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Abstract

This paper discusses the design of a compensator for the buck DC switching
converter. Three different compensators are designed and analyzed based on
phase and gain margins. Op-amp implementations for each compensator are
derived and tested with an example converter. The performance of the convert-
ers is examined based on transient response and rejection of steady-state error
due to a step change in the input voltage.

Introduction

The buck converter is perhaps the simplest DC converter topology, yet one of
the most useful. It is widely used in industry, it is a clear and simple example
that is helpful in understanding the principles of switching converters, and it can
be used to derive more complicated topologies. In light of this general usefulness,
it is instructive to consider how one can use control systems to regulate the
operation of such a converter. This serves not only to illustrate how switching
converters can be controlled, but also results in a practical circuit for use in
power supplies, voltage regulators, and so forth.

Since it is desirable to design an effective compensator for the buck converter,
this paper will consider the various properties of three different compensation
schemes. The first section will present a basic discussion of the buck converter,
its open-loop and uncompensated closed-loop behavior, and introduce an exam-
ple converter that will be used for all the designs. The next section will present
a basic attempt to counteract some of the undesirable properties of the buck
converter with a proportional-integral compensator. The third section will de-
tail a somewhat more sophisticated attempt to improve performance by use of
a lead compensator. The last compensator discussed will be the combination of
the lead and proportional-integral compensators to obtain the benefits of both.
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Each section will present the design of the compensator for the example con-
verter given in the first section, derive an op-amp circuit to implement it, and
evaluate the performance of the compensated system through simulation. The
conclusion will summarize the results and compare the various designs.

The Uncompensated Buck Converter

The basic buck converter topology is shown in Figure 1. The function of
this converter is transform a higher input DC voltage, Vg, into a lower output
DC voltage, V . The conversion ratio, in steady-state, is V = DVg, where
D is the duty ratio of the switch. Thus, the output voltage is determined
by both the input voltage and the switching duty cycle. In addition, non-
ideal effects, most notably the discontinuous conduction mode, make the output
voltage dependent on the load current. For this paper, however, the controlled
variable is considered to be the duty cycle, with variations in the input voltage
considered to be disturbances, and the load current assumed to be constant, with
the converter operating in the continuous conduction mode. The response of a
buck converter operating in steady-state to a step change in the input voltage
is shown in Figure 2. In open-loop, the converter exhibits large overshoot, large
steady-state error, and excessive oscillations.

Figure 1: The ideal buck converter

Reference [1], Chapter 8 gives the small-signal averaged transfer function for
the operation of the buck converter in the continuous conduction mode. This
is the model that will be used in the following analysis. The model basically
consists of two transfer functions, one which models the influence of the duty
cycle on the output, Gvd(s), and one which models the influence of the input
voltage on the output, Gvg(s). For the purposes of this paper, the first will be
considered the control input, while the second is a source of disturbances. The
general forms of the these transfer functions are the same.

Gvd(s) =
Gd0

1 + s
Q!0

+
(

s
!0

)2 and (1)
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Figure 2: Response of open-loop buck converter to input voltage step

Gvg(s) =
Gg0

1 + s
Q!0

+
(

s
!0

)2 , (2)

where

Gg0 = D, Gd0 =
V

D
, !0 =

1√
LC

, and Q = R

√
C

L

To correct the undesirable behavior demonstrated in response to a change in
the input voltage, the buck converter can be placed in a control loop, as shown
in Figure 3, where H(s) is the gain of the output sensor, Gc(s) is the transfer
function of the compensator, and the 1

Vm
factor is the transfer function of the

pulse-width modulator used to drive the transistor that implements the ideal
switch shown above. Usually, H(s) and 1

Vm
will be simple gains. One method

in classical control theory to analyze systems and design controllers, and the
method that will be used here, is by using the loop gain. For the control loop
shown in Figure 3, the loop gain is

T (s) =
Gc(s)Gvd(s)H(s)

Vm
(3)

