp with flash-based memory map: c2812pmsmfocflash_ert.slx
• DM550 + F2808 eZdsp: c2808pmsmfoc_ert.slx
• DM550 + F2808 eZdsp with flash-based memory map: c2808pmsmfocflash_ert.slx
• DM550 + F28335 eZdsp: c28335pmsmfoc_ert.slx
• DM550 + F28335 eZdsp with flash-based memory map: c28335pmsmfocflash_ert.slx
• DRV8312EVM + F28035 Piccolo: c28035pmsmfoc_ert.slx
• DRV8312EVM + F28069 Piccolo: c28069pmsmfoc_ert.slx
• Dual-Axis DMC EVM + F28035 Piccolo: c28035pmsmfocdual.slx
• DRV8312EVM + F28M35x Concerto: c28M35xpmsmfoc_ert.slx
• DRV8312EVM + F28M36x Concerto: c28M36xpmsmfoc_ert.slx
• TMDSHVMTRPFCKIT + F28035 Piccolo: c28035pmsmfochvkit_ert.slx

4 Examples

4-24

matlab:c2812pmsmfoc_ert
matlab:c2812pmsmfocflash_ert
matlab:c2808pmsmfoc_ert
matlab:c2808pmsmfocflash_ert
matlab:c28335pmsmfoc_ert
matlab:c28335pmsmfocflash_ert
matlab:c28035pmsmfoc_ert
matlab:c28069pmsmfoc_ert
matlab:c28035pmsmfocdual
matlab:c28035pmsmfochvkit_ert

• BOOSTXL-DRV8301 + LAUNCHXL-F28027 C2000 Piccolo LaunchPad:
c28027pmsmfoc_ert.slx

• 2 BOOSTXL-DRV8301 + LAUNCHXL-F28069M C2000 Piccolo LaunchPad:
c28069pmsmfocdual_ert.slx

• 2 BOOSTXL-DRV8305 + LAUNCHXL-F28377S C2000 LaunchPad:
c28377Spmsmfocdual_ert.slx

• 2 BOOSTXL-DRV8305 + LAUNCHXL-F28379D C2000 LaunchPad:
c28379Dpmsmfocdual_cpu1_ert.slx, c28379Dpmsmfocdual_cpu2_ert.slx

Note: In LaunchXL F28379D (Version 2.0), the ADC offset for Ia and Ib measurements are
different from the earlier boards. Open the model "c28379Dpmsmfocdual_cpu1_ert.slx",
"c28379Dpmsmfocdual_cpu2_ert.slx" and change the postion of the manual switch
appropriately, depending on the version of the board. To change the manual switch
setting in your model, browse to FOC Alogrithm Motor > Torque Control Algorithm
> Input Scaling. It is recommended to calibrate the ADC offset, because the ADC offset
varies for different boards.

Model

The following figure shows a Permanent Magnet Synchronous Motor Field-Oriented
Control example model.

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-25

matlab:c28027pmsmfoc_ert
matlab:c28069pmsmfocdual_ert
matlab:c28377Spmsmfocdual_ert
matlab:c28379Dpmsmfocdual_cpu1_ert
matlab:c28379Dpmsmfocdual_cpu2_ert

In this example, a closed-loop Field-Oriented Control algorithm is used to regulate the
speed and torque of a three-phase Permanent Magnet Synchronous Motor (PMSM). This
example uses C28x peripheral blocks and C28x DMC library blocks from the Embedded
Coder Support Package for Texas Instruments C2000 Processors.

The algorithm in this example uses an asynchronous scheduling. The pulse width
modulation (PWM) block triggers the ADC conversion. At the end of conversion, the ADC
posts an interrupt that triggers the main FOC algorithm.

Configure the interrupt operation with Configuration Parameters > Hardware
Implementation > Hardware board settings > Target hardware resources >
External Interrupt. For more information, see “Hardware Implementation Pane: Texas
Instruments C2000 Processors”.

The example models named *pmsmfocflash.slx, place the code in the flash memory
section of the processor, allowing the application to run in a stand-alone fashion.

The model is set up for motors that have the following characteristics:

4 Examples

4-26

DM550 configuration

• 4 pole pairs
• 2000 slits/mechanical revolution
• Encoder index offset: 1850

DRV8312 Configuration

• 4 pole pairs
• Sensorless using sliding mode observer (SMO)
• 3 Hall sensors attached to connector J10 of the DRV8312EVM (optional)

Dual Motor Control Configuration

• 4 pole pairs
• Sensorless using sliding mode observer (SMO)
• 3 Hall sensors attached to connector J4 of the Dual-Axis DMC EVM (optional)

High Voltage Motor Control Kit Configuration

• 4 pole pairs
• Sensorless using sliding mode observer (SMO)
• 3 Hall sensors attached to connector H1 of the High Voltage Motor Control Kit

(optional)

LaunchPad with Motor Drive BoosterPack Configuration

• 4 pole pairs
• Sensorless using sliding mode observer (SMO)

You may need to change the model parameters to fit your specific motor. Match motor
voltage and power characteristics to the controller.

A conventional voltage-source inverter drives motor. The controller algorithm generates
six pulse width modulation (PWM) signals using a vector PWM technique for six power
switching devices. The inverter measures the current of the two motor inputs (ia and ib)
input currents of the motor (ia and ib) using two analog-to-digital converters (ADCs) and
sends the measurements to the processor.

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-27

Run the Model

1. Open the model that matches your hardware.

If you select the flash version, you must do the appropriate jumper settings on the eZdsp
boards. Default jumper settings are set to execute the code from RAM, (refer to the eZdsp
Technical Reference for more information).

2. Press Ctrl+B to build, load, and run the binary executable.

If you are using F28379D Launchpad, you must build and download CPU1 and CPU2
models to respective cores of the processor. Each core controls one motor on the dual
motor control kit. Two cores communicate each other using IPC. CPU1 model sends Load
Torque request to CPU2. CPU2 sends data to be logged to CPU1. For more information
about IPC communication, see “Inter-Processor Communication Using IPC Blocks”.

High power must be applied to the Inverter before running the program. Stopping the
program in the middle of its execution with high power on can damage the hardware. Use
"Reset" to stop the execution of the program.

Model Calibration Using DM550 and QEP

In this example, we are using a 2000 slit encoder with a four pole pair motor. The encoder
has 2 channels (QEPA and QEPB) and an index pulse (QEPI).

Figure 1: Optical encoder disk

The timer driven by the QEP increments by 4 for each slit as shown in the following
figure.

4 Examples

4-28

Figure 2: QEP signals and counter

The 4-pole pair motor in this example produces: * 8000 counts per mechanical * 2000
counts per electrical revolution

The following figure shows an A-N back EMF waveform and the position of the encoder
index pulse relative to the back EMF of the motor. The neutral point is obtained by
connecting a star resistor network on the 3 legs of the motor.

For F281x processors:

• Phase A is the one controlled by PWM1-2
• Phase B is the one controlled by PWM3-4
• Phase C is the one controlled by PWM5-6

For F280x/F2833x processors:

• Phase A is the one controlled by PWM1A-1B
• Phase B is the one controlled by PWM2A-2B
• Phase C is the one controlled by PWM3A-3B

Spin the motor externally to get B-N 120° out of phase on the right-hand side of A-N on
the oscilloscope (Figure 4). Make sure that the counter driven by the encoder is
increasing while spinning in this direction. The reference position of the encoder is when

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-29

A-N crosses the 0V axis on its way up. Measure the time from that point to the next
encoder index pulse on the right-hand side and convert that time into number of counts.
Put the result in the "index offset" parameter of "Edit Parameters" block in the model.

Figure 3: V_A-N waveform with index pulse

4 Examples

4-30

The following picture shows the position of the B-N waveform compared to A-N:

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-31

Figure 4: V_A-N and V_B-N waveforms

4 Examples

4-32

Model Calibration Using DRV8312EVM, Dual-Axis DMC EVM, and High Voltage
Motor Control Kit

The "Position Sensing Switch" in the model allows you to select sensorless position
sensing or position sensing using Hall sensors. In case of sensorless (default), no
calibration is needed. If using Hall sensors for position sensing, Hall sensors have to be
connected to J10 of the DRV8312EVM board, J4 of the Dual-Axis DMC EVM or H1 for the
High Voltage Kit. The model concatenates the three Hall signals into a variable with
Hall_A being the Least Significant Bit (LSB) and Hall_C being the Most Significant bit
(MSB) of the variable.

The "Speed Request Switch" allows you to select the source of the speed request. By
default the speed will come from a normalized constant setting the speed request to half
the acceptable speed range (0.5). For the DRV8312EVM, you can also select the speed
request to come from potentiometer R66.

Figure 5: Interpretation of Hall Sensor Signals

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-33

This section is not relevant if using sensor-less control. The model is configured with one
interrupt for each Hall signal. In each Hall interrupt, there are four meaningful Hall
values. Any other Hall value indicates a hardware problem. The Hall value read in a
particular interrupt holds information about the motor's direction of rotation. For
example, in Hall_A interrupt, reading a Hall value of 2 indicates that the motor is spinning
in direction 0 and a falling edge has just occurred. If the model detects a direction
change, it invalidates the direction and speed of the motor. For the speed to be valid, the
model requires two consecutive edges with the same direction. Otherwise, the model sets
a flag to invalidate the speed.

The following logic applies to the corresponding flag updates:

4 Examples

4-34

• New_direction = Hall_direction
• New_valid_flag = Previous_direction == Hall_direction;
• Global_speed_and_direction_ready_flag = New_valid_flag && Old_valid_flag;

The Field Oriented Control algorithm takes a position signal from 0 to 1 reflecting an
electrical revolution. If the speed signal is valid, the model performs a linear extrapolation
from the Hall reading and accurately estimates the position.

Principle of the Hall based position estimation algorithm:

• Read the halls.
• Get the value of the latest timer (timer captured from the last interrupt that

triggered).
• Convert the time that elapsed from the previous edge to an electrical angle using the

current speed.
• If the speed information is not valid (speed is invalid after a direction change, at

startup, when motor is stopped, when speed is too low...), the algorithm assumes that
the position is in the middle of the 60 electrical degrees defined by the Hall reading.
The maximum position signal error in these cases is therefore 30 electrical degrees.

The Hall decoder will be referenced (position = 0) when Hall_A is rising in direction 0. A
Hall_position_offset variable is used to inform the FOC algorithm of the position
difference between the Hall reference and the back EMF waveforms of the motor. Like
the QEP example, this value has to be calibrated by comparing the Hall signals with the
back EMF waveforms of the motor. In the DRV8312 example, Hall_position_offset is
normalized on the electrical revolution and is set to 0.57, to match the characteristics of
the motors included in the DRV8312EVM and Dual-Axis DMC EVM kits.

For the Dual-Axis DMC EVM kit, c28035pmsmfocdual.slx controls 2 motors from the same
F28035 processor. Motor2 can use position sensing coming from Hall sensors attached to
J4 of the Dual-Axis DMC EVM.

Fast Serial Data Monitoring

Evaluation boards often provide serial over USB connections allowing fast serial
transfers. The models running on the LaunchPads, are sending Ia and Ib currents over
serial. Use c2000_host_read.slx to receive these signals on your host computer. For
F28379D Launchpad example use c2000_host_read_F28379D.slx Select the appropriate
COM port matching your board in the following blocks:

 Permanent Magnet Synchronous Motor Field-Oriented Control

4-35

matlab:c28035pmsmfocdual
matlab:c2000_host_read
matlab:c2000_host_read_F28379D

• c2000_host_read/Serial Configuration or c2000_host_read_F28379D/Serial
Configuration

• c2000_host_read/Serial Receive or c2000_host_read_F28379D/Serial Receive
• c2000_host_read/Enabled Subsystem/Serial Send or c2000_host_read_F28379D/

Enabled Subsystem/Serial Send

Adjust the Baud rate for your board:

• For F28027 Launchpad, set the baud rate to 3.75e6
• For F28069 Launchpad, set the baud rate to 5.625e6
• For F28377S Launchpad, set the baud rate to 5e6
• For F28379D Launchpad, set the baud rate to 5e6

Run the c2000_host_read model and observe the current signals updated at 20 kHz on the
time scope. You can use the same technique to monitor other signals on other processors.
Keep in mind that SCI_A is usually connected to the FTDI chip allowing serial transfers
over USB on Launchpads, docking stations and ISO control cards. The FTDI FT2232D
allows one way transfers up to 1.5 Mbps while the FTDI FT2232H allows one way
transfers up to 6 Mbps.

