ECE317 : Feedback and Control

Lecture :
Routh-Hurwitz stability criterion
Examples

Dr. Richard Tymerski
Dept. of Electrical and Computer Engineering
Portland State University
Course roadmap

Modeling
- Laplace transform
- Transfer function
- Block Diagram
- Linearization
- Models for systems
 - electrical
 - mechanical
 - example system

Analysis
- Stability
 - Pole locations
 - Routh-Hurwitz
- Time response
 - Transient
 - Steady state (error)
- Frequency response
 - Bode plot

Design
- Design specs
- Frequency domain
- Bode plot
- Compensation
- Design examples

Matlab & PECS simulations & laboratories
Definitions of stability (review)

• **BIBO** (Bounded-Input-Bounded-Output) **stability**
 Any bounded input generates a bounded output.

• **Asymptotic stability**
 Any ICs generates y(t) converging to zero.
Stability summary (review)

Let s_i be poles of $G(s)$. Then, $G(s)$ is ...

- (BIBO, asymptotically) stable if $\Re(s_i) < 0$ for all i.
- marginally stable if
 - $\Re(s_i) \leq 0$ for all i, and
 - simple pole for $\Re(s_i) = 0$
- unstable if it is neither stable nor marginally stable.
Routh-Hurwitz criterion (review)

• This is for LTI systems with a *polynomial* denominator (without sin, cos, exponential etc.)

• It determines if all the roots of a polynomial
 • lie in the open LHP (left half-plane),
 • or equivalently, have negative real parts.

• It also determines the number of roots of a polynomial in the open RHP (right half-plane).

• It does **NOT** explicitly compute the roots.

• No proof is provided in any control textbook.
Routh array (review)

From the given polynomial:

\[Q(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 \]

<table>
<thead>
<tr>
<th>(s^n)</th>
<th>(a_n)</th>
<th>(a_{n-2})</th>
<th>(a_{n-4})</th>
<th>(a_{n-6})</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s^{n-1})</td>
<td>(a_{n-1})</td>
<td>(a_{n-3})</td>
<td>(a_{n-5})</td>
<td>(a_{n-7})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(s^{n-2})</td>
<td>(b_1)</td>
<td>(b_2)</td>
<td>(b_3)</td>
<td>(b_4)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(s^{n-3})</td>
<td>(c_1)</td>
<td>(c_2)</td>
<td>(c_3)</td>
<td>(c_4)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
<tr>
<td>(s^2)</td>
<td>(k_1)</td>
<td>(k_2)</td>
<td></td>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(s^1)</td>
<td>(l_1)</td>
<td></td>
<td></td>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(s^0)</td>
<td>(m_1)</td>
<td></td>
<td></td>
<td></td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>
Routh array
(How to compute the third row)

<table>
<thead>
<tr>
<th>s^n</th>
<th>a_n</th>
<th>a_{n-2}</th>
<th>a_{n-4}</th>
<th>a_{n-6}</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^{n-1}</td>
<td>a_{n-1}</td>
<td>a_{n-3}</td>
<td>a_{n-5}</td>
<td>a_{n-7}</td>
<td>\cdots</td>
</tr>
<tr>
<td>s^{n-2}</td>
<td>b_1</td>
<td>b_2</td>
<td>b_3</td>
<td>b_4</td>
<td>\cdots</td>
</tr>
<tr>
<td>s^{n-3}</td>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>c_4</td>
<td>\cdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>s^2</td>
<td>k_1</td>
<td>k_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s^1</td>
<td>l_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s^0</td>
<td>m_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 b_1 & = \frac{a_{n-2}a_{n-1} - a_n a_{n-3}}{a_{n-1}} \\
 b_2 & = \frac{a_{n-4}a_{n-1} - a_n a_{n-5}}{a_{n-1}} \\
 & \vdots
\end{align*}
\]
Routh array
(How to compute the fourth row)