This paper will use an example converter to illustrate the design and effec-
tiveness of the various compensators. Namely, the converter will have an input
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Figure 3: Buck converter control loop

voltage Vg = 28 V, an output voltage V = 15 V, and a load of R = 3 Ω. The
capacitor and the inductor values will be C = 500 �F and L = 50 �H, respec-
tively. The peak-to-peak amplitude, Vm, of the sawtooth driving the modulator
will be 4 V, the sensor gain will be H = 1

3 and the switching frequency fs = 100
kHz. The designs will be evaluated based on their gain and phase margins, and
on how the converter responds to a input voltage step from 28 V to 40 V and
back to 28 V. To have a basis of comparison for the compensated converter, the
behavior of the buck in an uncompensated configuration must be examined.

Using the control-to-output transfer function given earlier, these values can
be used to derive a more concrete expression for the loop gain. Since the loop
is as yet uncompensated, Gc(s) = 1.

T (s) =
Gc(s)Gvd(s)H(s)

Vm
=

(
H

Vm

)
Gg0

1 + s
Q!0

+
(

s
!0

)2
As can be seen, the uncompensated loop gain of the buck converter is a standard
second-order system of the form

T (s) =
To

1 + s
Q!0

+
(

s
!0

)2 , (4)

where

To =
Gd0H

Vm
=

28

(3) (4)
= 2.33

!0 =
1√
LC

=
1√

(50 �H) (500 �F )
= 2000

√
10 rad/s⇒ f0 = 1 kHz, and
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Q = R

√
C

L
= 3 Ω

√
500 �F

50 �H
= 3
√

10 = 9.49⇒ 19.5 dB

A Bode plot of this loop gain is shown in Figure 4. The phase margin can
be determined directly from the plot. In the asymptotic approximation, the
closed-loop buck converter has a phase margin of 0∘. Since the phase asymptote
reaches but does not cross −180∘, the gain margin can be said to be infinite.
Thus, without any compensator, the buck converter has an infinite gain margin
but a 0∘ phase margin. Such a system is stable but will exhibit oscillations
and other behavior that is generally considered undesirable. A plot of the step
response of the converter in this configuration is shown in Figure 5. As can be
seen, the oscillations in the output voltage present in the open-loop case are still
present, though reduced in amplitude by the application of feedback, and there
is still a steady-state error to a change in input voltage. Both of these issues
will be addressed in the compensator designs that follow.

Proportional-Integral Compensation

A simple but fairly effective way to improve the characteristics of the buck
converter is to use a dominant-pole or integral compensator. This is simply a
compensator with a single pole at s = 0 and a gain.

Gc(s) =
Gc0

s
(5)

Although the plain integral compensator could be used for this purpose, it
is difficult to obtain good performance using this type of compensator. It is
more usual to use a proportional-integral or PI compensator, as discussed in
Chapter 7 of [2] This is essentially the same as the integral compensator, but
with a zero introduced at some higher frequency. The transfer function of the
PI compensator is

Gc(s) =
Gc0

(
1 + s

!z

)
s

(6)

As can be seen from the plot in Figure 6, this compensator provides a high gain
at low frequencies, which falls off at −20 dB per decade and then levels out at
the zero frequency, fz. The phase is initially −90∘, which increases by a rate of
45∘ per decade starting at fz

10 to a maximum of 0∘ at 10fz. The benefit obtained
by using a PI compensator is that the large low-frequency gain will eliminate
steady-state error to step disturbances. In general, however, this cannot be
attained while still having acceptable gain and phase margins using a simple PI
compensator. The design shown here will concentrate on low-frequency gain at
the expense of gain and phase margins, although these are still a consideration.
The unity-gain crossover frequency should be placed before the major phase
downturn in the compensated loop. The design here will use fz = f0

10 = 100Hz
and place the unity-gain crossover at this same frequency, to avoid too much
interaction in the phase responses while still providing higher gains.
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Figure 4: Uncompensated loop gain

The loop gain of the buck converter with the PI compensator is shown in
Figure 7, which can be expressed as

T (s) = T0Gc0

1 + s
!z

s

(
1 + s

Q!0
+
(

s
!0

)2) (7)
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Figure 5: Step response of uncompensated buck converter

Using the expressions given on the Bode plot, the value of Gc0 can be calculated.
To find the low-frequency gain, one can simply use the gain expression at the
new crossover frequency.

