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Abstract

This paper develops a buck converter design example using different compen-
sation methods to ensure closed loop stability and to optimize system perfor-
mance. The effects of various compensator designs are shown using asymptotic
Bode Plots which graphically describe the system stability criteria and provide
insight to other factors which improve closed loop performance. Computer sim-
ulation results are included to show time domain step response behavior and to
verify performance improvements.

1 Introduction

The Buck converter is a switch mode, DC-DC, power supply. It accepts a
source voltage, Vg and produces a lower output voltage, V with high efficiency.
An important component of a practical Buck converter is control feedback which
assures a consistent output voltage and attenuates unwanted characteristics of
the circuit. The feedback loop of a Buck converter presents several challenges
which are explored in the compensation examples.

In this paper we present a series of example Buck converter feedback compen-
sation approaches. The design of the Buck converter circuit is kept constant to
allow comparison of the effects of different compensation schemes. The primary
tool that will be applied to evaluate the different compensation approaches are
asymptotic Bode plots which are drawn based on corner frequencies of each
block in the converter. This methodology provides a quick and efficient assess-
ment of circuit performance and an intuitive sense for the trade offs for each
compensation approach. Bode plots also directly illuminate the two critical loop
stability characteristics, gain and phase margin (GM and PM respectively).
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Additional analysis of each compensation approach are done through com-
puter simulation. The PECS [1] circuit simulator is used to evaluate the effects
of Vg transients, a common problem in real power supply designs. A MAT-
LAB [2] simulation is also performed to validate the manual Bode analysis and
to determine the exact gain and phase margin. Finally a closed loop MAT-
LAB simulation is used to show the ability of the feedback system to attenuate
undesired effects as a function of frequency.

We explore the following topics in the remainder of the paper:

Section 2 Definition and analysis of the test circuit

Section 3 Behavior of an uncompensated Buck converter

Section 4 Dominant pole compensation with 3dB GM

Section 5 Pole-zero compensation with 3dB and 10dB GM

Section 6 Pole-zero compensation with two zeros

Section 7 Conclusions

Appendix Additional supporting materials
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2 Buck Converter System Models

2.1 General Model [3]

Figure 1 is a block diagram of the system components of a Buck converter with
feedback. The Converter power stage accepts Vg as its power source and the
control input d(s) to produce the output voltage V . The feedback sensor H(s),
monitors the converter output voltage which is then compared with a reference
voltage Vref . The difference output of these two voltages are provided to the
feedback compensation circuit Gc(s) and then to the pulse width modulator
(PWM) which produces the control waveform for the switching converter d(s).

T (s) = Gc(s)

(
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)
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Figure 1: Generalized Power System Model [1]
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2.2 Simplified System Model

The general Buck converter block diagram provides a complete model for
analysis of converter. However, for our analysis we will use a simplified model
show in figure 2 which includes only the elements required for the analysis we
will provide. We do not evaluate any source of disturbance except Vg transients.

Gvd(s)Gc(s) 1
VM

Compensator Pulse-width
Modulator

Error
Signal

Duty
cycle

variation

Converter
Power stage

Sensor gain

H(s)

Reference
input

Vref(s) Ve(s) Vc(s) d(s) v(s)

H(s) v(s)
Output  voltage

variation

Σ

Figure 2: Simplified System Diagram

2.3 Design Targets

To facilitate easy comparison between the selected compensation schemes,
the design of the Buck converter is fixed with specified values. These values are
specified in table 1. Figure 3 shows the simplified block diagram including these
specified values.

Table 1: Specified values
Name Value Description
Vg 28V Input Voltage
V 15V Output Voltage
Iload 5A Test load
L 50uH Buck inductor value
C 500uF Buck capacitor value
Vm 4V PWM compliance range
H(s) 1/3 Sensor gain
fs 100kHz PWM frequency

2.4 Buck Converter Model Analysis

Figure 4 shows a schematic model for the power converter block. The LCR is
a second order circuit with a transfer function described by equation 2. It has
a resonant frequency value, f0 = 6.28Krad/s or 1.0 kHz from equation 3 and a
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Figure 3: System Diagram With Values

Q of 9.5 from equation 4. The low frequency gain of the converter is equal to
Vg which is specified to be 28V.
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Figure 4: Converter Power Stage

Gvd(s) = Vg
1

1 +
s

Q0 ⋅ f0
+

(
s

f0

)2 (2)

f0 =
1√
LC

(3)