4 Examples

4-36

Using the Control Law Accelerator (CLA)
This example shows how to use the Control Law Accelerator (CLA) available on some of
the TI Piccolo processors.

Required Hardware:

For the LED blinking model:

• TI® Piccolo F28069, F28035, F28004x or Delfino F28377S board.

For the motor control application model:

• TI® DRV8312 Three-Phase Brushless Motor Control Kit (DRV8312-C2-KIT or
DRV8312-69M-KIT) with F28035 or F28069 Piccolo processor

• Three-phase PMSM with Hall sensors attached to connector J10 of the DRV8312EVM
board

Available versions of example models:

• F28035 Piccolo: c28035blink_cla.slx
• F28069 Piccolo: c28069blink_cla.slx
• F28377S Delfino: c28377Sblink_cla.slx
• F28004x Piccolo: c28004xblink_cla.slx
• F28069 Piccolo: c28069_dataintegrity_cla.slx
• F28379D Delfino: c28379D_dataintegrity_cla.slx
• F28379D Delfino Launchpad: c28379D_cpu1_blink_cla.slx, c28379D_cpu2_blink_cla.slx
• DRV8312 + F28069 Piccolo: c28069pmsmfoc_cla.slx
• DRV8312 + F28035 Piccolo: c28035pmsmfoc_cla.slx

Task 1: Using the CLA with an LED Blinking Example

The following figure shows an example model configured to use the CLA available on the
hardware.

 Using the Control Law Accelerator (CLA)

4-37

matlab:c28035blink_cla
matlab:c28069blink_cla
matlab:c28377Sblink_cla
matlab:c28004xblink_cla
matlab:c28069_dataintegrity_cla
matlab:c28379D_dataintegrity_cla
matlab:c28379D_cpu1_blink_cla
matlab:c28379D_cpu2_blink_cla
matlab:c28069pmsmfoc_cla
matlab:c28035pmsmfoc_cla

This model generates code for a Simulink model where one part of the algorithm runs on
the Control Law Accelerator (CLA) available on the device. The CLA is a co-processor that
allows parallel processing. Utilizing the CLA for time-critical tasks frees up the main CPU
to perform other system and communication functions concurrently.

The following section shows how to trigger a CLA task, exchange data from the C28x CPU
to the CLA using memory sections like CpuToCla1MsgRAM and Cla1ToCpuMsgRAM,
schedule C28x interrupts at the end of the CLA task, and replace the standard linker
command file to include CLA specific linking attributes.

CLA Task Block

In the c28069blink_cla.slx model, a CLA Task block is provided to trigger a CLA task. This
block runs the downstream function-call subsystem on the CLA. On the CLA Task block

4 Examples

4-38

matlab:c28069blink_cla

mask, you can specify the CLA task number and the associated interrupt triggering
source. Ensure that you are using the CLA Trigger block from the library matching the
hardware board selected in the Configuration Parameters. CLA task trigger source
options are different for different processors. The downstream function-call subsystem is
executed using the selected CLA Task when the selected interrupt triggers. In this
example, CLA Task1 is used and "Software" is selected as the trigger source, which
means that the CLA task is triggered at the sample rate provided in the sample time
parameter.

Select Inline Code Generation for CLA Subsystem

For the CLA task subsystem, select the "Function packaging" as "Inline" under the "Code
Generation" tab of the Block Parameters. To open the Block Parameters, right-click on the
CLA subsystem and select "Block Parameters(Subsystem)".

 Using the Control Law Accelerator (CLA)

4-39

Changing the Standard Linker Command File

For F28035 and F28069 processors, a specific linker command file has to be selected to
assign CLA memory sections. In the Model Configuration Parameters, under Hardware
Implementation > Target hardware resources > Build options, "Use custom linker
command file" is selected and the pre-configured "c28069_cla.cmd" is used as linker

4 Examples

4-40

command file. This file adds CLA memory sections description and can be found in the
"src" directory at the root of the support package installation.

Interrupt Generation after CLA Task Completion

A CLA interrupt is generated when the CLA Task completes. CLA Task1 interrupt (CPU =
11, PIE = 1-8) is used as the interrupt source on the C28x Hardware Interrupt block. The
function-call subsystem 'System executes at completion of CLA Task1' is executed when
the interrupt occurs. GPIO pin 34 (connected to the LED on control cards; for LaunchPad
boards the GPIO pin number is different) toggles on every occurrence of the CLA Task1
interrupt.

Data Exchange between the CLA and the C28x CPU

All the interfaces between CLA and CPU need to be placed in specific memory sections.
To gain specific access to these sections, custom storage classes CpuToCla1MsgRAM and
Cla1ToCpuMsgRAM are defined in the dataclass package tic2000demospkg.

 Using the Control Law Accelerator (CLA)

4-41

4 Examples

4-42

Model Configuration Required while Using the CLA

In Model Configuration Parameters > Code Generation > Optimization, the
Default parameter behavior parameter must be set to Inlined. This is to avoid the
creation of model structure global variables, as CLA cannot access global data.

Discrete State Variables

All discrete state variables used inside CLA function-call subsystems must be stored in
Cla1DataRam. For example, delay blocks and integrators must be set to use the
Cla1DataRam storage class for state variables. See the 'State Attributes' of the Delay
block inside cla_subsystem for an example.

 Using the Control Law Accelerator (CLA)

4-43

Other Guidelines to Consider while Using the CLA

Avoid the creation of sub-functions provided on atomic subsystems inside CLA function-
call subsystems as this creates nested functions that are not supported on the CLA.

The specificity of the CLA may require more operations on the model or may prevent the
use of Simulink features. Make sure to go through the list of limitations provided in the
CLA C compiler documentation. Make sure to use the features of Embedded Coder to
restrict the generated code in the limited syntax supported by the CLA C compiler.

Run the Model

1 Open the example model, c28069blink_cla.slx, c28035blink_cla.slx,
c28004xblink_cla.slx, c28377Sblink_cla.slx, c28379D_cpu1_blink_cla.slx, or
c28379D_cpu2_blink_cla.slx.

2 Open Configuration Parameters and select the required tool chain on the Code
Generation pane.

3 Press Ctrl+B to build a binary executable and to automatically load and run the
executable on the selected target.

Task 2: Debug Code on the CLA

The debug function /*__mdebugstop()*/ is present at the beginning of the CLA task
(__interrupt void Cla1Task1 (void)) in the generated cla_task.cla file.

1 Enable the debug function __mdebugstop() by removing the block comments
around it.

2 Compile the source code or build the CCS project.
3 For debug instructions visit: http://processors.wiki.ti.com/index.php/

C2000_CLA_C_Compiler#Debugging

Task 3: Ensure Data Integrity Between CPU and CLA

Data integrity issues may occur when:

• The data transfer is not atomic. For example, data transfers where the data size is
more than the atomic size (uint16).

• Tasks are not synchronized. For example, the CLA is triggered asynchronously.
• Sample time of the CPU and the CLA are different.

4 Examples

4-44

matlab:c28069blink_cla
matlab:c28035blink_cla
matlab:c28004xblink_cla
matlab:c28377Sblink_cla
matlab:c28379D_cpu1_blink_cla
matlab:c28379D_cpu2_blink_cla
http://processors.wiki.ti.com/index.php/C2000_CLA_C_Compiler#Debugging
http://processors.wiki.ti.com/index.php/C2000_CLA_C_Compiler#Debugging

To ensure data integrity, data must be protected either using a double buffer algorithm or
by synchronizing both the CPU and the CLA.

In this model, the CPU and the CLA are not syncrhonized because the CLA is triggered
asynchronously using an ePWM interrupt. To ensure data integrity, a double buffer
algorithm along with control flags (Read_index and Write_index) are used.

In the double buffer algorithm, two buffers are used for data exchange. The CPU checks
the buffer that is being read by the CLA using the Read_index flag and writes the data to
the other buffer. Similarly, the CLA checks the buffer that is being written by the CPU
using the Write_index flag and reads the data from the other buffer.

By using the double buffer logic, data integrity is ensured even though the CPU and the
CLA are not synchronous.

Run the Model

1 Open the c28069dataintegrity_cla.slx model.
2 On the Hardware tab, Click Build, Deploy & Start > Build Stand-Alone or press

Ctrl+B to build and download the executable file on the CPU.

 Using the Control Law Accelerator (CLA)

4-45

matlab:c28069dataintegrity_cla

Task 4: Permanent Magnet Synchronous Motor Field-Oriented Control (FOC)
Using CLA

The following figure shows a Permanent Magnet Synchronous Motor Field-Oriented
Control (FOC) example model, which runs the FOC algorithm on the CLA.

This model implements the Field-Oriented Control (FOC) of a Permanent Magnet
Synchronous Motor using the CLA. The FOC algorithm is implemented with a CLA Task
and PWM duty cycles are refreshed on completion of CLA Task using the corresponding
interrupt. This example requires a DRV8312 kit with an F28069 or F28035 Control card.
This example is an extension of “Permanent Magnet Synchronous Motor Field-Oriented
Control”, with the usage of CLA. All the considerations listed in the blinking LED example
are applied in this example.

4 Examples

4-46

In this model, data integrity is ensured by synchronizing the CPU and the CLA. The CLA
is software triggered using the sample time inherited from the inputs. The Simulink
scheduler ensures that all inputs are ready before the CLA subsystem is triggered.

Run the Model

1 Open the example model c28069pmsmfoc_cla.slx or c28035pmsmfoc_cla.slx
2 Open Configuration Parameters and select the required tool chain on the Code

Generation pane.
3 Press Ctrl+B to build a binary executable and to automatically load and run the

executable on the selected target.

Limitations

Specific interactions between the CLA and the C28x CPU along with CLA C compiler
limitations force the modeling practices to be followed. Below is a list of concepts that
reflects modeling practices described in this example:

• The CLA application code can only be triggered by a C28x event. CLA Task can be
triggered by C28x CPU via software or by different peripheral interrupts.

• All the interfaces between CLA and CPU need to be placed in specific memory
locations. The CpuToCla1MsgRAM memory section is used to exchange data from the
C28x to the CLA. The Cla1ToCpuMsgRAM memory section is used to exchange data
from the CLA to the C28x.

• The CLA application code does not have access to global variables.
• Early versions of the CLA C compiler support only 2 levels of function calls. CLA

interrupt service routines may call leaf functions only. Leaf functions may not call
other functions.

• Recursive function calls are not supported.
• Integer division, modulus, and integer unsigned comparison are not supported with

the CLA C compiler.

For more details and an exhaustive list of limitations visit: http://processors.wiki.ti.com/
index.php/C2000_CLA_C_Compiler

These limitations must be considered when modeling in Simulink.

 Using the Control Law Accelerator (CLA)

4-47

matlab:c28069pmsmfoc_cla
matlab:c28035pmsmfoc_cla
http://processors.wiki.ti.com/index.php/C2000_CLA_C_Compiler
http://processors.wiki.ti.com/index.php/C2000_CLA_C_Compiler

Troubleshooting

• Ensure that the Code Generation Tools version used supports the CLA C Compiler.
• Ensure that the latest C/C++ header files with CLA support are installed on your

system.

More About

• C28x CLA Task

4 Examples

4-48

Schedule a Multi-Rate Controller for a Permanent
Magnet Synchronous Machine

This example shows how to create a real-time executable for a Texas Instruments F28335
embedded target. You will build upon the algorithm specified in the example “Field-
Oriented Control of Permanent Magnet Synchronous Machine” (Embedded Coder) by
adding timing and peripheral specifications. You will learn an advanced technique to
schedule the algorithm based on the periodic end-of-conversion event of the ADC.

Required hardware:

• Spectrum Digital® F28335 eZdsp board
• Digital Motor Controller board: Spectrum Digital DM550
• Three-phase Permanent Magnet Synchronous Motor with quadrature encoder

Note: Match the characteristics of the power supply and the amplifier with the input
characteristics of the selected motor.

Introduction

The goal is to create a real-time executable for a Spectrum Digital F28335 eZdsp and
schedule the controller execution using an ADC end-of-conversion interrupt. This goal is
achieved using an advanced technique where the controller and peripherals are
scheduled by a periodic ADC end-of-conversion interrupt.