T0Gc0

2�f ′c
= 0 dB = 1

T0Gc0 = 2�fz

Gc0 =
2� (100 Hz)

2.33

Gc0 = 270

Since only Gc0 and fz are needed to specify the compensator, the design is
complete. The phase margin of this design is the amount by which the phase
at the crossover frequency is above −180∘. This can be found by evaluating the
gain asymptote at fz.

�M = 180∘ + 45∘ log

(
fz
f0

)

�M = 180∘ + 45∘ log

(
100 Hz

1 kHz

)
�M = 135∘

This is actually a surprisingly high phase margin, which is only due to the
asymptotic approximation. Due to the Q of the original circuit, the gain will
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Figure 6: PI compensator transfer function

rise above 0 dB and cross again after the phase downturn, so the actual phase
margin is close to 0∘. The gain margin, as in the uncompensated case, is actually
infinite, since the phase never actually crosses −180∘, although the asymptote
reaches it. Thus, the PI compensated system has essentially the same gain and
phase margins as the uncompensated system, and will show similarly undesirable
transient characteristics. The presence of higher low-frequency gain, however,
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Figure 7: Loop gain with PI compensator

will eliminate the steady-state error seen in the uncompensated case.

To be able to simulate the behavior of the compensated buck converter, a
control circuit must be derived to implement the PI compensator. Such a circuit
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is shown in Figure 8. This circuit implements the transfer function

Gc(s) = −R2

R1

(
R2Cs+ 1

R2Cs

)
(8)

In this circuit, the second resistor and the capacitor set the zero frequency,
while the first resistor in combination with these values sets the gain of the
compensator. If a value of R2 = 100 kΩ is assumed, then the capacitor value
must be

!z =
1

R2C
⇒ 2� (100 Hz) =

1

(100 kΩ)C

C =
1

2� (100 Hz) (100 kΩ)
⇒ C = 15 nF

Likewise, the value of R1 to set the gain to the proper value can be found from
this value for C.

Gc0 =
1

R1C
⇒ 270 =

1

R1 (15 nF)

R1 =
1

270 (15 nF)
⇒ R1 = 240 kΩ

The reference voltage on the non-inverting input of the opamp for this circuit
can be simply 5 V, since there is no direct connection to the output.

Figure 8: Op-amp circuit implementation of PI compensator

The simulated response of the buck with this PI compensator to a step dis-
turbance is shown in Figure 9. As would be expected from the phase margin,
the system displays large oscillations in the output voltage, although not nearly
as large as those of the open-loop converter. The presence of the pole at s = 0,
however, which is the main purpose of using such a compensator, is quite ef-
fective in removing steady-state error. Thus, although some of the transient
characteristics are undesirable, the PI compensator is effective in regulating the
output to the proper voltage. A method to improve the transient characteristics
is examined in the design of the next compensator.
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Figure 9: Step response of PI-compensated buck converter

Lead Compensation

A more sophisticated way to improve the performance of the buck converter
is with a lead compensator. The transfer function of this compensator is

Gc(s) = Gc0

(
1 + s

!z

)
(

1 + s
!p

) , (9)

where !z < !p. As can be seen from the plot of the transfer function shown in
Figure 10, the lead compensator provides both a phase boost that is adjustable
based on the pole and zero frequencies, and a gain boost at higher frequencies
that will result in a higher crossover frequency for the lead-compensated buck
converter. Since the one of the most undesirable features of the uncompensated
buck is its low phase margin, the phase boost should be chosen to improve
the phase margin to an acceptable value. The new crossover frequency can be
chosen arbitrarily. The design shown here will be to obtain a 45∘ phase margin
and a crossover frequency of 5 kHz for the loop gain with a lead compensator.
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Figure 10: Lead compensator transfer function