Q = R

√
C

L
(4)

Consider the transfer function v(s)/vd(s) of the Low Pass Filter formed by the
LCR network. The switching frequency fs = 100kHz is much higher than the
resonant frequency f0 = 1kHz of the LCR. During circuit operation, the switch
toggles the LCR input between Vg and ground with a duty cycle D determined
by the feedback loop. A Fourier analysis of the LCR input waveform includes
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an average DC component V = DVg and a fs component with the harmonics
produced by the square wave shape of fs. The LCR acts as a low pass filter with
a cut off frequency fc equal to f0. It passes the DC component to the output
but attenuates fs and its harmonics. The transfer function of the converter

power stage v(s)
d(s) = Gvd(f) is shown in figure 5.

f0

10-1/2Q f0 = ~0.9 f0

Q = 9.5  19.5dB

-40dB/decade

Gvd

Gvd

101/2Q f0 = ~1.1 f0

Gvd0 = 28 * V  29dB

0o

180o

90o

f0

(-Q*180o)/decade

  Gvd(f) = 28 V (     )2

- tan-1(                 )

f

f
f0

1 - (    )2

Q f0

f
f0

Figure 5: Converter Power Stage Transfer function Gvd(f)

3 Uncompensated Design

It is instructive to start our evaluation with an uncompensated converter, one
with a Gc(s) = 1. To construct a Bode plot we use the values from equations
2-4 to establish the shape of the Bode magnitude plot. The low frequency gain
is described by equation 5 has a value of 2.33 or 7.4dB. The magnitude around
f0 peaks to +19.5dB due to the resonant Q. At frequencies above f0 the gain
declines at -40dB/decade.

The Bode phase plot is determined only by Gvd(s). It has a low frequency

phase shift of 0∘. At f010−
1

2Q or 886Hz, the phase turns negative and at f0 the
phase has reached −90∘. The phase continues to become more negative until it

reaches −180∘ at 10
1

2Q or 1129Hz. At frequencies higher than 1129Hz the phase
remains at −180∘.
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GLF =
VgH(s)

Vm
(5)
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Figure 6: Uncompensated Gain and Phase Plot Tu(f)

From the Bode plot it can be determined that unity gain occurs at 7.4dB =
( f0
f )2 which is 1.5 kHz. At this frequency the phase is −180∘ providing zero

phase margin. The exact gain margin is difficult to extract from the Bode plot
due to the approximate shape near resonance but can be reasonably estimated
to be -7dB, the feedback loop still has positive gain when the loop phase has
shifted 180∘. Figure 7 is a MATLAB margin plot indicating the actual unity
gain frequency to be 1.8 kHz with a phase margin near zero. Because the phase
shift at high frequencies is asmptotic to −180∘ the MATLAB analysis indicate
an infinite gain margin.

4 Dominant Pole Compensation

With frequency compensation an engineer strives to achieve two goals: 1)
avoid oscillation from the unintentional creation of positive feedback and 2)
control overshoot and ringing due to the step response. Probably the most
commonly used form of compensation is dominant-pole compensation, which in
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Figure 7: MATLAB Uncompensated Bode plot

reality is a form of lag compensation. A pole introduced at an appropriate low
frequency in the open-loop response reduces the gain to 0 dB for a frequency
close to or nearest the location of the next highest frequency pole. This lowest
frequency pole is called the dominant pole because of its dominating effect over
the all higher frequency poles. The overall result being that the difference be-
tween the open loop output phase and the phase response of a feedback network
having no reactive elements never falls below −180∘ while the system gain has
a gain of one or more, thus ensuring stability.

4.1 Dominant Pole with 3dB Gain Margin

Including dominant pole compensation in the test converter will add an ad-
ditional −90∘ of phase shift to the loop transfer function. When combined with
the LCR phase shift of −90∘ at f0 the frequency of zero phase margin is equal
to f0. To assure loop stability, we set the gain margin at f0 to 3dB. From the
Bode plots of the uncompensated circuit it can be seen that the magnitude at

8



+5 VDC

R 1/sC

H(s) Vc(s)

Vref

H(s) Vc(s)ZoutZin
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Gc(f) = Zout/Zin =  1/(2πf RC)

Dominant Pole Compensator

Figure 8: Dominant Pole Compensator Circuits

f0 is 7.4dB + 19.5dB = 26.9dB. Adding an additional 3dB for gain margin
requires the dominant pole to provide an attenuation of 29.9dB at f0.