This example builds upon the controller algorithm specified in the example “Field-
Oriented Control of Permanent Magnet Synchronous Machine” (Embedded Coder). Refer
to that example to explore how the controller algorithm behaves during system simulation
with a model of a Permanent Magnet Synchronous Machine.

 Schedule a Multi-Rate Controller for a Permanent Magnet Synchronous Machine

4-49

Configure the Controller Model for the TI F28335 Processor

To facilitate transitioning between simulation and code generation phases of a design, the
controller algorithm is specified in its own c28335_pmsmfoc model. The controller
algorithm is introduced in the example “Field-Oriented Control of Permanent Magnet
Synchronous Machine” (Embedded Coder). In this example the controller model is
configured for the TI F28335 target hardware. An archived library allowing incremental
build will be automatically generated for the controller model.

4 Examples

4-50

matlab:c28335_pmsmfoc

Schedule Controller using ADC End-of-Conversion Interrupt

In this section, the c28335_pmsmfoc_adcinterrupt model is used to call the controller
model using a Model Block configured to c28335_pmsmfoc. Within the
Controller_And_Peripherals subsystem, the ePWM1 block is configured to trigger
the ADC conversion so that sampling does not occur during a PWM edge transition (thus
minimizing noise on the sampled signals). The controller is scheduled using the ADC end-
of-conversion interrupt. This provides the shortest and most deterministic delay between
the ADC conversion and the new values of PWM duty cycles.

By default, a model set for a processor such as TI F28335 will use a hardware timer to
schedule all synchronous rates present in the model. If we keep this default behavior, the
controller algorithm will not be synchronized with the ADC which could introduce
latencies or drifts between the controller algorithm and the ADC conversions. In the
c28335_pmsmfoc_adcinterrupt Model Configuration Parameters, under Hardware
Implementation > Scheduler options, ADCINT1 is selected for the Scheduler interrupt
source. This option replaces the default scheduler interrupt source set to CPU Timer 0
interrupt with the ADC Interrupt coming from ADC module 1 (ADCINT1). On the ADC
block, an end-of-conversion interrupt is enabled for ADC module 1. Since the ADC

 Schedule a Multi-Rate Controller for a Permanent Magnet Synchronous Machine

4-51

matlab:c28335_pmsmfoc_adcinterrupt
matlab:c28335_pmsmfoc
matlab:c28335_pmsmfoc_adcinterrupt

conversions are launched from the PWM module running at 25kHz, and since the base
rate (fundamental sample time) of the model is set to 40us, it is safe to replace the
scheduler interrupt source with the ADC interrupt triggering periodically at 40us. While
using the default CPU Timer 0 as a scheduler interrupt source, the tool will automatically
set the CPU Timer 0 to honor the base rate of the model. While replacing the scheduler
interrupt source with ADCINT1, like in this example, it is the responsibility of the user to
ensure that ADCINT1 will trigger periodically at the base rate used in the model.

This model showed an advanced technique for scheduling a multi-rate controller
algorithm using an ADC end-of-conversion interrupt. This technique is valid for this
example because we have configured the model to generate the ADC end-of-conversion
interrupt at the same periodic rate as the sample time specified in the controller
algorithm. If you do not ensure this sampling consistency, the behavior of generated code
will be different than that of simulation.

Conclusion

This example showed how to create a real-time executable for a Texas Instruments
F28335 embedded target using an advanced scheduling technique triggering the
controller algorithm based on an ADC end-of-conversion interrupt. In this technique, the
hardware is configured to generate a periodic interrupt with the same rate as the fastest
rate specified in the controller.

More About

C28x eQEP

4 Examples

4-52

Code Verification and Validation with PIL
This example shows you how to use Embedded Coder Support Package for Texas
Instruments C2000 processor for code verification and validation using PIL.

Introduction

In this example you will learn how to configure a Simulink model to run Processor-In-the-
Loop (PIL) simulation. In a PIL simulation, the generated code runs on the Texas
Instruments C2000 processor. The results of the PIL simulation are transferred to
Simulink to verify the numerical equivalence of the simulation and the code generation
results. The PIL verification process is a crucial part of the development cycle to ensure
that the behavior of the deployment code matches the design.

This example introduces how to configure a Simulink model for code generation and
verification using :

• PIL Block
• Model Block PIL
• Top-Model PIL

Required Hardware

To run this example you will need the following hardware: Texas Instruments C2000
processor based board with serial over USB capabilities

The Texas Instruments controlCard provides serial over USB capabilities. This allows
serial communication from the target to your host computer. We will use this serial
connection in this example to exchange data from Simulink to the target.

Some boards do not provide a FTDI chip and use the FTDI on the docking station and use
the USB serial cable to establish a serial connection between the host computer and the
target hardware. You can also use the COM1 port of your computer to establish an
RS-232 serial connection with the board. See Set Up Serial Communication with Target
Hardware for details on establishing a serial connection between the target and the host
computer.

Task 1 - Choose a Serial Communication Interface for PIL Simulation

The Embedded Coder Support Package for Texas Instruments C2000 supports serial
communication interface for PIL over SCI-A.

 Code Verification and Validation with PIL

4-53

After establishing a serial connection, find the COM port associated with the target
hardware.

For more information on how to configure the Virtual COM port refer to this page. Note
the COM port number of the USB Serial Port showing in your Windows Device Manager
under Ports "(COM & LPT)"

1. Connect the target hardware to your host machine

2. Enable the settings for running PIL on Serial

• Set the COM Port as obtained above and replace the 'COM1' in the following command
with the correct Serial port corresponding to your controlCARD:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','COMPort','COM1');

• Set the baud rate for PIL communication by entering the baud rate as

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','BaudRate',115200);

• Enable PIL over serial by the following command:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',true);

4 Examples

4-54

Task 2 - Verify the generated code for a subsystem using a PIL block

This example shows how to use a PIL block for subsystem code verification. With this
approach:

• You can verify the code generated for a subsystem
• You must PIL block in the model as indicated by the comments in the model; make

sure to avoid saving your model in this state as you would lose your original subsystem

1. Open the PIL Block model. This model is configured for the TI Piccolo F2806x target.
You can configure the model to run on other TI C2000 processors or TI C2000 Concerto
C28x core by changing the target hardware in the Configuration Parameters > Hardware
Implementation pane. The objective here is to create a PIL block out of the Controller
subsystem that you will run on the Texas Instruments C2000 processor.

 Code Verification and Validation with PIL

4-55

matlab:c2000_pil_block

2. Choose a PIL communication interface by following the steps in Task 1 above.

3. Create a PIL block for the Controller subsystem as explained in Verify Generated Code
Using Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL) Simulation.

4. Place the PIL block created in the model as shown by the comments in the model.

5. Run the PIL simulation as explained in Verify Generated Code Using Software-in-the-
Loop (SIL) and Processor-in-the-Loop (PIL) Simulation.

6. You can switch between the original and PIL block subsystems by double clicking on
the Manual Switch block. Double click on the Numerical Difference block to see the
difference between the simulated Controller subsystem and the PIL block running on the
target processor.

Task 3 - Verify referenced model code using PIL

This example shows how to verify the generated code for a referenced model by running a
PIL simulation. With this approach:

4 Examples

4-56

• You can verify code generated for referenced models
• You can easily switch a Model block between normal and PIL simulation mode

1. Open the Model Block PIL model. This model is configured for TI Piccolo F2806x
target. To configure the model to run on other TI C2000 processors you can change the
target hardware in the Configuration Parameters > Hardware Implementation pane. The
model contains two Model blocks that both point at the same referenced model. You will
configure one of the Model blocks to run in PIL simulation mode and the other in normal
mode.

2. Choose a PIL serial communication interface by following the steps in Task 1 above.

3. Configure and run CounterA Model block in PIL simulation as explained in Verify
Generated Code Using Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL)
Simulation.

4. When the model starts running, Scope1 displays the PIL simulation output running on
the TI Piccolo F2806x processor while Scope2 shows the normal mode simulation output.

 Code Verification and Validation with PIL

4-57

matlab:c2000_model_pil_block

4 Examples

4-58

Task 4 - Verify top model code using PIL

This example shows how to verify the generated code for a model by running a PIL
simulation. With this approach:

• You can verify code generated for a top model
• You can easily switch the entire model between normal and PIL simulation mode

1. Open the Top Model PIL model. This model is configured for the TI Piccolo F2806x
target.

2. Choose a PIL serial communication interface by following the steps in Task 1 above.

3. Run the top model PIL simulation as explained in Verify Generated Code Using
Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL) Simulation.

4. When the PIL simulation is completed, a logsOut variable is created in the base
workspace. The logsOut data contains PIL simulation results. You can access the logged
data for signals count_a and count_b using the following commands:

• count_a = get(logsOut,'count_a');
• count_a.Values.Data

• count_b = get(logsOut,'count_b');
• count_b.Values.Data

Summary

This example introduced code verification workflows using PIL

 Code Verification and Validation with PIL

4-59

matlab:c2000_top_model_pil

Parameter Tuning and Signal Logging with Serial
Communication

This example shows how to perform parameter tuning and data logging with a Simulink®
model running in Texas Instruments™ C2000 targets. See Embedded Coder Support
Package for Texas Instruments C2000 Processors for details on workflows for Texas
Instruments C2000 Processors.

Required Hardware

• Any of the Texas Instruments C2000 - based controlCARDS with docking station or
Spectrum Digital eZdsp boards that have a serial interface with SCI_A.

Note: F281x based boards do not support parameter tuning over a serial communication
interface. Refer to CAN based parameter tuning for these boards.

• A USB serial cable if your hardware provides serial over USB capabilities, or an
RS-232 cable connected to the COM1 port of your computer.

Model

This figure shows the example model.

4 Examples

4-60

Configure the Hardware and Model for Monitoring and Tuning

Set Up the Hardware

This example uses Texas Instruments F28335 controlCARD with docking station and USB
serial cable to connect the host computer and the target hardware. You can also use the
COM1 port of your computer to establish an RS-232 serial connection with the board. See
Set Up Serial Communication with Target Hardware for details on establishing a serial
connection between the target and the host computer.

After establishing a serial connection, find the COM port associated with the target
hardware:

 Parameter Tuning and Signal Logging with Serial Communication

4-61

• Open Device Manager in Windows.
• Expand the Ports tab.
• Note the COM port associated with the target board.

Set up the model

The Example Model is configured for the Texas Instruments F28335 controlCARD with
docking station, but you can follow the procedure for any other hardware board
mentioned in Required Hardware. See also Parameter Tuning over Serial
Communication for Texas Instruments C2000 Processors.

1. Open the Example Model.

2. Open the Modeling tab and press Ctrl+E to open Configuration Parameters dialog box
and navigate to the Hardware Implementation pane.

3. Select your target hardware from the Hardware board drop-down list.

Note: To run the Example Model on targets with small amounts of RAM such as the
F28027 or F28035, enable the Boot From Flash (stand alone execution) option in
Hardware Implementation > Target Hardware Resources > Build options tab and
increase the heap size as mentioned in the Limitations section.

4 Examples

4-62

matlab:c28x_serial_ext
matlab:c28x_serial_ext
matlab:c28x_serial_ext

4. Navigate to the Hardware Implementation > Target Hardware Resources >
External mode. Specify the Communication interface as serial. Specify the Serial
port with the COM port number associated with your target hardware. The Verbose
option enables viewing the execution progress of the simulation on the Diagnostic
Viewer and on the MATLAB Command Window. Navigate to SCI_A and specify the
baud rate in Desired baud rate in bits/sec.

The default baud rate is 115200. You can increase the baud of the serial over USB of your
Launchpad or controlCARD. On Launchpads and controlCARDs using FTDI 2232H, you
can select any baud less than or equal to 6 Mbps, or exactly 9 or 12 Mbps. On
controlCARDs using FTDI 2232D, you can select any baud less than or equal to 1.5 Mbps,
or exactly 2 or 3 Mbps.

 Parameter Tuning and Signal Logging with Serial Communication

4-63

4 Examples

4-64

5. Open the Simulation tab and specify a value in the Stop Time text box. You can
specify the stop time as 'inf' to run the model continuously on the target hardware.