When the compensator is placed in the loop, the loop gain of the buck con-
verter system becomes

T (s) = T0Gc0

(
1 + s

!z

)
(

1 + s
!p

)(
1 + s

Q!0
+
(

s
!0

)2) (10)
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Figure 11: Loop gain with lead compensator

The asymptotic Bode plot of this loop gain is shown in Figure 11. The expres-
sions shown can be used to place the pole and zero frequencies of the compen-
sator to obtain the desired phase margin and unity-gain crossover. As can be
seen, the phase margin of the system is equal to the phase of the lead compen-
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sator at the new crossover frequency, f ′c.

�M = Compensator phase at f ′c = 45∘ log

(
fp
fz

)

45∘ = 45∘ log

(
fp
fz

)
fp
fz

= 101

fp = 10fz

Also, f ′c will necessarily be the geometric mean of the pole and the zero fre-
quency. Since the phase margin condition gives a relationship between the pole
and zero frequencies, this can be used to solve for both.

f ′c =
√
fzfp

5 kHz =
√

10f2z

fz =
5 kHz√

10

fz = 1.58 kHz and fp = 15.8 kHz

These relationships result in the pole and zero frequencies for the lead com-
pensator. To complete the design, the required low-frequency gain Gc0 of the
compensator to place the unity-gain point at the appropriate frequency must be
determined. This can be found by equating the values of the gain asymptotes
at fz.

T0Gc0

(
f0
fz

)2

=
f ′c
fz

Substituting the values of f0 and T0 for the example converter, and the values
of fz and f ′c as previously calculated, the gain Gc0 of the compensator is

Gc0 =
1

T0

(
fz
f0

)2
f ′c
fz

Gc0 =
1

2.33

(
1.58 kHz

1 kHz

)2
5 kHz

1.58 kHz

Gc0 = 3.4

The resulting compensated system has a phase margin of 45∘, as designed for.
The gain margin can be found by evaluating the gain at the point the phase
crosses −180∘. This occurs at 10fp.

GM = Gain below 0 dB at 10fp
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Gain =
f ′cfp
f2

=
(5 kHz) fp

(10fp)
2 =

5 kHz

100 (15.8 kHz)

Gain = 0.00317⇒ −50 dB

GM = 50 dB

Since the general desirable gain margin for a stable system is 10 dB, this is quite
acceptable. In reality, since the phase only approaches −180∘, the gain margin
of the system will actually be infinite, as in the previous two cases. In any case,
this compensated system has very good phase and gain margins.

With all of the parameters of the lead compensator determined, what remains
is to implement the compensator using an op-amp circuit and simulate the
closed-loop converter to evaluate its performance. A general circuit that can
be used to implement any lead or lag compensator is shown in Figure 12. The
transfer function of this circuit is

Gc(s) = −R2

R1

(
R1C1s+ 1

R2C2s+ 1

)
(11)

The resistor ratio sets the low frequency gain, and the two resistor-capacitor
pairs set the pole and zero frequencies. Two standard valued resistors that give
nearly the required gain are R1 = 100 kΩ and R2 = 330 kΩ. From these values,
the capacitor values to set the pole and zero can be calculated.

!z =
1

R1C1
⇒ 2� (1.58 kHz) =

1

(100 kΩ)C1

C1 =
1

2� (1.58 kHz) (100 kΩ)
⇒ C1 = 1.0 nF

!p =
1

R2C2
⇒ 2� (15.8 kHz) =

1

(330 kΩ)C2

C2 =
1

2� (15.8 kHz) (330 kΩ)
⇒ C2 = 33 pF

It it also necessary to derive a value for the reference voltage on the non-inverting
input of the op-amp. The sensed voltage from the output will be 5 V in steady-
state as before, and the control voltage should be 2.14 V. Using these in combi-
nation with the resistor values for the lead compensator, the reference voltage
can be found.