Setting a pole at zero GC(s) = 1
s produces an attenuation at f0 of 20log( 1

f0
)

or -76dB at f0. To set the gain margin at f0 to 3dB we must add an additional
gain of 76dB−29.9dB = 46.1dB or 202. The dominant pole now has the transfer
function Gc(s) = 202

s . The system loop Bode plot is shown in figure 9. Figure
10 shows the MATLAB that verify the gain and phase margins.

The dominant pole design was simulated using PECS simulation to determine
sensitivity to Vg transients. Figure 11 is the PECS schematic diagram used in
the simulation. Figure 12 shows the output V when a 2V step is imposed on
Vg. The test toggles between a Vg of 28V and 30V.

The simulation shows significant ringing resulting from the Vg step. The
frequency of the ringing is that of the LCR resonance f0. From figure 9 it can
be seen that the feedback loop has no gain at f0 so the ringing is just the natural
response of the LCR circuit when excited by the step input.
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Figure 9: Open Loop System Gain and Phase with Dominant Pole Compensa-
tion

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

10
3

10
4

−270

−225

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram
Gm = 2.95 dB (at 1e+003 Hz) ,  Pm = 89.5 deg (at 75.3 Hz)

Frequency  (Hz)

Figure 10: MATLAB single pole Bode plot

10



SW1

D1 C1

 500 u

R1

 3.0 

VP1

L1

 50 u

k1 =  1.0 
k2 =  0.0 
k3 =  0.0 
Vpk =  4.0 
Period =  10 u

V1

 28 

Del =  0.0 
Per =  10 u

R2

 2.0 k

C3

 10 n

V2

 5.0 

R3

 1.0 k

R4

 510 k

VP2

Figure 11: System Schematic with Dominant Pole Compensation
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Expanded View of Step response

3 dB GM Dominant Pole Response

t = 1 mS typical

Figure 12: System step response with Vg Disturbance
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5 Pole Zero Compensation

5.1 3dB Gain Margin Compensator

To improve the phase margin at the resonant frequency f0 we can add a zero
to the dominant pole compensator at f0. This provides positive phase shift of
+45∘ to counter the dominant pole and LCR phase lag contributions. The zero
begins contributing positive phase shift at f0

10 and contributes +90∘ by 10f0.

Next we determine the appropriate loop gain to provide 3dB of gain margin.
Because the LCR dominates the shift of phase and the Bode plot shape of the
Gvd(s) is approximate near f0, we will assume the zero phase margin point
remains at f0. Further, the addition of a zero at f0 does not affect the Bode
magnitude at the zero corner frequency. Thus, the gain of the feedback loop does
not need to change from our prior calculation for a dominant pole compensator.
The open loop magnitude and phase Bode plot is drawn in figure 13. The
MATLAB evaluation is shown in figure 14.
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Figure 13: System Gain and Phase Plot with Dominant Pole and Zero Com-
pensation (3 dB GM)
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Figure 14: MATLAB pole-zero Bode plot 3dB gain margin

The pole-zero design was simulated using PECS to determine sensitivity to
Vg. Figure 15 is the schematic diagram used in the simulation. Figure 16 shows
the simulation results from a Vg step between 28V and 30V.

5.2 10dB Margin Compensator

To explore the effect of the size of gain margin, we increased the gain margin to
10 dB. This requires that the loop gain be reduced by 7dB from our prior analysis
of the pole zero compensator. For the 3dB gain margin case, an additional
46.1dB of gain was added to the loop. To get a 10dB gain margin this additional
gain is reduced to 39.1dB or a gain of 90. The resulting open loop Bode plot is
shown in figure 17. The MATLAB evaluation is shown in figure 20.
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Figure 15: Schematic with Dominant Pole and Zero Compensation (3 dB GM)
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Expanded View of Step response

>3 dB GM Dominant Pole with zero at f0

t = 9.8 mS typical

Figure 16: System response with Vg Disturbance (3 dB GM)