 Parameter Tuning and Signal Logging with Serial Communication

4-65

Monitor and Tune the Model

When you perform Monitor and Tune action for the model, the host computer
communicates with the target, on which the generated executable runs. To perform
Monitor and Tune in the Example Model:

1. Open the Hardware tab and click Monitor & Tune. You can observe from the
Diagnostic Viewer that the code is generated for the model and the host connects to the
target after loading the generated executable.

2. While the model is running, open the Scope connected to the Gain block to monitor its
output.

Warning: Unrecognized function or variable
'codertarget.vexarmcortex.internal.getInstallDir'.
Warning: Unrecognized function or variable
'codertarget.vexarmcortex.internal.getInstallDir'.
Warning: Unrecognized function or variable
'codertarget.vexarmcortex.internal.getInstallDir'.

4 Examples

4-66

matlab:c28x_serial_ext

3. In the Hardware tab, click Stop button to terminate the simulation.

Parameter Tuning

You can tune parameter values while the generated executable is running on the target
hardware. When the parameter values are changed in the Simulink model, the modified
values are communicated to the target hardware.

1. While the Monitor and Tune action is in progress, double click the Gain block and
change the value of the gain. You can observe that the amplitude of the sine waveform
has changed according to the new gain value. Change the value of the Constant block to 0
to switch the input source and observe the result on the Scope. If the Verbose option is

 Parameter Tuning and Signal Logging with Serial Communication

4-67

selected in Configuration Parameters > Hardware Implementation > External
mode, the status of the parameter change is displayed on the MATLAB command window.

2. Stop the simulation.

To modify more than one parameter and communicate the changes to the target hardware
at once, use the Batch download option in the External Mode Control Panel. To open the
External Mode Control Panel, go to the Hardware tab and click Control Panel. Refer to
Parameter Downloading for details on the Batch Download option.

Data Logging

While the Monitor and Tune action is in progress, you can log data from the model to a
file. You can either make use of the Scope or the To Workspace block. Follow the steps
below to manually trigger data logging or trigger data logging from a signal.

Logging Signals with a Manual Trigger

You can use the Arm trigger button on the External Mode Control Panel to trigger data
logging. The Arm when connecting to target option enables the trigger automatically
when the host connects to the target and data uploading begins. Otherwise, to start
uploading the data, you must manually arm the trigger by clicking the Arm trigger
button located in the External Mode Control Panel. Triggers can be useful when the
communication channel speed does not allow live visualization of the desired signals. In
this task, you will learn how to manually trigger data uploading from the target to the
host computer.

1. Open the External Mode Control Panel and click on the Signal & Triggering button,
which opens the External Signal & Triggering dialog box.

a. By default, the Source option is set to manual. Set the Mode to normal to collect
contiguous data samples. External mode allocates sufficient memory to collect data for
the length of the Duration for each signal. Depending on the communication speed and
the processing time given to the External mode engine that is running as a background
task, you may see a continuous data logging stream, or a stream of data containing gaps
corresponding to the time required to send the acquired buffers.

b. Specify the Duration as 15 to collect 15 data samples for a base rate signal. Since the
signal from the Gain block has the same sample rate as that of the model, the number of
samples collected in each data set is 15. Uncheck the Arm when connecting to target
option to enable manual triggering to upload data.

4 Examples

4-68

2. To view the sample time of the model, navigate to Display > Sample Time and select
Sample Time Legend. For this example model, the sample time is 0.01 s.

3. Click on the Data Archiving button of the External Mode Control Panel to enable
logging data to a MAT file from the Enable Data Archiving dialog box.

 Parameter Tuning and Signal Logging with Serial Communication

4-69

4. Check the Enable archiving option. Use the File and Directory parameters to specify
the destination of your log file. In normal mode, file name incrementing happens
automatically and new data sets are saved in new MAT files.

5. Open the Scope connected to the Gain block and click on the Configuration
Properties button. Navigate to the Logging tab and check the Log data to workspace
option. Specify a name in Variable name. The logged data is saved in this variable. To
save the time instant and the signal data values, select Structure With Time for Save
format.

4 Examples

4-70

Note: If you do not select the Save data to workspace option, the MAT files for data
logging are created, but they will be empty.

6. Click Monitor & Tune. Click the Arm Trigger button on the External Mode Control
Panel to trigger data logging and the Cancel Trigger button to stop logging the data.
Navigate to the folder specified for saving the logged data. Several MAT files are in this
location, each containing a structure with 15 contiguous data samples.

 Parameter Tuning and Signal Logging with Serial Communication

4-71

7. Press the Stop button to terminate the simulation.

To collect only a single set of contiguous data samples, select One-shot. In this mode,
check the option Increment file after one-shot in the Enable Data Archiving dialog box
to save new data sets in new MAT files.

Logging Signal Data using a Signal Trigger

In signal trigger mode, Monitor and Tune uses a signal as a trigger to start logging data.
The data uploading begins when the trigger event occurs. To analyze a signal when an
error or fault condition occurs while the model is running, use a signal trigger to log data.

In this task, you will learn how to trigger data logging to a file when certain signal
conditions are met. In signal trigger mode, depending on the Delay specified, you can
choose to log data samples of a signal immediately at trigger, a few seconds after the
occurrence of the trigger, or both before and after the occurrence of the trigger.

1. Open the External Signal & Triggering dialog box from the External Mode Control
Panel.

2. In this dialog box, select the Scope block connected to the Step input and click the
Trigger Signal button to set the selected block signal as the trigger signal.

a. Select signal as the trigger Source. This enables the options in the Trigger signal.
Set the Mode to normal to collect contiguous data samples.

b. Specify the Duration as 15 to collect 15 base rate samples whenever the trigger
conditions are satisfied.

c. Specify the Delay as 5. This causes data logging to begin 5 base rate samples after the
occurrence of the signal trigger. Because the sample time for this model is 0.01 s and the
step input is applied at the time instant 26 s, data logging begins from the time instant
26.05 s , (i.e 5 * 0.01 s after the trigger event at 26 s).

d. In the Trigger signal section, choose rising as the Direction and set Level to 1.
This causes the signal trigger conditions to be met whenever the signal connected to
Scope1 increases in magnitude and crosses the threshold value of 1.

4 Examples

4-72

3. Specify a folder and a file name in the Enable Data Archiving dialog box to save the
logged data.

4. Click Monitor & Tune.

5. The trigger conditions are met at the time instant 26 s, so stop the simulation after,
about 40 s. Navigate to the folder where the data is saved and load the MAT file into
MATLAB workspace by double-clicking on it. If you examine the contents of the MAT file,
the structure member time indicates, that data is logged from the time instant 26.05 s.

If the Delay 0, logging of the signal data begins immediately when the signal trigger
conditions are met. The Delay option can also be used with negative values to center the
data acquisition around the event of interest. To log data samples before the trigger
conditions occur for the Example Model, specify a negative value, -8 for example in the
Delay field. This captures 8 base rate samples before the occurrence of the trigger and
the remaining data samples after the occurrence of trigger.

To collect a data set of base rate samples only when the signal trigger conditions are met
for the first time, choose the Mode as One Shot. This mode is useful for viewing fast-
changing data on a slow communication channel. To achieve this, increase the value of
the Duration and set the signal trigger to acquire relevant data based on an event of
interest, like a fault signal, an over voltage/current signal or a temperature warning
signal.

 Parameter Tuning and Signal Logging with Serial Communication

4-73

matlab:c28x_serial_ext

Limitations

• Increasing the Duration allows the capture of large real-time buffers. These buffers
use heap section to allocate memory. A high value of Duration may result in Not
enough memory on the target to process the packet warning, and consequently cause
no data to be uploaded from the target to the host computer. To fix this problem,
specify a larger heap size if your target has sufficient memory. To change the heap
size, browse to Configuration Parameters > Code Generation > Build
Configuration > Specify > Linker and modify the value of --heap_size.

• Parameter tuning and signal logging for 8-bit data types is not supported over serial
communication interface for Texas Instruments C2000 processors. See Data Type
Support for details on the data type support for Texas Instruments C2000 processors.

Troubleshooting

• An error stating Attempting to establish connection with hostname 127.0.0.1 through
port ... indicates that either the COM port or the TCP/IP port 17725 on the local
loopback are held by some other application. Ensure that the ports are available
before you start Monitor and Tune, which uses a process in the background to buffer
data and improve data logging. This process needs port 17725.

• If you observe breaks in the scope, you can try the following to improve logging:

- Increase Serial Baud Rate

- Decrease the number of signals selected for logging

- Decrease the model base rate

More About

“Parameter Tuning and Signal Logging over Serial Communication” on page 1-48

4 Examples

4-74

Real-Time Code Execution Profiling
This example shows you how to use Embedded Coder™ Support Package for Texas
Instruments C2000 Processors and Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors for real-time execution profiling of
generated code.

Available versions of this model:

• C2000 LaunchPadXL TMS320F28377S (LAUNCHXL-F28377S): f28377S_RTProfiler.slx

Model

The following figure shows the example model:

Introduction

Sample times specified in a Simulink® model determine the time schedule for running
generated code on target hardware. If the target hardware has sufficient computing
power, the code runs according to specified sample times in real-time.

 Real-Time Code Execution Profiling

4-75

matlab:f28377S_RTProfiler

You can use real-time execution profiling to check whether generated code meets real-
time performance requirements. Execution Profiling results can also be used to take
actions to enhance design of your system. For example, if the code easily meets the real-
time requirements, you may consider adding more functionality to your system to exploit
available processing power. If, on the other hand, the code does not meet real-time
requirements, you may look for ways to reduce execution time. For example, you can
identify the tasks that require the most time and then investigate whether trade-off
between functionality and speed is possible.

This example introduces a workflow for real-time code execution profiling by showing you
how to:

• Configure the model for code execution profiling, and generate code.
• Run generated code on target hardware.
• Analyze performance through code execution profiling plots and reports.

To Run the Example on the Board

1. Open the model. This model is configured for C2000 LaunchPadXL
TMS320F28377S (LAUNCHXL-F28377S) target hardware.

2. Open the Modeling tab and press CTRL+E to open Configuration Parameters dialog
box. Go to Code Generation > Verification.

3. Select Measure task execution time, and select Measure function execution
times > Detailed (all function call sites) option. These options enable you to profile
execution time for each task and function in generated code. Click OK.

4. Check that Hardware Implementation > Build Options > Build, load and run is
selected. This option must be selected, or the generated executable does not download
into the target.

5. Open the Hardware tab and click Build, Deploy & Start to run the code inside the
target hardware.

6. Run the following code in MATLAB Command Window to get the profiling data into
MATLAB workspace:

 codertarget.profile.getData('f28377S_RTProfiler')

The variable executionProfile is available in the MATLAB workspace at the end of
execution of this command.

4 Examples

4-76

matlab:f28377S_RTProfiler

7. Run the following code in MATLAB Command Window to obtain the Profiling Report
for the session you just ran. Analyze the report on different turnaround and execution
times for each task and function. Close the report when you are done.

 executionProfile.report

8. Execute the following code in MATLAB Command Window to obtain the Profiling
Timeline for the session you just ran. Analyze the execution timeline of different tasks

 Real-Time Code Execution Profiling

4-77

and functions. Notice where the faster task pre-empts the slower one and where different
functions start and end. Close the timeline when you are done.

 executionProfile.timeline

Notes

• The code execution profiler uses an on-chip timer. If you use a processor simulator,
select one that can simulate processor timers.

4 Examples

4-78

• The model needs to run long enough to collect sufficient profiling data. This time
depends on the number of profiling samples specified and the sample rates of the
model. If you use a simulator, data collection can take considerably longer than when
you use hardware.

• The shipped target configuration file (ccxml) removes RAM initializations done by the
debugger while connecting to the target. Please make sure of this behavior on using a
custom target configuration file.

• Code execution profiling is currently not supported for models with asynchronously
executed subsystems. For example, subsystems triggered by C28x Interrupt Block is
not supported.

 Real-Time Code Execution Profiling

4-79

Using the I2C Bus to Access Sensors
This example shows how to use the I2C blocks to communicate with I2C based devices.

Introduction

In this example you will learn how to configure and use I2C blocks to:

• Access the EEPROM
• Read the accelerometer and gyroscope data from I2C based sensor

Required Hardware

This example requires different hardware configurations for different tasks.

