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2-7 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

Nonlinear Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals. There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. In control engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the ex-
pansion of nonlinear function into a Taylor series about the operating point and the
retention of only the linear term. Because we neglect higher-order terms of the Taylor
series expansion, these neglected terms must be small enough; that is, the variables
deviate only slightly from the operating condition. (Otherwise, the result will be
inaccurate.)

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(¢) and out-
put is y(t). The relationship between y(¢) and x(¢) is given by

y = f(x) (2-42)

If the normal operating condition cotresponds to X, 7, then Equation (2-42) may be
expanded into a Taylor series about this point as follows:

d 1d?
i+ Fe-n e+t

— (x = %)%+ (2-43)
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where the derivatives df/dx, d°f/dx?, ... are evaluated at x = X. If the variation x — ¥
is small, we may neglect the higher-order terms in x — %. Then Equation (2-43) may be
written as

y=y+ K(x —Xx) (2-44)
where
y = f(x)
_ %
== dx x=%

Equation (2-44) may be rewritten as
y—y=K(x—Xx) (2-45)

which indicates that y — ¥ is proportional to x — x. Equation (2-45) gives a linear math-
ematical model for the nonlinear system given by Equation (2-42) near the operating
point x = X,y = y.

Next, consider a nonlinear system whose output y is a function of two inputs x; and
X3, so that

y=f (xla xz) (2-46)

To obtain a linear approximation to this nonlinear system, we may expand Equation (2-46)
into a Taylor series about the normal operating point X, X¥,. Then Equation (2-46)
becomes

y = f(%, %) + [i(x1 — %)+ E(x2 - iz)}

6x1 6x2
1[&f - \2 P f - _
+ 2_! |ia_x% (X-l xl) + 2 ax1 8x2 ()C]_ xl)(xz xz)

2
+—a—~]i(x2 - 22)2] + o

ax3

where the partial derivatives are evaluated at x; = x;, x, = ¥,. Near the normal oper-
ating point, the higher-order terms may be neglected. The linear mathematical model of
this nonlinear system in the neighborhood of the normal operating condition is then
given by '

y =5 = Kx; — %) + Kyx, — X,)
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EXAMPLE 2-5

where

y = f(-fla X'Z)
d
K =
axl X=Xy, X=Xy
af
2= T
3x2 X=X, X =%,

The linearization technique presented here is valid in the vicinity of the operating
condition. If the operating conditions vary widely, however, such linearized equations are
not adequate, and nonlinear equations must be dealt with. It is important to remember
that a particular mathematical model used in analysis and design may accurately rep-
resent the dynamics of an actual system for certain operating conditions, but may not be
accurate for other operating conditions.

Linearize the nonlinear equation

:xy

in theregion 5 = x = 7,10 < y = 12. Find the error if the linearized equation is used to calcu-
late the value of z when x = 5, y = 10.

Since the region considered is given by 5 =< x = 7,10 =< y =< 12,choose X = 6,7 = 11. Then
Z = Xy = 66. Let us obtain a linearized equation for the nonlinear equation near a point ¥ = 6,
y =11

Expanding the nonlinear equation into a Taylor series about point x = X,y = 7 and neglecting
the higher-order terms, we have

where
3(xy) -
a= =y = 11
9% x=z.y=3
d(x
p = 2) =%=6
ay X=X, y=y

Hence the linearized equation is
or

z=11x + 6y — 66
When x = 5, y = 10, the value of z given by the linearized equation is

z=11x + 6y — 66 =55 + 60 — 66 = 49

The exact value of z is z = xy = 50. The error is thus 50 — 49 = 1. In terms of percentage, the
error is 2%.
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MODELING

D1.5 Draw diagrams similar to Figure 1.2 for the following systems:
(a) Control of human skin temperature by sweating
(b) Control of a nuclear reactor

(¢) The learning process with feedback, assuming that available study time is
a disturbance

1.3 Modeling

Control engineers must be able to analyze and design systems of many kinds. For
example, to design a speed control system for an automobile, it is necessary to
understand how the vacuum pressure of an engine affects throttle setting (pneumatics),
how temperature and pressure within a cylinder affect the power out as the gas—air
mixture from the carburetor explodes (thermodynamics), how the car will respond
to the power applied by the pistons in the cylinders (mechanics), and how electrical
devices may be created to measure and store important variables like temperature and
vacuum pressure (electrical circuits).

In each case it is necessary to create a mathematical model that behaves similarly
to the actual system within some operating range. The result is the description of
a plant for which a controller and measurement device may then be designed. For
example, certain values of a spring-mass-damper may be able to simulate the motion
of a car within some range of power applied while other values are needed for different
powers applied.

The process of linearization may be used to construct a model that is valid for
some range of operating conditions. For example, suppose a system output y (maybe

speed) depends on some input x (perhaps power), as represented by Figure 1.3, in
which

y= = L.y

Figure 1.3 Two approximations for
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CONTINUOUS-TIME SYSTEM DESCRIPTION

Linearization.

Table 1.2 Two Approximations to y = x?

x x? 44+4(x —2) 16+ 8(x — 4)
2 4.00 4.00 0.00
2.1 4.41 4.40 0.80
2.2 4.84 4.80 1.60
3.0 9.00 8.00 8.00
4.1 16.81 12.40 16.80

Instead of this nonlinear equation, it may be more useful to create a linear model that
operates near some value of x called x¢. A Taylor series approximation to f(x) at
the point xo is given by the following where f!(xo) means that f(x) is differentiated
with respect to x and then evaluated when x equals xg. The tilde symbol (~) implies
an approximation

Y~ Yo+ f(xo)(x — x0) [1.2]

¥ ~ x§ + 2x0(x — x0) [1.3]
If we choose xg to be 2, then the approximation of Equation (1.3) becomes

y~44+4x-2) [1.4]

Table 1.2 and Figure 1.3 show values of Equation (1.4) near x; = 2 and also results
farther away from xy = 2.