16



Tc

f0 = 1 kHz

-40dB/decade

Q = 9.5  19.5 dB

 GM = 3 dB fc = 75
fc 3dB = 75 Hz

0.1 f0

10 f0

-1350

45o/decade

45o/decade

f0

-90o
- 47o

-222o
-180o

(-Q*180o + 45o)/decade

Tc

10-1/2Q f0 = ~0.9 f0

10 1/2Q f0 = ~1.1 f0

 Tc(f) =  fc

-90o + tan-1(     ) - tan-1(                  )

f

f
f0

1 - (    )2

Q f0f
f0

f0
f 2

 GM = 10 dB fc = 33
fc 10dB = 33 Hz

-20dB/decade

 Tc(f) = T0 Gc0  =  fc
 2 π f  f

Figure 17: Open Loop System Gain and Phase with pole-zero Compensation
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Figure 18: Schematic with Dominant Pole and Zero Compensation (10 dB GM)
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Expanded View of Step response

>10 dB GM Dominant Pole with zero at f0

t = .992 mS typical

Figure 19: System response with Vg Disturbance (10 dB GM)
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6 Other methods and approaches

While the previous methods are stable and provide good DC results, they
yield poor rejection of the output stage resonance and generally a prolonged
overshoot response to transient disturbances. So to approach these issues a
modified strategy was selected by introducing a second zero at the resonant
frequency fz1. The goal of this approach was to further improve phase margin
and significantly increase the open loop unity gain crossover frequency to greater
than f0 to optimize the compensator’s ability to eliminate these performance
limitations.

In the diagram in figure 21, the initial design choice is to place one zero at f0
and one at f0/10. This reasoning is derived from inspection of the asymptotic
plot that shows the 90∘ phase improvement of the first zero is fully realized when
f = f0, and the majority of the phase correction will be completed before the
rapid −180∘ drop due to the LC resonance. The zero also needs to be placed as
close to f0 as possible so that the open loop magnitude response is maintained
as high as possible. This result was also checked with MATLAB these phase
and gain margin plots in figure 22.
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Figure 21: Open Loop System Gain and Phase with Dominant Pole and Zero
Pair Compensation
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Figure 22: MATLAB Gain and Phase Margin plots Dominant Pole and Zeros
at 100 and 1 kHz

In the MATLAB gain plot in figure 23, the magnitude response T is included
with a graph of 1

1+T to show the effectiveness of the modified compensator.
The plot shows the increase in excess gain that extends to fc = 3.86 kHz. This
plot also shows that the high Q resonance of the power conversion section also
contributes extra gain to help minimize the resonant effects.

To realize this compensator design, we first need to examine the compensator
circuit model and further consider second order effects that occur when interfac-
ing with other parts of the circuit. Fortunately a single Inverting Operational
Amplifier gain stage will also provide the basis for this design. First consider
the general model in figure 24.

In the design that follows the impedance of the H(s) divider network is in-
cluded to provide a more complete assessment of the effect of the circuit real-
ization. In the comparative PECS designs that were evaluated this finite source
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H(s) Vc(s)ZfZin

Gc(s) = Vc(s) / H(s) = - Zf / Zin

Figure 24: Single stage Compensator General Gain Model

impedance was found to add some significant degradation of the transfer char-
acteristics. So the low source impedance approximation was eliminated. To
address this and optimize results the H(s) divider is transformed to a complex

23



impedance form and used as part of the compensator network. This allows
that the idealized transfer characteristic can be achieved with no increase in
components and no wasted power in low impedance dividers.

Vref

H(s)

Vc(s)

Compensator Circuit Design Model
Dominant Pole with Zero Pair

1/sC2R2R1

1/sC1

R0

Vref

Figure 25: Compensator Circuit Design Model Dominant Pole with Zero Pair

Zf = R2 +
1

sC2
(6)

Zin = R0 + (
1

sC1
∣∣R1) = R0 + (sC1 +

1

R1
)−1 (7)

Zf

Zin
=

(sR1C1 + 1)(sR2C2 + 1)

s(R0 +R1)C2 + s2R0R1C1C2
(8)

If R0 ≪ R1 and R2, then

Zf

Zin

∼== (
1

R1C2s
)(sR1C1 + 1)(sR2C2 + 1) (9)

This reduces to the form of two zeroes, one at 1
R1C1

and the other at 1
R2C2

which is multiplied by a Pole with gain 1
sR1C2

.
For the initial design let

1

R1C1
= 2�fz2 = 2�1000Hz (10)

1

R2C2
= 2�fz1 = 2�100Hz (11)