To access the EEPROM

Spectrum Digital F28335/F2808 eZdsp board

Note: Any C2000 (except c281x) controlSTICK or ControlCARD with docking station is
not equipped with I2C EEPROM. You must add I2C EEPROM to this board to run the
model.

Available models:

• c28x_i2c_eeprom.slx
• c28x_i2c_eeprom_interrupt.slx

To read accelerometer and gyroscope data from I2C based sensor

• Texas Instruments™ F28069/F28377S/F28379D/F28004x LaunchPad
• Sensors BoosterPack (BOOSTXL-SENSORS)

Available models:

c28x_i2c_sensor.slx

Read and Write Data to EEPROM

The model writes four bytes to EEPROM and reads back the data from the corresponding
EEPROM address to show successful communication.

The model consists of these subsystems:

4 Examples

4-80

matlab:c28x_i2c_eeprom
matlab:c28x_i2c_eeprom_interrupt
matlab:c28x_i2c_sensor

• EEPROM Data: Contains the data that is written to the EEPROM.
• EEPROM Address: Contains the EEPROM address where the data is written to.
• Trigger Subsystem: Triggers the EEPROM Data Write and EEPROM Data Read

subsystems alternatively. The EEPROM Data Write Subsystem is triggered when there
is a change in the EEPROM data. The EEPROM Data Read is triggered when there is
no EEPROM write.

• EEPROM Data Write Subsystem: Consists of the I2C Transmit block, which sends
the EEPROM address and the data along with a stop condition to the EEPROM at the
end of the data write.

• EEPROM Data Read Subsystem: Consists of the I2C Transmit block, which sends
the EEPROM address from which data is read. A wait logic using a while loop ensures
that the address is sent to the EEPROM from the Tx FIFO. The I2C Receive block
reads the data of specified length along with a stop condition at the end of the data
write.

You can run the model in External mode, monitor the transmitted and received data using
display blocks. You can change the data in "EEPROM Data" subsystem and see the
changes in the display blocks.

1 Open the c28x_i2c_eeprom model. This model is configured for TI F28335 hardware
board. To configure the model to run on other TI C2000 processors, you can change
the 'Hardware board' parameter in the Configuration Parameters > Hardware
Implementation pane.

2 In the Configuration Parameters window, click Hardware Implementation and
navigate to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows.
For more information, see Parameter Tuning and Signal Logging with Serial External
mode.

3 Run the model and observe the "Receive data" and "Transmit data" display blocks.
4 Change the four byte data in "EEPROM Data" subsystem and observe the change

getting reflected in "Receive data" block.

 Using the I2C Bus to Access Sensors

4-81

matlab:c28x_i2c_eeprom

Use interrupts to Read and Write Data to EEPROM

The model writes four bytes to EEPROM and reads back the data from the corresponding
EEPROM address to show successful communication.

The model consists of these subsystems:

• EEPROM Data: Contains the free-running counter data that is written to the
EEPROM.

• EEPROM Address: Contains the EEPROM address where the data is written to.
• Trigger Logic: Triggers EEPROM Data Write and EEPROM Data Read subsystems

alternatively. The trigger logic consists of the STATVAR data store variable, which is
updated to start a write/read operation in the I2C ISR block when the SCD interrupt is
triggered.

• EEPROM Data Write Subsystem: Consists of the I2C Transmit block, which sends
the EEPROM address and the data along with a stop condition to the EEPROM at the
end of the data write.

4 Examples

4-82

• EEPROM Data Read Subsystem: Consists of the I2C Transmit block, which sends
the EEPROM address to the EEPROM to initiate the EEPROM read operation. An
ARDY interrupt is generated when the address is sent to the EEPROM from the TX
FIFO. The I2C Receive block is then used in the interrupt service routine (ISR) to read
the data of specified length along with a stop condition at the end of the data write.

You can run the model in External mode and monitor the transmitted and received data
using display blocks.

1 Open the c28x_i2c_eeprom_interrupt model. This model is configured for TI F28335
hardware board. To configure the model to run on other TI C2000 processors, you
can change the target hardware in the Configuration Parameters > Hardware
Implementation pane.

2 In the Configuration Parameters window, click Hardware Implementation >
Target hardware resources > External mode and set the Serial port parameter
to the COM port at Device Manager > Ports (COM & LTP) in Windows. For more
information, see Parameter Tuning and Signal Logging with Serial External mode.

3 Ensure that system interrupt, SCD interrupt, and ARDY interrupt are selected in
Configuration Parameters > Hardware Implementation > I2C.

4 Run the model and observe the free-running counter data in "Receive data" and
"Transmit data" display blocks.

 Using the I2C Bus to Access Sensors

4-83

matlab:c28x_i2c_eeprom_interrupt

Read the Accelerometer and Gyroscope Data from I2C-based Sensor

The model configures the registers in Sensor Boosterpack reads the data from the
accelerometer and gyroscope.

The model consists of these subsystems:

• Initialization Subsystem: The Initialization Subsystem is triggered only once at the
beginning. The Initialization Subsystem performs the required sensor initialization by
sending a series of commands with 1 ms delay between each command to the sensor.
For each command, the I2C transmit block sends the address and the data along with
the stop condition to the sensor. At the end of the initialization, the read cycle is
initiated by sending the address of the register to be read to the sensor using the I2C
Transmit block.

• Sensor Read: The Sensor Read Subsystem consists of the I2C Receive block, which
reads the sensor data along with the stop condition that stops the current read cycle.
Then, the I2C Transmit block sends the address to the sensor to initiate the data read
for the next cycle. To ensure that the I2C Receive block is executed before the I2C
Transmit block, set the block priorities for both the blocks by right-clicking and
selecting Properties > Priority.

4 Examples

4-84

• Data Realignment Subsystem: Aligns the data as required before displaying it using
a display block.

You can run the model in External mode and monitor the accelerometer and gyroscope
data in the scope.

1. Open the c28x_i2c_sensor model. This model is configured for TI Delfino F2837xS
hardware board. To configure the model for other TI C2000 processors, you can change
the hardware board in the Configuration Parameters > Hardware Implementation
pane.

2. In the Configuration Parameters window, click Hardware Implementation and
navigate to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows. For
more information, see Parameter Tuning and Signal Logging with Serial External mode.

3. Ensure that the Sensor Boosterpack is connected to the Launchpad, and select the
corresponding I2C module (A/B) on Tx and Rx blocks. I2C_B module exists only for
F2807xs/F2837xS and F2837xD processors.

4. Select appropriate GPIO pins for SDA and SCL in Hardware Implementation > I2C_A/
I2C_B to communicate with Sensor Boosterpack.

5. Run the model and observe the accelerometer and gyroscope sensor data in the scope.

More About

• C28x I2C Receive
• C28x I2C Transmit

 Using the I2C Bus to Access Sensors

4-85

matlab:c28x_i2c_sensor

Modeling a Voltage Controller for the DC/DC Buck
Converter

This example shows how to model a controller for the DC/DC buck converter using the
Embedded Coder Support Package for Texas Instruments® C2000 Processors. The model
runs on a TI F28377S or F28379D Launchpad connected to the C2000 DPS BoosterPack.

By running the models provided in this example on the host computer, you can:

• Simulate a controller for the DC/DC buck converter plant model.
• Generate code for the controller and load it on the LaunchPad.
• Monitor signals and tune parameters on the host computer.

Prerequisites

Before you start with this example, install these MathWorks® products:

• Simscape™
• Simscape™ Electrical™
• Instrument Control Toolbox™

Required Hardware

• F28377S LaunchPad or F28379D LaunchPad
• Digital Power Buck Converter BoosterPack

Available Models

• DCDC_Buck_Sim.slx can be used to simulate the controller for the DC/DC buck
converter.

• f28379D_DCDC_Buck.slx can be used to generate code and load it on the F8379D
LaunchPad.

• f28377s_DCDC_Buck.slx can be used to generate code and load it on the F8377S
LaunchPad.

• c2000_host_read_12M.slx can be run on the host computer to log signals and tune
parameters.

4 Examples

4-86

matlab:DCDC_Buck_Sim
matlab:f28379D_DCDC_Buck
matlab:f28377s_DCDC_Buck
matlab:c2000_host_read_12M

Simulate a Controller for the DC/DC Buck Converter Plant Model

The f28379D_DCDC_Buck model consists of these subsystems:

• Controller: The discrete proportional integral (PI) controller minimizes the error
between the reference voltage and the output voltage. The duty cycle of the PI
controller is limited to 60% of the PWM time period.

• DC/DC Buck Converter: Simscape™ blocks are used to model the DC/DC buck
converter circuitry.

• Dashboard Controls: Used to set the reference voltage, switch on/off active load, and
tune proportional and integral gains.

Run the Model

1 Open the f28379D_DCDC_Buck model, and click the Run button to simulate the
model. The initialization file DCDC_Buck_Param.m loads the variables required for
the simulation.

2 Observe the output waveforms on the scope blocks. You can tune the input
parameters using the dashboard controls.

Generate Code for the Controller and Load it on the LaunchPad

In the f28379D_DCDC_Buck model, the PI controller is configured to run on the F28379D
Launchpad. The Hardware Interrupt block schedules the interrupt service routine (ISR)
tasks.

 Modeling a Voltage Controller for the DC/DC Buck Converter

4-87

matlab:f28379D_DCDC_Buck
matlab:f28379D_DCDC_Buck
matlab:f28379D_DCDC_Buck

Run the Model on the LaunchPad

1 Open the f28379D_DCDC_Buck model and generate code by pressing Ctrl+B.
2 Follow the build process by opening the diagnostic viewer using the link provided at

the bottom of the model canvas. After the code is loaded on the board, a blue LED
blinks on the LaunchPad, indicating that the code is running.

Note: On the F28379D processor, this example runs on CPU1. Ensure that the program
running on CPU2 is not using the peripherals that are used by CPU1.

Monitor Signals and Tune Parameters on the Host Computer

Configure and Run the Model on the Host Computer

1. On the host computer, browse to Device Manager > Ports (COM & LPT) to find the
COM port.

2. Set the COM ports of the following blocks in the c2000_host_read_12M model to match
the COM port of the host computer:

4 Examples

4-88

matlab:f28379D_DCDC_Buck
matlab:c2000_host_read_12M

• c2000_host_read_12M > Serial Configuration
• c2000_host_read_12M > Serial Receive
• c2000_host_read_12M > Serial Send > Serial Send

3. Click on the Run button to run the model.

For more information on using the serial connection for your hardware, see http://
processors.wiki.ti.com/index.php/Using_the_serial_adapter_of_XDS100.

Monitor the Signals

While the model runs, you can monitor the following signals on the scope:

• I_FB Current: The real-time current flowing through the inductor (L1). 4095 ADC
counts is equivalent to 6.8333 A inductor current.

• V_FB Voltage: The measured output voltage of the system. 4095 ADC counts is
equivalent to 6.0909 V output voltage.

Tune the Parameters

While the model runs, you can tune parameters using the following dashboard blocks:

• Voltage Request: Change the output voltage demand. This parameter is the main
request for the control loop. The controller algorithm compares the Voltage Request
value with the measured output voltage and adjusts the PWM duty cycle towards
achieving the output voltage.

• Active load: Turn the active load present on the hardware on or off. This parameter
allows you to add an extra load resistor to study the effect of abrupt changes in the
load circuit.

• P Gain: Change the proportional gain of the controller algorithm. You can change this
parameter to study the robustness of the controller. Large, abrupt changes may lead to
instability of the controller; apply changes smoothly.

• I Gain: Change the integral gain of the controller algorithm. You can change this
parameter to study the robustness of the controller. Large, abrupt changes may lead to
instability of the controller; apply changes smoothly.

More About

C28x SCI Receive

 Modeling a Voltage Controller for the DC/DC Buck Converter

4-89

http://processors.wiki.ti.com/index.php/Using_the_serial_adapter_of_XDS100
http://processors.wiki.ti.com/index.php/Using_the_serial_adapter_of_XDS100

Using SPI to Read and Write Data to SPI EEPROM
This example shows how to configure and use SPI blocks to read and write data.

In this example, you will learn the following tasks:

• SPI loopback using the Master Transfer block
• Read and write data to SPI EEPROM using the Master Transfer block
• SPI loopback using the SPI Transmit block, the SPI Receive block, and interrupts
• Read and write data to SPI EEPROM using the SPI Transmit block, the SPI Receive

block, and interrupts

Required Hardware

• Texas Instruments™ C2000 ControlCARD or LaunchPad
• Texas Instruments Peripheral Explorer or CAT25256 256kB SPI EEPROM Memory.