Notice that Equation (1.4) is good approximation to x? for values of x near 2
but that the approximation becomes worse for x values which are higher than 2. For
example, if x moves to the vicinity of 4, then Equation (1.3) becomes 16 4+ 8(x — 4),
which yields an approximate value of 16.80 at x = 4.1, very close to the true value
of 16.81 and much better than the value 12.40 that we would get using the other
approximation. Even Ohm’s famous law that v = iR is good only for some range
of voltage versus current. In Figure 1.4 there is a linear region where the slope of v
versus { is constant (and Ohm’s law applies) and other regions where the slope is not
constant (and Ohm’s law does not apply).

O DRILL PROBLEMS
D1.6 Approximate y = /x for values of x = 2.2,2.4,2.6,2.8, and 3.0 by lin-
earizing +/x about xo = 2, using Equation (1.2). Compare approximate values
with true values.

Ans. y = 1.41440.354(x —2)

x Approximate | True
22| 1485 1.483
24 | 1.556 1.549
2.6 | 1.626 1.612
2.8 | 1.697 1.673
3.0 | 1.768 1.732
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Figure 1.4 Linear region where
v=1iR.

Linear
| region

DL1.7 If x is in radians, use Equation (1.2) to approximate Yy = sinx for val-
ues of x = 0.1,0.2,0.3, and 0.4, by linearizing sin x about x, = 0. Compare
approximate values with true values.

Ans, y~x
E (rad) | x (deg) f Approximate | True 7
0.1 5.7 0.100 0.100
0.2 11.5 0.200 0.199
0.3 17.2 0.300 0.296
04 22.9 0.400 0.389

1.4 System Dynamics

A controls engineer usually works from the Laplace-transformed description of a

system. Each application has its own unique properties. Some systems are purely

electrical while others may employ electrical, hydraulic, and mechanical subsystems,

all tied together in a coordinated effort to maintain some desired performance. We

shall examine methods for analyzing components of the following types:

Electrical (mesh analysis, node analysis, state variables, operational amplifier
applications)

Mechanical translational (free-body diagrams and state variables)

Mechanical rotational (free-body diagrams)

Electromechanical

Aerodynamic

Hydraulic

Thermodynamic

Applications.
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Figure 8.5 Open-loop vs. closed-loop cruise control.

Code 8.1 Compare open-loop and closed-loop cruise control.

clear all, close all, clc

time

oe

t = 0:.01:10;

oo

r = 60xones(size(t)); reference speed

w
d = 10«sin(pixt);

% disturbance
aModel = 1; % y = aModelsu
aTrue = .5; % v = aTrues*u
uOL = wr/aModel; % COpen-loop u based
yOL = aTruexuOL + d; % Open-loop response
K = 50; % control gain, u=K(wr 5

yCL = aTruexK/ (1+aTruexK)+wr + d/(1+aTruexK) ;

Linear Time-Invariant Systems

The most complete theory of control has been developed for linear systems [492, 165, 22].
Linear systems are generally obtained by linearizing a nonlinear system about a fixed point
or a periodic orbit. However, instability may quickly take a trajectory far away from the
fixed point. Fortunately, an effective stabilizing controller will keep the state of the system
in a small neighborhood of the fixed point where the linear approximation is valid. For
example, in the case of the inverted pendulum, feedback control may keep the pendulum
stabilized in the vertical position where the dynamics behave linearly.

Linearization of Nonlinear Dynamics
Given a nonlinear input—output system

%x — f(x, ) (8.78)
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Linear Control Theory

y =g(x, u) (8.7b)

it is possible to linearize the dynamics near a fixed point (X, @) where f(X, 1) = 0. For small
Ax = x — X and Au = u — ii the dynamics f may be expanded in a Taylor series about the
point (X, @):

df df
fx+Ax, 0+ Au) =f(x,0) + —

AxXH+ — Au e (8.8)
X&) du 5
A B
Similarly, the output equation g may be expanded as:
- _ _ d d
gX + Ax,u+ Au) = g(x, ) + =8 -AX A+ e AN | I R (8.9)
dx| s dus 5
C D

For small displacements around the fixed point, the higher order terms are negligibly small.
Dropping the A and shifting to a coordinate system where X, U1, and y are at the origin, the
linearized dynamics may be written as;

d
Ex: Ax + Bu (8.10a)

y = Cx + Du. (8.10b)

Note that we have neglected the disturbance and noise inputs, wy and wj,, respectively;
these will be added back in the discussion on Kalman filtering in Section 8.5.

Unforced Linear System
In the absence of control (i.e., u = 0), and with measurements of the full state (i.e., y = x),
the dynamical system in (8.10) becomes

d
2 — Ax. 8.11
X = Ax (8.11)
The solution x(¢) is given by
x(t) = ex(0), (8.12)

where the matrix exponential is defined by:

AZ2 A3
R (8.13)

The solution in (8.12) is determined entirely by the eigenvalues and eigenvectors of the
matrix A. Consider the eigendecomposition of A:

AT = TA. . (8.14)

In the simplest case, A is a diagonal matrix of distinct eigenvalues and T is a matrix
whose columns are the corresponding linearly independent eigenvectors of A. For repeated
eigenvalues, A may be written in Jordan form, with entries above the diagonal for degen-
erate eigenvalues of multiplicity > 2; the corresponding columns of T will be generalized
eigenvectors.
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