<table>
<thead>
<tr>
<th>s^n</th>
<th>a_n</th>
<th>a_{n-2}</th>
<th>a_{n-4}</th>
<th>a_{n-6}</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^{n-1}</td>
<td>a_{n-1}</td>
<td>a_{n-3}</td>
<td>a_{n-5}</td>
<td>a_{n-7}</td>
<td>...</td>
</tr>
<tr>
<td>s^{n-2}</td>
<td>b_1</td>
<td>b_2</td>
<td>b_3</td>
<td>b_4</td>
<td>...</td>
</tr>
<tr>
<td>s^{n-3}</td>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>c_4</td>
<td>...</td>
</tr>
</tbody>
</table>

For s^{n-3} row:

\[
c_1 = \frac{a_{n-3}b_1 - a_{n-1}b_2}{b_1} \]
\[
c_2 = \frac{a_{n-5}b_1 - a_{n-1}b_3}{b_1} \]

...
Routh-Hurwitz criterion

The number of roots in the open right half-plane is equal to the number of sign changes in the first column of Routh array.
Example 1

\[Q(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 \]

Routh array

\(s^5 \)	1	2	11
\(s^4 \)	2	4	10
\(s^3 \)	0 \(\epsilon \)	6	
\(s^2 \)	\(\frac{4\epsilon - 12}{\epsilon} \)	10	
\(s^1 \)	\(\approx 6 \)		
\(s^0 \)	10		

If 0 appears in the first column of a nonzero row in Routh array, replace it with a small positive number. In this case, \(Q \) has some roots in RHP.

Two sign changes in the first column \(\Rightarrow \) Two roots in RHP

\[\epsilon \rightarrow \frac{4\epsilon - 12}{\epsilon} \rightarrow 6 \]
Example 2

$$Q(s) = s^4 + s^3 + 3s^2 + 2s + 2$$

Routh array

<table>
<thead>
<tr>
<th>s^4</th>
<th>1</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>s^2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>s^1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>s^0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If zero row appears in Routh array, Q has roots either on the imaginary axis or in RHP.

No sign changes in the first column \rightarrow No roots in RHP

But some roots are on imag. axis.

Take derivative of an auxiliary polynomial (which is a factor of $Q(s)$) $s^2 + 2$
Example 3

\[Q(s) = s^3 + s^2 + s + 1 \quad (= (s + 1)(s^2 + 1)) \]

Routh array

\[
\begin{array}{c|cc}
 & s^3 & 1 \\
 & s^2 & 1 \\
 s^1 & 0 & 2 \\
 s^0 & 1 & \\
\end{array}
\]

Derivative of auxiliary poly.

\[(s^2 + 1)' = 2s\]

(Auxiliary poly. is a factor of \(Q(s)\).)

No sign changes in the first column

No root in OPEN(!) RHP
Example 4

\[Q(s) = s^5 + s^4 + 2s^3 + 2s^2 + s + 1 = (s+1)(s^2+1)^2 \]

Routh array

\[
\begin{array}{c|ccc}
 s^5 & 1 & 2 & 1 \\
 s^4 & 1 & 2 & 1 \\
 s^3 & 0 & 4 & 4 \\
 s^2 & 1 & 1 & \text{no root in OPEN(!) RHP} \\
 s^1 & 0 & 2 & \text{no sign changes in the first column} \\
 s^0 & 1 & & \\
\end{array}
\]

Derivative of auxiliary poly.

\[(s^4 + 2s^2 + 1)' = 4s^3 + 4s\]

\[(s^2 + 1)' = 2s\]
Example 5

\[Q(s) = s^4 - 1 = (s + 1)(s - 1)(s^2 + 1) \]

Routh array

\[
\begin{array}{ccc|c}
s^4 & 1 & 0 & -1 \\
s^3 & 4 & 0 & 0 \\
s^2 & 0 & \varepsilon & -1 \\
s^1 & 4/\varepsilon & 4 & 0 \\
s^0 & -1 & 0 & 0 \\
\end{array}
\]

Derivative of auxiliary poly.

\[(s^4 - 1)' = 4s^3 \]

One sign changes in the first column \[\rightarrow \] One root in OPEN(!) RHP
Notes on Routh-Hurwitz criterion

• Advantages
 • No need to explicitly compute roots of the polynomial.
 • High order $Q(s)$ can be handled by hand calculations.
 • Polynomials including undetermined parameters (plant and/or controller parameters in feedback systems) can be dealt with.
 • Root computation does not work in such cases!