This device uses a standard SPI protocol that is common to many other EEPROMs
provided by different vendors. For more details about the device, refer to the
CAT25256 data sheet.

Hardware Connections

The SPI EEPROM uses the following 8-bit opcodes for enable, write data, read data, and
read status.

 Command | Opcode | Operation
 _
 WREN | 6 | Enable Write Operations
 WRITE | 2 | Write Data to Memory
 READ | 3 | Read Data from Memory
 RDSR | 5 | Read Status Register
 _

The hardware connections made are dependent on the EEPROM usage. You can use the
SPI EEPROM provided in the TI Peripheral Explorer or a separate EEPROM chip, such as
CAT25256 256kB SPI EEPROM.

Texas Instruments Peripheral Explorer

• If the ControlCARD is inserted in the slot provided by the Peripheral Explorer, no
additional connections are required.

4 Examples

4-90

• If the ControlCARD is inserted in a docking station or a LaunchPad is used, SPI
connections must be made between the Peripheral Explorer and the docking station or
LaunchPad as listed.

 Peripheral Explorer | C2000
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 ECAP-1 / SPISIMO | SPISIMO
 ECAP-2 / SPISOMI | SPISOMI
 ECAP-3 / SPICLK | SPICLK
 EPWM-6B / SPISTE | SPISTE
 GND | GND
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CAT25256 256kB SPI EEPROM Memory

Connect the chip to the C2000 LaunchPad or ControlCARD as listed.

 SPI EEPROM pin | C2000
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 /CS (pin 1) | SPISTE
 SO (pin 2) | SPIMISO
 /WP (pin 3) | 3.3 V
 VSS (pin 4) | GND
 SI (pin 5) | SPIMOSI
 SCK (pin 6) | SPICLK
 /HOLD (pin 7) | 3.3 V
 VCC (pin 8) | 3.3 V
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SPI Loopback Using the Master Transfer Block

The Counter Limited block sends the counter value to the SPI Master Transfer block as
input, and the output data received is sent to the scope. You can observe the counter
value in the Scope block while running the model in External mode.

 Using SPI to Read and Write Data to SPI EEPROM

4-91

To run the model:

1 Open the c28x_spitest_ert model. This model is configured for the TI F28379D
LaunchPad hardware board. To configure the model to run on other TI C2000
processors, change the Hardware board parameter in the Configuration
Parameters > Hardware Implementation pane.

2 Browse to Hardware Implementation > Target Hardware Resources > SPI_A,
and select Enable loopback. Alternatively, you can connect SIMO and SOMI
physically using GPIO pins to enable external loopback.

3 Select appropriate values for SIMO, SOMI, CLK, and STE pin assignment,
depending on the processor.

4 In the Configuration Parameters window, click Hardware Implementation >
Target hardware resources > External mode and set the Serial port parameter
to the COM port at Device Manager > Ports (COM & LTP) in Windows. For more
information, see “Parameter Tuning and Signal Logging with Serial Communication”
on page 4-60.

5 Open Hardware tab and click Monitor & Tune. Observe the counter values on the
scope.

4 Examples

4-92

matlab:c28x_spitest_ert

Read and Write Data to SPI EEPROM Using the Master Transfer Block

The model writes data values of various types to the EEPROM and reads back the data
from the corresponding EEPROM address to show successful communication.

SPI blocks are configured with the Data bits parameter set to 8 to send the 8-bit opcodes
and write/read the 8-bit data. If you select the STE pin provided by the SPI peripheral in
Configuration Parameters, the slave is deselected between data transfers. In this case,
the Explicit GPIO calls option is used to select Slave select pin as GPIO1 to ensure
that the slave is selected continuously for multiple data transfers.

The model consists of a Trigger Subsystem, Write EEPROM Data and Read EEPROM Data
subsystems, and Display blocks. The Read EEPROM Data subsystem is always triggered,
while the Write EEPROM Data subsystem is triggered only if the data read from the
EEPROM does not match the input data to be written to the EEPROM.

The Write EEPROM Data subsystem performs EEPROM write enable operation before
every write cycle. The input data of different types are packed in 8-bit packets using the

 Using SPI to Read and Write Data to SPI EEPROM

4-93

Byte Pack block, and then the data is converted to uint16. The data is then written to the
EEPROM at the address location 0x0020 using the Master Transfer block. After this, the
program waits until the EEPROM write operation is complete by monitoring the status
flag of the EEPROM.

The Read EEPROM Data subsystem reads data back from the memory location 0x0020,
and the 8-bit packet data is unpacked to data of required type using the Byte Unpack
block. This data is then shown using Display blocks.

To run the model:

1 Open the c28x_spi_eeprom model. This model is configured for the TI F28379D
LaunchPad hardware board. To configure the model to run on other TI C2000
processors, change the Hardware board parameter in the Configuration
Parameters > Hardware Implementation pane.

2 Browse to Hardware Implementation > Target Hardware Resources > SPI_A.
3 Enter the value for Desired baud rate in bits/sec as 2000000, and set STE pin

assignment to None.
4 In the Configuration Parameters window, click Hardware Implementation and

go to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows.
For more information, see “Parameter Tuning and Signal Logging with Serial
Communication” on page 4-60.

5 Open Hardware tab and click Monitor & Tune. Observe output data in display
blocks.

6 Change the input data values and observe the changes.

SPI Loopback Using the SPI Transmit Block, the SPI Receive Block, and Interrupts

The Counter Limited block sends the counter value to the SPI Transmit block as input.
The receive FIFO is configured to trigger the interrupt for a FIFO length of 4. The output
data of length 4 received from the SPI Receive block is realigned as a single stream and
sent to the scope. You can observe the counter value in the Scope block while running in
external mode.

4 Examples

4-94

matlab:c28x_spi_eeprom

To run the model:

1 Open the c28x_spi_interrupt_test_ert model. This model is configured for the TI
F28379D LaunchPad hardware board. To configure the model to run on other TI
C2000 processors, you can change the Hardware board parameter in the
Configuration Parameters > Hardware Implementation pane.

2 Browse to Hardware Implementation > Target Hardware Resources > SPI_A,
and select Enable loopback. Alternatively, connect SIMO and SOMI physically
using GPIO pins to enable external loopback.

3 Select appropriate values for SIMO, SOMI, CLK, and STE pin assignment,
depending on the processor.

4 Select Enable Rx interrupt, and set FIFO interrupt level(Rx) to 4.
5 In the Configuration Parameters window, click Hardware Implementation and

navigate to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows.
For more information, see “Parameter Tuning and Signal Logging with Serial
Communication” on page 4-60.

6 Open Hardware tab and click Monitor & Tune. Observe the counter values on the
scope.

 Using SPI to Read and Write Data to SPI EEPROM

4-95

matlab:c28x_spi_interrupt_test_ert

Read and Write Data to SPI EEPROM Using the SPI Transmit Block, the SPI
Receive Block, and Interrupts

The model writes data values of various types to EEPROM and reads back data from the
corresponding EEPROM address to show successful communication. This model can be
used only for hardware boards with an SPI FIFO length of 15.

SPI blocks are configured with the Data bits parameter set to 8 to send the 8-bit opcodes
and write/read the 8-bit data. If you select the STE pin provided by the SPI peripheral in
Configuration Parameters, the slave is deselected between data transfers. In this case,
the Explicit GPIO calls option is used to set Slave select pin to GPIO1 to ensure
that the slave is selected continuously for multiple data transfers. The receive FIFO is
configured to trigger the interrupt for a FIFO length of 15.

The model consists of Write EEPROM Data, Transmit Read Command, Read EEPROM
Data, and Data Realignment subsystems along with Display blocks. Write and read data
operations are triggered alternatively using the STATVAR variable.

The Write EEPROM Data subsystem performs the EEPROM write enable operation using
SPI Transmit and SPI Receive blocks. Before every write cycle, block priorities are set to
ensure that SPI Transmit is executed first. The input data of different types are packed in
8-bit packets using the Byte Pack block and converted to uint16. Data is then written to

4 Examples

4-96

the EEPROM at the address location 0x0020 using the SPI Transmit block. After this, the
program waits until the receive interrupt is triggered. When the receive interrupt is
triggered, the data from the receive FIFO is read and discarded.

The Transmit Read Command subsystem is then triggered, which sends a read command
and an address with dummy data of the size of the data to be read. After this, the
program waits until the receive interrupt is triggered. When the receive interrupt is
triggered, data from the receive FIFO is read.

The Data Realignment subsystem performs byte reordering to create 8-bit word packets,
which are unpacked to data of required type using the Byte Unpack block. This data is
then shown using display blocks.

To run the model:

1 Open the c28x_spi_eeprom_interrupt model. This model is configured for the TI
F28379D LaunchPad hardware board. To configure the model to run on other TI
C2000 processors, change the Hardware board parameter in the Configuration
Parameters > Hardware Implementation pane.

2 Browse to Hardware Implementation > Target Hardware Resources > SPI_A.
3 Enter the value for Desired baud rate in bits/sec as 2000000, and set STE pin

assignment to None.
4 Select Enable Rx interrupt, and set FIFO interrupt level(Rx) to 15.
5 In the Configuration Parameters window, click Hardware Implementation and

navigate to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows.
For more information, see “Parameter Tuning and Signal Logging with Serial
Communication” on page 4-60.

6 Open Hardware tab and click Monitor & Tune. Observe the output data using
Display blocks.

7 Change the input data values and observe the changes.

More About

• C28x SPI Master Transfer
• C28x SPI Receive
• C28x SPI Transmit

 Using SPI to Read and Write Data to SPI EEPROM

4-97

matlab:c28x_spi_eeprom_interrupt

Inter-Processor Communication Using IPC Blocks
This example shows how to use the IPC blocks to communicate between the two CPUs of
Texas Instruments™ Delfino F2837xD using Simulink® models.

In this example, you will learn how to:

• Send scalar and vector data from CPU1 using IPC Transmit block

• Receive data at CPU2 using IPC Receive block in polling and interrupt modes

Required Hardware

• Texas Instruments™ Delfino F2837xD controlCARDs or F28379D LaunchPad
• A USB serial cable, if your hardware provides serial over USB capabilities

This example is configured for the Texas Instruments F28377D controlCARD with a
docking station. A USB serial cable is used to establish a serial connection between the
host computer and the target hardware. For more information, see “Set Up Serial
Communication with Target Hardware” on page 1-7.

To select a different target hardware, in the Simulink Editor, browse to Configuration
Parameters > Hardware Implementation > Hardware board.

Send Scalar and Vector Data from CPU1 Using IPC Transmit block

This example uses four different channels to transmit data from CPU1 to CPU2. A
maximum of 32 channnels can be used.

Open the c2837xd_ipc_cpu1_tx model, and click Build, Deploy & Start under Hardware
tab or press Ctrl+B to build and download the executable file on CPU1.

The following data is transmitted from CPU1 to CPU2:

• A scalar uint16 counter value is sent from channel 0.
• Scalar data of type uint32 is sent from channel 1.
• A vector [1x10] of type uint16 is sent from channel 2.
• A vector [1x3] of type single is sent from channel 3.

4 Examples

4-98

matlab:c2837xd_ipc_cpu1_tx

Receive Data at CPU2 Using IPC Receive Block in Polling and Interrupt Modes

1. Open the c2837xd_ipc_cpu2_rx model.

 Inter-Processor Communication Using IPC Blocks

4-99

matlab:c2837xd_ipc_cpu2_rx

2. In the Configuration Parameters window, click Hardware Implementation and
navigate to Target hardware resources > External mode and set the Serial port
parameter to the COM port at Device Manager > Ports (COM & LTP) in Windows. For
more information, see

2. Open Hardware tab and click Monitor & Tune.

3. Observe the output data using display blocks. The data received in CPU2 must match
the data transmitted from CPU1.

Note: The channel number of the IPC Receive block on the reading CPU must match the
channel number of the IPC Transmit block on the writing CPU.