In the step response plots shown in figures 27 and 28, the output of the
compensator is labeled as VP3 and is included to show that the 0 to 4V input
range of the Modulator is not exceeded. The two plots show a 2 V step from
28-30-28 V similar to the previous design examples and also a 12V step 28-40-28
to better demonstrate the large signal behavior of this design.
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Figure 26: Schematic with Dominant Pole and Zero Pair Compensation > 48∘
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Compensator Output   4V > Gc > 0

Figure 27: Dominant Pole with Zero Pair System response with Vg Disturbance

The material presented in section 6 demonstrates that the performance can be
greatly enhanced by optimizing the compensator design. The DC errors and the
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Figure 28: Dominant Pole with Zero Pair System response with Vg Disturbance

power converter resonance have essentially been eliminated and the disturbance
recovery time has increased substantially. This is primarily due to improving the
feedback effectiveness by extending the unity gain crossover frequency as high
as possible, well above f0 and the internal loop resonance. The component cost
for this design is essentially equal to the other compensation methods discussed
in this paper.

The design just presented can be further improved by using MATLAB plots
showing more precise phase margin information and showing that fz1 can po-
sition from 100 to at 250 Hz and still maintain greater than 52∘ of worst case
phase margin. Other design improvements can be shown, but a realistic system
design also needs to account for component tolerances that establish boundaries
for design sensitivity.
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7 Conclusion

Key Points from this study: The Buck regulator power converter section has
an inherently resonant second order transfer function derived from the induc-
tor and capacitor in the final output stage. These storage elements present a
sharply resonant response when excited by a step change in load current or in-
put voltage. This is especially true of high efficiency designs which usually try
to avoid losses by selecting idealized components, and it is actually these very
desirable characteristics that produce the high Q behavior. The compensator
designs covered in this paper need to correct for not only for the large DC error
but also the ringing associated with the highly resonant output components.
The ringing frequency and damping are directly related to the natural reso-
nance of these devices and the load resistance as illustrated in section 3 and the
expanded details provided in the appendix.

In section 4, the first compensator design uses a single dominant pole which
demonstrates the ability to minimize the DC error with nearly infinite excess
gain provided by the pole at zero frequency. The dominant pole compensator
was shown to be capable of providing a stable closed loop response and very
low DC error. However, to ensure stability in this design example with ≈3
dB of desired gain margin, the compensator requires a significantly low unity
gain crossover frequency (fc = 75 Hz). This is well below the natural resonant
frequency (f0 = 1000Hz) of the Power Converter output section. Because of
this constraint, there is no excess loop bandwidth at f0 with which to mini-
mize the power converter natural resonant characteristics. This result is also
demonstrated with the dominant pole compensation step response plots that
show only a minor reduction of the ringing effects as compared with the original
uncompensated error signal in the power converter stage.

In section 5.1, the design was enhanced with the addition of a zero at f0 which
was introduced in order to offset the 90∘ phase shift added by the dominant pole
to the 180∘ phase shift associated with the power converter. The added zero’s
phase change of +45∘ at fz = f0 improves the open loop phase margin at f0 to
−135∘. While the zero actually increases the gain by +3 dB which would tend
to reduce gain margin by 3 dB at fz, but the net effect is that the gain margin
is actually improved to >3 dB because of the increase in frequency at which
180∘ of total phase shift occurs. The MATLAB plots in section 5 demonstrate
the gain and phase margin improvements for this case.

For the >10 dB Gain Margin requirements, a further reduction in unity gain
crossover frequency to fc = 33 Hz is required as shown in the asymptotic plots.
While the available open loop gain above 0 dB is further reduced with lower fc, it
is interesting to note that the damping of the output stage high Q resonance has
actually improved. This is shown qualitatively by inspection of the step response
plots and some further analysis is shown in the appendix to help quantify this.
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Unfortunately with the added zero in both design cases (>3 dB and >10 dB
GM), the system responses have low unity gain crossover frequencies which
are well below the 1000Hz natural resonant frequency of the power converter
stage. Hence no significant reduction of this error is achieved using this type of
compensator design.

To improve the performance further, it is critical to move the unity gain cross
over frequency to a value significantly higher than f0. And in section 6 a new
design is proposed which adds two zeros to the dominant pole design. Initially
one zero is placed at fz1 = 100 Hz and the other at fz2 = 1000 Hz. The effect
of the additional 90∘ of phase improvement at f0 = 10fz1 allows greater than
48∘ of phase margin over the entire frequency region of interest. This enables
the unity gain crossover point to be adjusted higher and extend well beyond the
power stage’s natural resonance frequency f0.