Vref =
R2

R1 +R2
Vsense +

R1

R1 +R2
Vcontrol

Vref =
330 kΩ

100 kΩ + 330 kΩ
(5 V) +

100 kΩ

100 kΩ + 330 kΩ
(2.14 V) = 4.33 V
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Figure 12: Op-amp circuit implementation of lead compensator

Using these values in the PECS simulator, the response of the lead-compensated
buck converter to a step in the input voltage was simulated as before. The re-
sults of the simulation are shown in Figure 13. The lead compensator is quite
effective in increasing the phase margin of the system. The oscillatory behavior
evident in the output voltage of the uncompensated converter is not present,
and the magnitude of the steady-state error due to the step is reduced, though
not eliminated. Thus, the system with the lead compensator is very stable, but
will still exhibit steady-state errors to a step disturbance. To fix this problem,
the system type number must be increased by adding a pole at s = 0. This is
the approach taken in the design of the next and final compensator.

Combined Lead and PI Compensation

Although both the PI compensator and the lead compensator were able to
improve some aspects of the buck converter, neither was able to completely
eliminate its undesirable properties. The lead compensator provided a good
transient response, but had a steady-state error to step disturbances, since the
compensated loop gain had a type number of 0. The PI compensator had a
type number of 1 and thus was able to eliminate steady-state error in response
to a step, but had undesirable transient characteristics. By combining the two
compensators, one can use the advantages of each to design a more effective
compensator. The transfer function for such a combined lead and PI compen-
sator is

Gc(s) =
Gc0

(
1 + s

!z1

)(
1 + s

!z2

)
s
(

1 + s
!p

) , (12)

where !z2 is the zero introduced by the lead compensator and thus !z2 < !p.
Also, to separate the effects of the lead and PI portions of the compensator, it
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Figure 13: Step response of lead-compensated buck converter

will be assumed here that !z1 < !z2. An asymptotic Bode plot of the transfer
function of this compensator is shown in Figure 14. When !z2 at a frequency
10 times or more greater than !z1, the design is separated into two essentially
independent pieces, the design of a PI compensator at low frequencies and the
design of a lead compensator at high frequencies.

A plot of the loop gain of the example converter with a combined lead and
PI compensator is shown in Figure 15. To determine the design, the two zeros
and the pole must be placed. For the phase response of the two compensator
portions to have no interaction, !z1 must be two decades below !z2. For a faster
response, it would be good that !z2 be as large as possible, but !z2 should not
be too large. The value used here is fz2 = 2 kHz, and thus fz1 = 20 Hz. As
determined in the design of the lead compensator, to get a phase margin of 45∘,
!p = 10!z2, which means that fp = 20 kHz. With the pole and zeros placed,
the only factor that remains to determine is the gain. Since it is desirable to
have a large gain at low frequencies, the combined compensator will be designed
to have the gain factor Gc0T0 be 1000. This gives a value of

Gc0T0 = 1000⇒ Gc0 =
1000

2.33
⇒ Gc0 = 430

17



Figure 14: Lead and PI compensator transfer function

1 NextSection

The gain and phase margins can be found by evaluating the asymptotes at
the respective crossover frequencies. The unity-gain crossover frequency is f ′c =
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Figure 15: Loop gain with lead and PI compensator

√
fz2fp = 6.32 kHz. The phase at this frequency is given by

∠T (s) = 45∘ log

(
fp
fz2

)
− 180∘ = 45∘ log

(
20 kHz

2 kHz

)
− 180∘ = −135∘

The phase margin is thus

�M = 180∘ + ∠T (s) = 180∘ − 135∘ = 45∘
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which is no surprise, since this is what was designed for. A gain margin value
could be calculated as before, using 10!p as the −180∘ crossover frequency,
but as previously discussed, the actual gain margin will be infinite. Thus, the
combined compensator has a 45∘ phase margin, an infinite gain margin, and
a pole at s = 0. This system should be very stable, exhibit good transient
response, and completely compensate for step disturbances with no steady-state
error.