4 Examples

4-100

 Inter-Processor Communication Using IPC Blocks

4-101

More About

For inter-processor communication, the first two blocks of the global shared RAM (2x16k)
are used. For larger data transfers using IPC blocks, the memory must be increased using
the linker file. You can access the linker file by browsing to Configuration Parameters >
Hardware Implementation > Target hardware resources > Build Options.

The current memory settings in the linker file are:

RAMGS_IPCBuffCPU1 : origin = 0x00C000, length = 0x001000

RAMGS_IPCBuffCPU2 : origin = 0x00D000, length = 0x001000

To increase the IPC memory size, allocate more memory for RAMGS_IPCBuffCPU1 and
RAMGS_IPCBuffCPU2. The size of the memory must be the same in both cases.

For dual motor control using IPC blocks, see “Permanent Magnet Synchronous Motor
Field-Oriented Control”. In this example, c28379Dpmsmfocdual_cpu1_ert.slx and
c28379Dpmsmfocdual_cpu2_ert.slx models communicate using IPC.

For information about IPC blocks, see:

• F2837xD IPC Receive
• F2837xD IPC Transmit

4 Examples

4-102

matlab:c28379Dpmsmfocdual_cpu1_ert
matlab:c28379Dpmsmfocdual_cpu2_ert

Modify Duty Cycle of ePWM Using DMA
This example shows how to configure the direct memory access (DMA) parameters to
modify the ePWM duty cycle. Using DMA, the sine wave data is copied from a look-up
table to the ePWM compare register.

You can observe the duty cycle changes by connecting the ePWM pin (GPIO2) to:

• An oscilloscope to monitor the changes in the duty cycle.
• The LED (GPIO31/GPIO34) to observe the dimming of the LED.

The example consists of a model and a callback script. The script runs when the model is
initialized. The callback script (sineTableCalculation.m) generates a sine wave of
500 samples, and then scales the sine wave to the range of zero to the value of the ePWM
period register.

Required Hardware

F2833x, F2806x, F2807x, F2837x, or F28004x controlCARD/LaunchPad.

Available Models

• F2833x: c2833x_dma_epwm.slx
• F2806x: c2806x_dma_epwm.slx
• F2807x, F2837x, and F28004x: c28x7x_c28004x_dma_epwm.slx

Model

The c28x7x_c28004x_dma_epwm model consists of the duty_cycle_table look-up table
defined using the Data Store Memory, ePWM, and Memory Copy blocks. The
duty_cycle_table look-up table stores the sine wave samples generated by the
callback script.

 Modify Duty Cycle of ePWM Using DMA

4-103

matlab:c2833x_dma_epwm
matlab:c2806x_dma_epwm
matlab:c28x7x_c28004x_dma_epwm
matlab:c28x7x_c28004x_dma_epwm

The ePWM block is configured in up-down mode for a period of 0.002 seconds. For more
information, see “General Pane”.

The ePWM block is also configured to generate a start of conversion event for module A
(SOCA). For more information, see “Event Trigger Pane”.

The DMA parameters are configured to transfer 500 sine wave samples from the
duty_cycle_table look-up table to the ePWM compare register. DMA transfers one
sample at a time when triggered by the ePWM2SOCA event. To configure the DMA
parameters, browse to Configuration Parameters > Hardware Implementation >
Target hardware resources > DMA_ch1.

The Memory Copy block provides the value of the ePWM compare register to the scope.

Configure and Run the Model

1. In the Configuration Parameters window, click Hardware Implementation > Target
hardware resources.

4 Examples

4-104

2. Click SCI_A, and set the Desired baud rate in bits/sec parameter to 1.25e6.

3. Click External mode, and set the Serial port parameter to the COM port at Device
Manager > Ports (COM & LTP) in Windows. For more information, see “Parameter Tuning
and Signal Logging with Serial Communication”.

4. To ensure that enough memory is present to run the model in External mode, click
Code Generation > Optimization in the Configuration Parameters window.

5. Set the Default parameter behavior parameter to Inlined, and click OK.

6. Open Hardware tab and click Monitor & Tune. Observe the sine wave values on the
scope.

7. You can connect the ePWM pin (GPIO2) to:

• An oscilloscope to monitor the changes in the duty cycle.
• The LED (GPIO31/GPIO34) to observe the dimming of the LED.

More About

C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x ePWM

 Modify Duty Cycle of ePWM Using DMA

4-105

Photovoltaic Inverter with MPPT Using Solar Explorer Kit
This example shows how to implement a photovoltaic (PV) inverter system using the
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors. The
example uses the Texas Instruments Solar Explorer Kit along with the Texas Instruments
F28035 controlCARD.

Using this example, you can:

• Simulate a plant model for a PV inverter system
• Test the performance and tune the control algorithm
• Generate code for the controller and load it on the controlCARD
• Monitor signals and tune parameters using the host computer

Prerequisites

Before you start with this example, install these MathWorks® products:

• Simscape™ Electrical™
• Instrument Control Toolbox™

Required Hardware

• Texas Instruments Solar Explorer Kit
• F28035 controlCARD

Available Models

• Solar_Inverter_Sim.slx can be used to simulate the plant model and controller for the
PV inverter system.

• c28035solar_inverter.slx can be used to generate code and load it on the F28035
controlCARD.

• c2000_host_solar.slx can be run on the host computer to log signals and tune
parameters.

Simulate the Photovoltaic Inverter with MPPT

The simulation model consists of the plant model and the controllers. The plant model
consists of three major components:

4 Examples

4-106

matlab:Solar_Inverter_Sim
matlab:c28035solar_inverter
matlab:c2000_host_solar

• Emulated PV Panel: This module takes the irradiance value as input (in kW/m2) and
simulates the PV emulator implemented on the Texas Instruments Solar Explorer Kit.

• DC-DC Boost Converter: This module boosts up the input voltage based on the duty
cycle of the PWM pulses.

• Single Phase DC-AC Inverter: This module generates a single-phase AC voltage
waveform using the H-bridge topology. An AC load can be connected to the output.

The controllers in the simulation model are:

• Maximum power point tracking (MPPT)
• DC-DC boost controller
• DC-AC inverter controller

To make a solar panel energy efficient, the panel must be operated at its maximum power
point. However, the maximum power point is not fixed because of the nonlinear nature of
the PV cell and changes in temperature and light intensity. The perturb & observe (P&O)
algorithm is implemented using a Stateflow® chart for calculating the reference voltage
required for maximum power point operation. The reference voltage is achieved with the

 Photovoltaic Inverter with MPPT Using Solar Explorer Kit

4-107

help of the DC-DC boost controller. The DC-DC boost controller implements a PI
controller to track the reference voltage set by the MPPT algorithm. For tracking the
reference voltage, the PV panel voltage (Vpv) is measured.

The DC-DC boost converter is a traditional single-phase converter with a single switching
MOSFET, Q1. The duty cycle of the PWM output that drives Q1 determines the amount of
boost imparted to the controlled parameter.

The DC-DC boost controller is realized using a PI controller. An increase in the duty cycle
of the boost converter loads the panel and results in a panel output voltage drop.
Accordingly, an increase in the output of the controller (duty cycle of the boost converter)
causes an increase in the error input to the controller. To achieve the reference voltage
value, the feedback and the voltage reference inputs of the PI controller are reversed. The
controller operates at a rate of 50 kHz.

The DC-DC boost converter output voltage is not controlled using the DC-DC boost
controller. However, the boost converter output voltage is regulated by the DC-AC
inverter controller, which modulates the current drawn by the DC-AC inverter to keep this
voltage regulated. The DC-AC inverter controller uses nested control loops — an outer
voltage loop and an inner current loop.

The voltage loop generates the reference for the current loop. An increase in the current
loads the DC bus and therefore causes a drop in the DC bus voltage. To achieve the
reference voltage value, the feedback and the outer voltage compensator reference are
reversed. The current reference is then multiplied by the sine reference to get the
instantaneous current reference. The instantaneous current reference is then used by the
current compensator along with the feedback current to provide duty cycle for the DC-AC
inverter. The duty cycle is calculated using the unipolar sine PWM technique.

The input to the PV emulator can be changed to run the simulation for different values of
irradiance. The controller parameters can be tuned to get a refined performance.

Generate Code for the Controller and Load It on the ControlCARD

The deployment model consists of three real-time interrupt service routines (ISR) used
for:

• Closed loop control of the DC-DC boost converter (50 kHz)
• Closed loop control of the DC-AC inverter (20 kHz)
• Setting the irradiance value sent by the user from a host model

4 Examples

4-108

The F28035 processor receives the irradiance value through serial communications
interface (SCI) and sends it to the F28027 processor (PV emulator on the Solar Explorer
Kit) using serial peripheral interface (SPI) communication. The F28027 processor is
preconfigured to receive the updated irradiance value from the F28035 processor.

Monitor Signals and Tune Parameters Using the Host Computer

The host model receives the data from the kit and plots it to verify the performance of the
MPPT and the control algorithms.

 Photovoltaic Inverter with MPPT Using Solar Explorer Kit

4-109

Monitor the Signals

While the model runs, you can monitor the Actual Panel Power signal on the scope. Actual
Panel Power is the real-time power supplied by the PV emulator.

Tune the Parameters

While the model runs, you can tune parameters using the dashboard blocks:

• Irradiance — The irradiance value (in kW/m2) supplied to the PV emulator.
• Manual PV Voltage Reference — The value used to manually set the operating point of

the PV emulator. This value is used when the toggle switch is set to the Manual Vref
option. Toggling the switch turns off the MPPT algorithm and lets you choose the
operating voltage of the PV emulator. The value must be less than or equal to the

4 Examples

4-110

open-circuit voltage of the panel at the set irradiance, that is, Vref_cmd <=
Irradiance (in kW/m2) * 28.

More About

• “ADC-PWM Synchronization Using ADC Interrupt” on page 4-2
• “Modeling a Voltage Controller for the DC/DC Buck Converter” on page 4-86

 Photovoltaic Inverter with MPPT Using Solar Explorer Kit

4-111

MAT-file Logging on SD Card for Texas Instruments
C2000 Processors

This example shows you how to perform MAT-file logging using Simulink® model on a
Micro SD card mounted on Embedded Coder® Support Package for Texas Instruments™
C2000™ Processors.

Introduction

Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
supports logging of signals from Simulink® model. These signals are logged as MAT-
file(s) on a Micro SD card mounted on Texas Instruments™ C2000™ Processors.

Signal logging enables you to monitor the signal behavior and to perform any historical
analysis of the data. The data can be saved in any of these formats: Structure, Structure
with time, or Array. You can save the signals using the following blocks:

• To Workspace
• Scope
• Output port

This example provides you with the workflow to enable MAT-file logging and obtain the
MAT-file on a Micro SD card mounted on Texas Instruments™ C2000™ Processors.

Required Hardware

To run this example, you need the following hardware:

• Texas Instruments™ C2000™ Processors
• External SD card interface(optional)
• Micro SD card

Hardware Connection(For External SD Card Interface)

• For the external SD card interface, based on the SPI module selected, the SIMO,
SOMI, CLK and STE pin has to connected to corresponding GPIO pins of C2000
processor.

• Connect VCC and GND pins to appropriate supply and ground.

4 Examples

4-112

Step 1 - Prepare the Connection and Configure a Simulink Model for MAT-File
Logging

The MAT-file logging needs to be configured on the Simulink model so that the selected
signals are logged on the Micro SD card on Texas Instruments™ C2000™ Processors.

1. Insert the Micro SD card in the slot provided on the board.

2. Open the SD Card Logging model. This Simulink model is pre-configured for the TI
Delfino F2837xD with MAT-File logging enabled. In this example, signals from the Scope
block are logged.

open_system('c28x_matfile_logging.slx');

3. In your model window, open the Configuration Parameters dialog box, go to the
Hardware Implementation pane, and select the name of the target hardware from the
Hardware board list. If required, you can change the Hardware board selection other
than pre-configured F2837xD.

 MAT-file Logging on SD Card for Texas Instruments C2000 Processors

4-113

4. To enable MAT-file logging, go to Target hardware resources > SD card logging.
Select the Enable MAT-file logging on SD card checkbox. Also select the desired SPI
module and SPI baud rate and ensure in the SPI_x pane that all configurations are as
required.

5. Click Apply and then OK.

6. Double-click the Scope block in the Simulink model. In the Scope dialog box, click the
gear icon (Configuration Properties).