In the final open loop gain profile, it can be seen that the resonance peaking
actually contributes extra open loop gain at these frequencies that are needed
to further reduce the resonance error. The extra open loop gain realized with a
higher unity gain crossover frequency fc also enhances the step response recovery
time and minimizes amplitude error to the reference power supply step change
used to characterize the time response. It is shown that the new design in this
section demonstrates the desired DC accuracy, provides a significant reduction
of the loop resonance errors at f0, and provides significant improvement in
recovering from a loop disturbance.

The asymptotic plots were used to characterize the effects of different compo-
nents in the system and they helped provide an improved understanding and a
versatile tool for mapping the system response and compensation planning. In
addition, the PECS time domain simulation software preformed well as a no-
table learning tool. It was invaluable not only for design verification, but it also
provided a quick method to enhance the “art” of design. The tool provided a
quick and fairly easy to use feedback method which provided reinforcement and
helped to develop an intuitive feel for the trade-offs between various alternative
methods for design.
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Appendix

7.1 Dominant Pole Plot Contributions

Figure 29 shows the Dominant Pole Compensator Gc(f) superimposed on
the uncompensated loop Tu(f). Since the vertical axis is log magnitude and
dimensioned in dB, this figure shows a graphical construction method for design
of the required compensator with an additive offset that produces the final open
loop gain required to meet the specified 3 dB Gain Margin at f0 = 1 kHz.
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Figure 29: Dominant Pole Compensator Graphical Construction Plot for 3 dB
GM

30



7.2 Gvd Step Response Resonance and Damping Analysis

Schematic figure 30 for testing Power converter response with fixed duty cycle
and 2 V step input on V1 from 28 to 30 to 28 V.

Figure 30: Open Loop Test Schematic for Power Converter Step Response
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The step response for the open loop power converter is shown in figure 31.
This is a PECS simulation plot using a fixed duty cycle and step change in Vg
from 28 to 30 to 28 volts.

Expanded Plot of Positive Step Response

Figure 31: System step response with Vg Disturbance
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The peak samples from the open loop power converter response plot in figure
32 are graphed and plotted versus the idealized LRC transfer function and the
input stimulus. The reference data was taken using PECS simulation plot data.
This graph shows open loop resonance error and is used as a reference for other
damping measurement and the effects of negative feedback and phase margin
on resonance damping.
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Figure 32: Power Converter Gvd Damping Test Data

33



7.3 Transient and Damping Analysis for pole-zero with
3dB GM

The step response for the closed loop design using a dominant pole and zero
with >10 dB gain margin is shown in figure 33. This is a PECS simulation plot
of the output voltage with a step change in Vg from 28 to 30 to 28 volts.

Expanded View of Step response

>3 dB GM Dominant Pole with zero at f0

t = 9.8 mS typical

Figure 33: System step response with Vg Disturbance
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The peak samples from the closed loop system response plot in figure 34 are
graphed and plotted versus the idealized LRC transfer function and the input
stimulus. The reference data was taken using PECS simulation plot data. This
graph shows closed loop resonance error and is used as a reference for damping
measurement and the effects of negative feedback and phase margin on resonance
damping.
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Figure 34: Closed Loop Damping Performance pole-zero with 3dB GM
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7.4 Transient and Damping Analysis for pole-zero with
10dB GM

The step response for the closed loop design using a dominant pole and zero
with greater than 10 dB gain margin is shown in figure 35. This is a PECS
simulation plot of the output voltage with a step change in Vg from 28 to 30 to
28 volts.

Expanded View of Step response

>10 dB GM Dominant Pole with zero at f0

t = .992 mS typical

Figure 35: System step response with Vg Disturbance
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The peak samples from the closed loop system response plot in figure 36
are graphed and plotted versus the idealized LRC transfer function and the
input stimulus. The reference data was taken using PECS simulation plot data.
This graph shows closed loop resonance error for the case with additional phase
margin. It shows that the damping effects are enhanced with additional phase
margin even when the excess gain margin is reduced as compared with the
previous >3 dB GM case. This is useful because it shows important effects of
negative feedback and phase margin on resonance damping.
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Figure 36: Closed Loop Damping Performance pole-zero with 10dB GM
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