Consider the following system for questions (8-17)

where,

$$G(s) = \frac{A(1 - \frac{s}{\omega_1})}{1 + \frac{s}{Q\omega_2} + \left(\frac{s}{\omega_2}\right)^2}$$

A = 12,000

$$\omega_1=300 rds/s$$

$$\omega_2=10 rds/s$$

$$Q = 1.6$$

[Hint: $10^{1/2Q} \approx 2$]

Except where noted, we will assume $G_c(s)$ =1. The asymptotic Bode plot of G(s) is shown below.

- 8. The expression for the gain G₁ along the sloping line segment is

 - b. $A\left(\frac{\omega}{\omega_2}\right)^2$
 - c. $A\left(\frac{\omega_2}{\omega}\right)^2$
 - d. $A\omega$
 - e. $\left(A\frac{\omega}{\omega_2}\right)^2$
- 9. The expression for the gain G₂ along the sloping line segment is

 - b. $A\left(\frac{\omega_2}{\omega\omega_1}\right)^2$
 - c. $\frac{A\omega_1\omega_2^2}{\omega}$ d. $A\omega$

 - e. $\left(A\frac{\omega\omega_1}{\omega_2}\right)^2$
- 10. The frequency ω_c shown in the above plot has an approximate value of
 - a. 5 rds/s
 - b. 20 rds/s
 - c. 1 rds/s
 - d. 30 rds/s
 - e. None of the above
- 11. The expression for the phase ϕ_4 along the sloping line segment is
 - a. $-180 45 \log_{10}(\frac{10\omega}{\omega_1})$
 - b. $-270 + 45 \log_{10}(\frac{10\omega_1}{\omega})$
 - c. $-180 \arctan(\frac{\omega}{\omega_1})$
 - d. Both (a) and (c)
 - e. (a), (b) and (c)
- 12. Unity gain crossover frequency is
 - a. 2000rds/s
 - b. 3500rds/s
 - c. 4000rds/s
 - d. 5000rds/s
 - e. None of the above
- 13. The phase margin is
 - a. 90
 - b. 0
 - c. -180
 - d. -90
 - e. -270

- 14. The steady state error of the closed loop system for a unit step (assuming $G_c(s) = 1$) is

 - b. 1
 - c. 0.5
 - d. ∞
 - e. 2
- 15. We now use a compensator such that $G_c(s) = \frac{K}{s}$ where K is a constant. The value of K required so that the loop gain has a unity gain crossover frequency of 2 rds/s is
 - a. 10×10^{-3}
 - b. 2×10^{-3}
 - c. 10
 - d. $\frac{1}{12} \times 10^{-3}$ e. $\frac{1}{6} \times 10^{-3}$
- 16. For your design of question (15), the phase margin is
 - a. 90
 - b. 0
 - c. -180
 - d. -90
 - e. -270
- 17. For your design of question (15), the steady state error of the closed loop system to a unit step is
 - a. 1
 - b. 0.5
 - **c.** ∞
 - d. 2
 - e. 0