7. In the Configuration Properties: Scope dialog box, open the Logging tab, and select
Log data to Workspace. Also select Limit data points to last and set a value of 512.

8. Select the Save format as Array/Structure with Time/Structure and click
Apply and then OK.

9. On the Modeling tab, enter a value for the stop time. This is the duration for which
the signal is logged. However, the model continues to run on the hardware and it is not
affected by the time specified.

4 Examples

4-114

For example, in this demo model (SD Card Logging), the stop time is 10. The signal will
be logged for 10 seconds. If the stop time is Inf, the signal will be logged till the Micro
SD card is full or the board is disconnected.

Step 2 - Deploy the Model on Texas Instruments C2000 Processors and View the
MAT-files

After the Simulink model is configured for MAT-file logging, you can deploy the model on
the connected Texas Instruments C2000 Processors and view the MAT-file(s) created on
the Micro SD card.

Tip: To learn more about logging data, see “Configure Model to Log Signals on SD Card”
on page 2-7.

1. In the Simulink model, go to Hardware tab and click Build, Deploy & Start button.
The build process for the model starts and it is deployed on the Texas Instruments C2000
Processors board. On successful deployment of the model, the LED on the board starts
blinking.

Note: For processor other than F2837xD, you have to replace the Digital Output block
and select the appropriate GPIO pin for LED blinking.

2. To view the logged MAT-files, remove the Micro SD card from the board after the
Simulation time, and insert the card on your computer.

If the deployment of the model was successful, the MAT-files are generated on the Micro
SD card as shown below:

 MAT-file Logging on SD Card for Texas Instruments C2000 Processors

4-115

After importing the MAT-files to your computer, you can use it for further analysis in
MATLAB®.

Because the model running on the hardware creates multiple MAT-files, the logged data
points are distributed across the generated MAT-files. You can create a stitcher function
to combine these MAT-files into a single MAT-file that contains all the logged data points.
To view an example of a MAT-file stitcher and understand its usage, enter the following
command in the MATLAB® command window.

edit('c28x_MAT_stitcher.m');

Other things to try with MAT-file Logging on SD Card

In this example, a Scope block is used to log signals. However, the signals in a Simulink®
model can also be logged on the SD card using the To Workspace block or by logging
the output(s) of the Simulink® model. Explore the MAT-file logging of a Simulink model
using these two techniques.

4 Examples

4-116

Related Topics

“Configure Model to Log Signals on SD Card” on page 2-7

 MAT-file Logging on SD Card for Texas Instruments C2000 Processors

4-117

Power Factor Correction Using Boost Converter
This example shows how to implement power factor correction (PFC) using a boost
converter with the Embedded Coder® Support Package for Texas Instruments™ C2000™
Processors. The example uses the Texas Instruments Multi-Axis Digital Motor Control Kit
along with the Texas Instruments F28035 controlCARD.

Using this example, you can:

• Simulate PFC using a boost converter
• Generate code for the controller and load it on the controlCARD
• Monitor signals using the host computer

Prerequisites

Before you start this example, install these MathWorks® products:

• Simscape™ Electrical™ (for PFC simulation)
• Instrument Control Toolbox™ (for signal monitoring)

Required Hardware

• TI Dual Motor Control and PFC Developer's Kit (TMDS2MTRPFCKIT)
• F28035 controlCARD
• Motor Load (BLY171D-24V-4000 Brushless DC Motor and DRV8312-C2-KIT)

Available Models

• PFC_MultiAxisKit_Sim.slx simulates the plant model and controller for the PFC
system.

• c28035pfc.slx generates code and loads it on the F28035 controlCARD.
• c2000_host_pfc.slx runs on the host computer to log signals.

Simulate PFC Using Boost Converter

The simulation model consists of the plant model and the controller. The plant model
consists of two major modules:

• AC-DC Rectifier: This module takes 13 to 16V AC input and outputs rectified DC
voltage.

4 Examples

4-118

matlab:PFC_MultiAxisKit_Sim
matlab:c28035pfc
matlab:c2000_host_pfc

• DC-DC Boost Converter: This module boosts up the input voltage based on the duty
cycle of the pulse width modulation (PWM) output.

open_system('PFC_MultiAxisKit_Sim.slx');

The AC-DC rectification stage uses a traditional uncontrolled H-bridge rectifier. The DC-
DC boost converter on the kit has a two-phase interleaved topology. For simplicity, only
one phase has been used for the boost operation. The duty cycle of the PWM output
determines the amount of boost imparted to the input voltage.

The PFC controller provides current shaping of the AC input and regulates the DC bus.
The outer voltage loop ensures that the output DC voltage is maintained at the set
reference by using a discrete proportional integral PI controller.

 Power Factor Correction Using Boost Converter

4-119

The inner current loop performs the wave shaping of the input AC current to maintain a
high power factor. The reference for the current loop is generated by feed-forward of the
rectified DC voltage as well as the output of outer the voltage loop.

The output of the PFC controller is the PWM duty cycle of the DC-DC boost converter. The
controller operates at a rate of 50 kHz.

Run the Model

1. Open the PFCMultiAxisKitSim model, and click the Run button to simulate the model.

2. Observe the output waveforms on the Scope block.

Generate Code for the Controller and Load it on the controlCARD

The deployment model has a real-time interrupt service routines (ISR) configured to
trigger PFC control at the rate of 50 kHz.

open_system('c28035pfc.slx');

4 Examples

4-120

matlab:PFCMultiAxisKitSim

Load the Model on the controlCARD

1. Turn on [M4]SW1 on the kit which turns on the power supply for smooth precharging
of the DC bus.

2. Turn on [M4]SW3 on the kit to power on the controlCARD.

3. Open the c28035pfc model and generate code by pressing Ctrl+B.

4. Follow the build process by opening the diagnostic viewer using the link at the bottom
of the model canvas.

Monitor Signals on Host Computer

The host model receives the data from the hardware kit and plots it to verify the
performance of the PFC controller.

open_system('c2000_host_pfc.slx');

 Power Factor Correction Using Boost Converter

4-121

matlab:c28035pfc.slx

While the model runs, you can monitor the rectified DC voltage and input boost converter
current to analyze the performance of PFC control.

More About

• “ADC-PWM Synchronization Using ADC Interrupt” on page 4-2
• “Modeling a Voltage Controller for the DC/DC Buck Converter” on page 4-86
• “Photovoltaic Inverter with MPPT Using Solar Explorer Kit” on page 4-106

4 Examples

4-122

Interface LCD Booster Pack with Texas Instruments
C2000 Processors

This example shows how to configure and use the Kentec QVGA Display Booster Pack to
display an image using C28x peripherals for Texas Instruments™ C2000™ processors.

Using this example, you can:

• Configure the Kentec QVGA display through the serial peripheral interface (SPI)
• Display the image through the SPI using direct memory access (DMA)

Required Hardware

• F28379D Launchpad
• BOOSTXL-K350QVG-S1 Kentec QVGA Display Booster Pack

Hardware Connections

Mount the Kentec QVGA Display Booster Pack on the F28379D Launchpad. The display
uses the following pin mapping with the F28379D Launchpad.

Kentec QVGA
Display Pin

F28379D Pin Application

SCS GPIO 124 To select LCD for SPI communication
SDC GPIO 22 To select whether to send data or commands to

LCD
SCL GPIO 60 SPI_A Clock pin
SDI GPIO 58 SPI_A SIMO pin

PWM GPIO 0 For backlight
RESET GPIO 159 To reset LCD
GND GND Ground
VCC VCC Supply

Configure Kentec QVGA Display Through SPI

Before the image is transferred from host computer to F28379D Launchpad:

 Interface LCD Booster Pack with Texas Instruments C2000 Processors

4-123

• Disable serial communication interface (SCI) interrupt ensure DMA channel is in halt
state.

• Initialize the display.

open_system('c2837xD_lcd_display.slx');

Initialize the Kentec QVGA Display

1. Reset the LCD, turn ON the backlight, select the SCS pin and wait for 1 ms.

2. Configure the following registers: Power parameter, Pixel format, Display orientation,
MCU interface parameter, Display control, Gamma correction and Power control. To
configure Pixel format - Exit sleep mode, wait for 30 ms and then configure the register.

3. Display a Green colour image on the LCD to indicate end of initialization.

4. Enable the SCI interrupt and the DMA channel.

Display the image through SPI using DMA

For the image to display on the LCD, the image data must be transferred from the host
computer to the target F28379D Launchpad through the SCI.

Due to low memory constraints on the target F28379D Launchpad, it is not possible to
send the entire image data from the host computer to the target F28379D. Instead, the

4 Examples

4-124

image data is transferred in chunks from the host computer to the target F28379D
through the SCI. These chunks are stored in a small memory section Image_Array in the
target. Double buffer is used in Image_Array to ensure data integrity between data read
from the host using SCI and data transferred to the LCD display through the SPI
interface. The buffers are referred as ping buffer and pong buffer.

Run the Function on the Host

The function c2837xD_serial_send.m performs the following operation:

• Runs on the host computer, reads the image, and sets the SCI parameters.
• Sends 16-bit image data for the entire buffer in small chunks to the target F28379D

through the SCI.
• Adds a constant delimiter, of the same size as a chunk, for each buffer to indicate the

beginning of new a buffer.

The following table explains the parameters used with their size.

Parameter Size Description
Image size 240x320 i.e. 76800

uint16
Size of the image that can be displayed
on the screen

Ping/Pong buffer size 3840 uint16 To divide image evenly among buffers
Chunk size 6 uint16 SCI receive FIFO buffer size

Number of SCI
transfers per buffer

3840/6 = 640 SCI SCI buffer size/chunk size. To send
entire buffer data in small chunks using
serial interface

Buffer size + Delimiter
size

3840+6=3846 uint16 Total memory required in target to save
one buffer data

To send the entire image, buffer transmission must occur 20 times, i.e., Image size/buffer
size. Image Size = 20 x buffer size = 20 x (chunk size x number of SCI transfers)

Run the Model on the Target

On the model side of the target, the following sequence of events occurs:

1. The target waits for the SCI interrupt. The SCI interrupt is triggered when the serial
receive buffer receives the chunk size data.

 Interface LCD Booster Pack with Texas Instruments C2000 Processors

4-125

2. In the serial interrupt service routines (ISR), the data is copied into the ping/pong
buffer of Image_Array. The model uses the serial delimiter to identify the beginning of
the data in the target. This process continues until the buffer transfer is complete.

3. The serial is now switched to the alternate buffer among the ping/pong to fill the data
and enable the SPI event trigger for DMA transfer.

4. The DMA starts pushing the data from the first filled buffer to the SPI Transmit FIFO
buffer. The data is transferred to the display through the SPI, and SPI Transmit triggers
the DMA event when the buffer is empty. This process continues till the first filled buffer
data is fully transferred to the display.

5. Once the transfer is complete:

• The DMA is halted, and the start address of DMA is changed to the alternate buffer
• An acknowledgement is sent to the host computer showing the first buffer is empty to

receive new serial data

The above sequence continues until the entire image data is transferred to the display.

Configure and Run the Model

1. Open the LCD Display model.

2. Go to the Modeling tab and press Ctrl+E to open the Configuration Parameters dialog
box.

3. Go to the Hardware Implementation and select the Hardware board.

4. Go to Hardware Implementation > Target Hardware Resources > Build options
and select Enable DMA access to peripheral frame 2(SPI and McBSP) instead of
CLA.

5. Go to Hardware Implementation > Target Hardware Resources > SPI_A and set
Desired Baud rate in bits/sec to 16000000 and STE pin to None.

4 Examples

4-126

matlab:c2837xD_lcd_display.slx

6. Go to Hardware Implementation > Target Hardware Resources > DMA_ch1 and
update parameter values as shown.

 Interface LCD Booster Pack with Texas Instruments C2000 Processors

4-127

7. Navigate to the Hardware tab and press Ctrl+B. If the LCD turns green, it indicates
that the initialization of the Kentec QVGA display was successful.

8. On the host computer, run the function c2837xD_serial_send. The function takes
two arguments:

• COM port - browse to Device Manager > Ports (COM & LPT) to find the COM port.
• Image name - file name of the image that you want to display.

Run the following command at the MATLAB command prompt:

c2837xD_serial_send('COM2', 'mathworks.jpg');

9. Observe the image on the LCD.

4 Examples

4-128