• Disadvantage
 • Exponential functions (delay) cannot be dealt with.
 • Example: $Q(s) = e^{-s} + s^2 + s + 1$
Example 6

\[Q(s) = s^3 + 3Ks^2 + (K + 2)s + 4 \]

Find the range of K s.t. \(Q(s) \) has all roots in the left half plane. (Here, K is a design parameter.)

Routh array

\[
\begin{array}{c|cc}
\text{s}^3 & 1 & K + 2 \\
\text{s}^2 & 3K & 4 \\
\text{s}^1 & \frac{3K(K + 2) - 4}{3K} & \text{No sign changes in the first column} \\
\text{s}^0 & 4 & \begin{cases} 3K > 0 \\
3K(K + 2) - 4 > 0 \\
K > -1 + \frac{\sqrt{21}}{3} \end{cases}
\end{array}
\]
Example 7

- Design $K(s)$ that stabilizes the closed-loop system for the following cases.
 - $K(s) = K$ (constant, P controller)
 - $K(s) = K_P + K_I/s$ (PI (Proportional-Integral) controller)
Example 7: \(K(s) = K \)

- **Characteristic equation**

\[
1 + K \frac{2}{s^3 + 4s^2 + 5s + 2} = 0
\]

\[
\Rightarrow s^3 + 4s^2 + 5s + 2 + 2K = 0
\]

- **Routh array**

\(s^3 \)	1	5
\(s^2 \)	4	\(2 + 2K \)
\(s^1 \)	\(\frac{18 - 2K}{4} \)	
\(s^0 \)	\(2 + 2K \)	

\[
-1 < K < 9
\]
Example 7: $K(s)=K_P+K_I/s$

- Characteristic equation

$$1 + \left(K_P + \frac{K_I}{s}\right) \frac{2}{s^3 + 4s^2 + 5s + 2} = 0$$

$$s^4 + 4s^3 + 5s^2 + (2 + 2K_P)s + 2K_I = 0$$

- Routh array

<table>
<thead>
<tr>
<th>s^4</th>
<th>s^3</th>
<th>s^2</th>
<th>s^1</th>
<th>s^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>$\frac{18-2K_P}{4}$</td>
<td>(*)</td>
<td>$2K_I$</td>
</tr>
<tr>
<td>5</td>
<td>2 + $2K_P$</td>
<td>$2K_I$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K_I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2K_I$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$K_P < 9$

$K_I > 0$
Example 7: Range of \((K_P, K_I)\)

- From Routh array,

 \[K_P < 9 \]

 \[K_I > 0 \]

 \[(*) \iff (1 + K_P)(9 - K_P) - 8K_I > 0\]

CL system: stable

CL system: unstable
Example 8

- Determine the range of K that stabilize the closed-loop system.
Example 8 (cont’d)

\[\frac{1}{(s + 2)(s + 3)} \]
Example 8 (cont’d)

• Characteristic equation

\[1 + K \frac{1}{(s+2)(s+3)} \cdot \frac{1}{s} = 0 \]

\[1 + K \cdot \frac{1}{s(s + 2)(s + 3) + s} = 0 \]

\[s(s + 2)(s + 3) + s + K = 0 \]

\[s^3 + 5s^2 + 7s + K = 0 \]
Example 8 (cont’d)

• Routh array

\[
\begin{array}{c|cc}
 s^3 & 1 & 7 \\
 s^2 & 5 & K \\
 s^1 & \frac{35-K}{5} & \\
 s^0 & K & \\
\end{array}
\]

\[0 < K < 35\]

• If \(K=35\), the closed-loop system is marginally stable. Output signal will oscillate with frequency corresponding to

\[
\frac{1}{5s^2 + 35} = \frac{1}{5} \cdot \frac{1}{s^2 + 7} = \frac{1}{5} \cdot \frac{1}{s^2 + (\sqrt{7})^2}
\]
Summary

• Examples for Routh-Hurwitz criterion
 • Cases when zeros appear in Routh array
 • P controller gain range for stability
 • PI controller gain range for stability

• Next
 • Frequency response