The circuit implementation for the lead and PI compensator is simply a lead
circuit as shown in Figure 12 cascaded with a PI circuit as shown in Figure 8.
The same expressions given before can be used to find the new component values.
The overall gain of the compensator must be 430. For simplicity, the gain of
the lead section will be set to 4.3 and the gain of the PI section set to 100. A
resistor pair that gives the required gain for the lead section is RL1 = 27 kΩ
and RL2 = 120 kΩ. Using these values, the capacitor values to place the pole
and the second zero are simply

!z2 =
1

RL1CL1
⇒ 2� (2 kHz) =

1

(27 kΩ)CL1

CL1 =
1

(27 kΩ) (2�2 kHz)
⇒ CL1 = 3.0 nF

!p =
1

RL2CL2
⇒ 2� (20 kHz) =

1

(120 kΩ)CL2

CL2 =
1

(120 kΩ) (2�20 kHz)
⇒ CL2 = 68 pF

The PI section must provide a gain of 100 and place !z1 at 20 Hz. If RI2

is assumed to be 100 kΩ, then the values of the capacitor and the remaining
resistor can be found.

!z =
1

RI2CI
⇒ 2� (20 Hz) =

1

(100 kΩ)CI

CI =
1

2� (20 Hz) (100 kΩ)
⇒ C = 82 nF

GI0 =
1

RI1CI
⇒ 100 =

1

RI1 (82 nF)

RI1 =
1

100 (82 nF)
⇒ RI1 = 120 kΩ

These values can be used in PECS to simulate the response of the converter. A
reference voltage of 5 V can be used, as with the PI compensator.
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The simulated response of the combined compensator to the same step dis-
turbance is shown in Figure 16. The nature of the improvement is evident. Just
as with the PI compensator, the initial disturbance is fully compensated for and
the output voltage returns to the set-point value. This is due to the high-low
frequency gain, which tends to cause such disturbances to be rejected. As with
the lead compensator, the voltage transitions smoothly and with no oscillations,
since the phase margin of the system is within the acceptable range. By com-
bining these benefits, this circuit represents a fairly good method of controlling
the output of a buck converter

Figure 16: Step response of lead- and PI-compensated buck converter

Conclusion

This paper has discussed the design of three different compensators for the
buck switching converter, and evaluated their performance based on phase mar-
gins and the response to an input voltage step. The first design was a PI
compensator, which provided good voltage regulation but poor transient per-
formance. The second design was a lead compensator, which by increasing the
phase margin of the system yielded very good transient response, but which
still demonstrated a steady-state error to a step. By combining these two ap-
proaches, the final lead and PI compensator provides an excellent regulator for
the buck converter, which keeps the output voltage at the set value despite large
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changes in the input voltage. These results could be applied to the construction
of a practical compensator for an operating buck converter, or as an example of
how to design controllers for other switching converter topologies.
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tronics. Springer Science+Business Media, LLC, second edition, 2001.

[2] Raymond T. Stefani, Bahram Shahian, Clement J. Savant, and Gene H.
Hostetter. Design of Feedback Control Systems. Oxford University Press,
fourth edition, 2002.

22



F
ig

u
re

1
7
:

P
E

C
S

sc
h

em
a
ti

c
o
f

P
I-

co
m

p
en

sa
te

d
b

u
ck

co
n
ve

rt
er

23



F
ig

u
re

1
8
:

P
E

C
S

sc
h

em
a
ti

c
o
f

le
a
d

-c
o
m

p
en

sa
te

d
b

u
ck

co
n
ve

rt
er

24



F
ig

u
re

19
:

P
E

C
S

sc
h

em
a
ti

c
o
f

le
a
d

-
a
n

d
P

I-
co

m
p

en
sa

te
d

b
u

ck
co

n
ve

rt
er

25


